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1. INTRODUCTION 

Let L be a finite lattice and K[L] be the polynomial ring over a field K whose variables are the elements of L. The ideal 

IL = ({fa,b := xaxb − xa∨bxa∧b | a,b ∈ L}) ⊂ K[L] 

is called the join-meet ideal of L. It was introduced in 1987 by Hibi in [3]. As shown by [1] or [3], L is distributive if and only if IL 

is a prime ideal. It follows from this result that IL is radical when L is distributive. However, it is not yet completely known classes 

of non-distributive lattice L with the property that IL is a radical ideal. On the other hand, for instance, it followed from [1] and [2] 

that there are some examples of non-distributive modular lattice such that IL is a radical ideal. 

Not all, here we briefly introduce three examples. First, the join-meet ideal of the pentagon lattice N5 and diamond lattice M5 is 

radical; see [1, Page 157] for detailed proof. 

                                                                                  
(a) The pentagon lattice N5 (b) The diamond lattice M5 

Figure 1. The Hasse diagram of the pentagon lattice N5 and diamond lattice M5 

 

Second, for some integer n ≥ 1, it exists a class of the distributive lattice of the divisors of 2 · 3n such that by including just one 

small diamond one get a radical join-meet ideal for the new lattice; see [2, Section 3] for detail. 

                                                                                      
Figure 2. The Hasse diagram of the new non-distributive lattice made by including just one small diamond 

 

In this paper, we introduce two new examples of non-distributive lattices L such that the join-meet ideal IL is radical. Let k be non-

negative integer with k > 0. For non-negative integer n1,··· ,nk ≥ 1,   we denote by Lk(n1,··· ,nk) the finite lattice with the elements 

labeled as in Figure 3. 
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Figure 3. The Hasse diagram of new finite lattices 

 

A finite lattice Lk(n1,··· ,nk) looks larger version of finite lattices introduced by [1, Problems 6.13] in the terms of the appearance 

of the Hasse diagram. 

                                                                                          
Figure 4. The Hasse diagram of a finite lattice introduced in [1, Problems 6.13] 

 

Then, the following question arises. Is the join-meet ideal ILk(n1,···,nk) radical ? Unfortunately, we couldn’t answer this question. 

On the other hand, for k = 2,3, the following results were obtained. 

Theorem 1.1. The join-meet ideal IL2(n1,n2) is radical. 

Theorem 1.2. For 

       (n1,n2,n3)= (k1,1,1), 2 ≤ k1 ≤ 10, 

                             (k2,k3,1), 2 ≤ k2 ≤ 4,2 ≤ k3 ≤ 4,  

                            (k4,k5,k6), 2 ≤ k4,k5,k6 ≤ 3, 

the join-meet idea IL3(n1,n2,n3) is radical. 

By using new examples L2(n1,n2), we obtained new non-distributive non-modular lattices L2(n1,n2)[k′,i1,i2] for non-negative 

integer k′,n1,n2 satisfying certain conditions. We also obtained new distribtuive lattices On1. Then, the following results were 

obtained. 

Theorem 1.3. The join-meet ideal IL2(n1,n2)[k′,i1,i2] is radical. 

Theorem 1.4. The join-meet ideal IOn is radical. 

We checked that Theorem 1.3 and 1.4 are similar to [2, Theorem 3.3] in terms of the opposite approach. Unfortunately, since On1 

is a distributive lattice, note that it not new exmaples. The detailed definition of L2(n1,n2)[k′,i1,i2] and On1 is given in section 4. 

This paper is organized as follows. In section 2, we introduce the proof of Theorem 1.1 and 1.2. In section 3, we introduce the 

conjectures that occur naturally by Theorem 1.1 and 1.2. Then, we give some thoughts. In section 4, we introduce the proof of 

Theorem 1.3 and 1.4. In section 5, we introduce topics related to On1. The keywords of it are number theory and gorenstein ring. 

Note that it has little to do with the gist of this paper. 

Below, unless otherwise noted, in order to avoid the complexity of notation, we denote 

a1,i = ai for 1 ≤ i ≤ n1, a2,i = bi for 1 ≤ i ≤ n2, a3,i = ci for 1 ≤ i ≤ n3. 

Furthermore, in order to match the logical calculation, let ai, bi and ci satisfy 

ai,bi,ci = s for i ≤ 0, ai = t for n1 + 1 ≤ i, bi = t for n2 + 1 ≤ i, ci = t for n3 + 1 ≤ i. 
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2. THE PROOF OF THEOREM 1.1 AND THEOREM 1.2 

In this section, we introduce the proof of theorem 1.1 and theorem 1.2. Hereafter, in order to avoid the complexity of notation, 

let n1 = n, n2 = m, n3 = r. 

2.1. The proof of Theorem 1.1. Let 

 
The outline of the proof of Theorem 1.1 is to show that IL2(n,m) is squarefree with respect to the inverse lexicographic order induced 

by 

s ≺ a1 ≺···≺ an ≺ b1 ≺···≺ bm ≺ c1 ≺···≺ cr ≺ t. (2.1.1) 

To prove this claim, for n > 1, we show that the set Gn,m ∪ An ∪ Bm is a Gr¨obner basis of IL2(n,m) with repsect to ≺. Below, by using 

Buchberger’s criterion, we show each case when m = 1 and when it is not. Note that it is clearly that IL2(1,1) is radical; see Figure 5 

, [1, Theorem 6.10(Dedekind)] and [1, Theorem 6.21]. 

                                                                                                
Figure 5. The Hasse diagram of a finite lattice L2(1,1) 

2.1.1. The case m = 1. First, for u and v belonging to Gn,1, we show that the S- polynomial S(u,v) reduces to 0. Let i and j be non-

negative integer with 1 ≤ i,j ≤ n. Let ui,j denote the S-polynomial S(aib1 − st,ajb1 − st). If i = j, then we have ui,j = ui,i = 0. On the other 

hand, if i ≠ j, we have 

ui,j = aj(aib1 − st) − ai(ajb1 − st) = −ajst + aist. (2.1.2) 

Thus, computational result of ui,j(i ≠ j) is as Table 1. Hence, we showed that S(u,v) reduces to 0. 

Table 1. Computational result of ui,j(i ≠ j) 

 
 

Second, for u and v belonging to ∈ An, we show that S(u,v) reduces to 0. Let i and j be nonnegative integer with 2 ≤ i,j ≤ n. Let 

ui,j denote the S-polynomial S(aist−a1st,ajst−a1st). If i = j, then we have ui,j = ui,i = 0. On the other hand, if i ̸= j, then we have  

ui,j =  aj(aist − a1st) − ai(ajst − a1st) = −aja1st + aia1st = a1(aist − a1st) − a1(ajst − a1st). 

Hence, we showed that the S(u,v) reduces to 0. 

Finally, for (u,v) belonging to Gn,1 × An, we show that S(u,v) reduces to 0. Let i and j be non-negative integer with 1 ≤ i ≤ n, 1 < 

j ≤ n. Let ui,j denote the S- polynomial 

S(aib1 − st,ajst − a1st). If i = j, then we have ui,i = st(aib1 − st) − b1(aist − a1st) = a1b1st − s2t2 = st(a1b1 − st). On the ohter hand, if i ≠ 

j, then we have ui,j = ajst(aib1 − st) − aib1(ajst − a1st) = −ajs2t2 + aia1b1st = a1st(aib1 − st) − st(ajst − a1st). 

Hence, we showed that S(u,v) reduces to 0. 

Therefore, We showed that the set Gn,m∪An∪B1 is a Gr¨obner basis of IL2(n,1) with repsect to ≺. 

2.1.2. The case m > 1. First, for u and v belonging Gn,m, we show that the S- polynomial S(u,v) reduces to 0. Let i, j, k and r be non-

negative integer with 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k,r ≤ m. Let ui,j,k,r denote the S-polynomial S(aibj − st,akbr − st). If i = k, then we have 

ui,j,i,r = −brst + bjst. Thus, computational result of ui,j,i,r from table 2. Hence, ui,j,i,r reduces to 0. 
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Table 2. Computational result of ui,j,i,r 

 
 

On the other hand, for j = r, it follows that ui,j,i,r reduces to 0 by rewriting b1 to bj in (2.1.2) and using table 1. Therefore, we 

showed that S(u,v) reduces to 0. 

Second, for u and v belonging to An ∪ Bm, we show that S(u,v) reduces to 0. Since S(u,v)(u,v ∈ An) and S(u,v)(u,v ∈ Bm) reduce to 

0 from the discussion in case m = 1, it suffices to prove that S(u,v) reduces to 0, where (u,v) ∈ An × Bm. 

Now, let i and j be non-negative integer with 1 < i ≤ n,1 < j ≤ m. Let ui,j denote the S-polynomial S(aist − a1st,bjst − b1st). Then, 

the polynomial ui,j is computed as follows: ui,j = bj(aist − a1st) − ai(bjst − b1st) = −a1bjst + aib1st = st(aib1 − st) − st(a1bj − st). 

Hence, we showed that S(u,v) reduces to 0. 

Finally, for (u,v) belonging to Gn,m×An∪Bm, we show that S(u,v) reduces to 0. Let i, j, k and r be non-negative integer with 1 ≤ i 

≤ n, 1 ≤ j,≤ m, 1 < k ≤ n, 1 < r ≤ m. Let ui,j,k be the S-polynomial S(aibj −st,akst−a1st) and ui,j,r the S-polynomial S(aibj −st,bkst−b1st). 

At first, about computational result of ui,j,k, if k = i > 1, then we have ui,j,k = st(aibj − st) − bj(aist − a1st) = a1bjst − s2t2 = st(a1bj − st). 

Hence, ui,j,i reduces to 0. On the other hand, if i ≠ k, then it follows that in≺(aibj −st) = aibj and in≺ (akst − a1st) = akst are relatively 

prime. Hence, for i ≠ k, ui,j,k reduces to 0 with respect to aibj − st, akst − a1st. 

Next, about the computational result of ui,j,r, if r = j > 1, then we have ui,j,k = st(aibj − st) − ai(bjst − b1st) = aib1st − s2t2 = st(aib1 − st). 

Hence, ui,j,j reduces to 0. On the other hand, if j ≠ r, it follows that in≺(aibj − st) = aibj and in≺ (brst − b1st) = brst are relatively prime. 

Hence, for j ≠ r, ui,j,r reduces to 0 with respect to aibj − st, brst − b1st. 

From the discussion of computational result of ui,j,k and ui,j,r, we showed that S(u,v) reduces to 0. 

Therefore, We showed that the set Gn,m ∪ An ∪ Bm is a Gr¨obner basis of IL2(n,m) with repsect to ≺. 

2.1.3. Conclusion. The set Gn,m ∪ An ∪ Bm is a Gr¨obner basis of IL2(n,m) with repsect to ≺. 

Thus, we have in≺ (IL2(n,m)) = ({aibj | 1 ≤ i ≤ n,1 ≤ j ≤ m}∪{aist | 1 ≤ i ≤ n}∪{bist | 1 ≤ i ≤ m}). 

Hence, in<(IL2(n,m)) is squarefree with respect to ≺. Therefore, IL2(n,m) is radical. 

 

2.2. The proof of Theorem 1.2. Let denote the following ideals: 

En,m,r = , 

Xn,m = (s,a1,··· ,an,b1,··· ,bm) ∩ (a1,··· ,am,b1,··· ,bm,t), 

Ym,r = (s,b1,··· ,bm,c1,··· ,cr) ∩ (b1,··· ,bm,c1,··· ,cr,t), 

Zn,r = (s,a1,··· ,an,c1,··· ,cr) ∩ (a1,··· ,an,c1,··· ,cr,t). 

 

The outline of proof is to show that all primary ideals appearing in the primary decomposition of IL3(n,m,r) is prime ideal. 

First, by using Risa/Asir [4], we have 
IL3(n,1,1) = En,1 ∩ Xn,1 ∩ Y1,1 ∩ Zn,1 for n = 2,3,··· ,10, (2.2.1) 

IL3(n,1,1) = En,m ∩ Xn,m ∩ Ym,1 ∩ Zn,1 for 2 ≤ n ≤ 4, 2 ≤ m ≤ 4, (2.2.2) 

IL3(n,m,r) = En,m,r ∩ Xn,m ∩ Ym,r ∩ Zn,r for 2 ≤ n,m,r ≤ 3. (2.2.3) 

 

We comment a little here. The above results were obtained by doing something like the following computation: 

Listing 1. The computation of the primary decomposition of IL3(3,1,1) with Risa/Asir 

[4] 
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By (2.2.1), (2.2.2) and (2.2.3), we have 

 
Then, we have 

 
In fact, It is clear from the following lemma. 

 

Lemma 2.1. Let {i1,··· ,is} be a subset of L, where i1 < i2 < ··· < is. Let I be the ideal (i1,··· ,is). Then, I is prime ideal. 

Proof. Let a and b be the elemetns of K[L] such that ab belongs to I. Suppose neither a nor b belongs to I. Then, a and b belong to 

the polynomial ring over K whose variables are the elements of L\{i1,··· ,is}. Therefore, since a and b do not contain the variables 

i1,i2,··· ,i□ s, it contradicts that ab belongs to I. Hence, a is in I or b is in I. Therefore, I is prime ideal. 

 

Now, by using Risa/Asir [4] , we computed the prime decomposition of √En,m,r appearing in the right-hand side of (2.2.4) , (2.2.5) 

and (2.2.6). It was as follows: 

, 

Hence, it follows from (2.2.4) , (2.2.5) and (2.2.6) that we have 

 
 

Therefore, we proved Theorem 1.2. 

 

3. CRYSTAL CONJECTURE 

In this section, we introduce the conjectures that occur naturally by Theorem 1.1 and 1.2. It is as follows: 

Conjecture 3.1 (Crystal conjecture). The join-meet ideal ILk(n1,n2,···,nk) is radical. 

We consider that Conjecture 3.1 is positive. The reason is as follows. By the proof of theorem 1.1, it was confirmed the existence 

of monomial order ≺ which is satisfying in (L2(n1,n2)) = √in≺(L2(n1,n2)). Furthermore, the method of constructing ≺ was simple. ≺ 

Hence, for k = 3, we can conjecture that there may be such a monomial order. Therefore, the following conjecture naturally occurs: 

Conjecture 3.2. For k ≥ 3 and (n1,··· ,nk) ≠ (1,··· ,1), it exists a monomial order ≺′ such that ILk(n1,···,nk) is squarefree with respect 

to ≺′. 

Remark 3.3 (Reason for imposing (n1,··· ,nk)  =(̸1,1,1)). By [1, Theorem 6.10 ( Dedekind)], since we have L3(1,1,1) = M5, a finite 

lattice Lk(1,1,1,··· ,1) is non-distributive modular lattice. Hence, by [2, Theorem 1.3], it do not exist a monomial order such that 

ILk(1,···,1) is squarefree. From such a fact, it imposes (n1,··· ,nk) ≠ (1,1,1) in Conjecture 3.2. 

                                              
Figure 6. The Hasse diagram of non-distributive modular lattice Lk(1,1,1,··· ,1) 

a 1 , 1 a 2 , 1 a 3 , 1 a n − 1 , 1 a n, 1  
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In Conjecture 3.2, if the method of constructing ≺′ can be formulated as an algorithm that does not depend on k, Conjecture 3.1 

be resolved. Hence, it is worth working on Conjecture 3.2. However, in the case k = 3, although we computed a lot with Risa/Asir 

[4], we are not yet checked a monomial̸ order ≺′ which is satisfying in≺′(L3(n1,n2,n3)) = √in≺′(L3(n1,n2,n3)) for (n1,n2,n3) = (1,1,1). 

From this calculation experiment, unfortunately, Conjecture 3.2 may be negative. On the other hand, we can consider positively that 

it is very important result in terms of squarefree of join-meet ideal. 

 

4. INVARIANCE OF RADICALITY BY ADDING NEW RELATIONSHIP 

In this section, at first, we introduce a new finite lattice L2(n1,n2)[k′,i1,i2] and On1 which is created by adding a new relationship to 

L2(n1,n2). Next, we prove Theorem 1.3 and 1.4. This result is similar to [2, Theorem 3.3] in terms of the opposite approach and it 

claims strongly invariance of radicality by adding a new relationship. Hereafter, we explain each L2(n1,n2)[k′,i1,i2] and On1 separately. 

4.1. A finite lattice L2(n1,n2)[k′,i1,i2]. Let n1 ≥ 5 and n2 ≥ 5. Let i1,i2 be non-negative integer and let i1 > 1, 4 < i2 < n2 and i2−i1 ≥ 2. 

Let k′ be non-negative integer which satisfies 3 ≤ k′ ≤ n2 − 2 and k′ ≠ n1,n2. We denote L2(n1,n2)[k′,i1,i2] by L2(n1,n2) which satisfies 

ai1 < bk′, bk′ < ai2. Figure 7 (A) displays The Hasse diagram of a poset {ai1,··· ,ai2,bk′}. By [1, Theorem 6.10 (Dedekind)], note that 

L2(n1,n2)[k′,i1,i2] be a non-modular lattice. In fact, since b1 < b2 < b3 < ··· < bk′ and since a1,a2,··· ,ai1−1 are incomparable to 

b1,b2,b3,··· ,bk′ respectively, it exists a sublattice {s,a1,b1,b2,bk′} of L2(n1,n2)[k′,i1,i2] is isomorphic to the pentagon lattice N5. 

 
Figure 7. The Hasse diagram of a poset {ai1,··· ,ai2,bk′} and a finite lattice L2(7,6)[4,2,5] 

 

Before introducing the lemma to prove Theorem 1.3, we need to introduce some notation. Let 

G1(i1,k′) = {aibj − sbk′ | 1 ≤ i ≤ i1,1 ≤ j ≤ k′ − 1}, 

G2(i1,i2) 

G3(i2,k′) 

= 

= 
, 

A1(i1) = {aisbk′ − a1sbk′ | 2 ≤ i ≤ i1}, 

A2(i1,i2) = {aiai1ai2 − ai1+1ai1ai2 | i1 + 2 ≤ i ≤ i2 − 1}, 

A3(i2) 

B1(k′) 

B2(k′) 

= 

= 

= 

{aibk′t − ai2bk′t | i2 + 1 ≤ i ≤ n1}, 

{bisbk′ − b1sbk′ | 2 ≤ i ≤ k′ − 1}, 

{bibk′t − bk′+1bk′t | k′ + 2 ≤ i ≤ n2} 

and 

. 

Note that a system of generators of IL2(n1,n2)[k′,i1,i2] is G1(i1,k′) ∪ G2(i1,i2) ∪ G3(i2,k′). 

Lemma 4.1. For i2 − i1 > 2, the set 

G1(i1,k′) ∪ G2(i1,i2) ∪ G3(i2,k′) ∪ A1(i1) ∪ A2(i1,i2) ∪ A3(i2) ∪ B1(k′) ∪ B2(k′) 

is a Gr¨obner basis of IL2(n1,n2)[k′,i1,i2] with respect to the inverse lexicographic order induced by (2.1.1). 

Proof. By Theorem 1.1, G1(i1,k′) ∪ A1(i1) ∪ B1(k′) is a Gr¨obner basis with respect to ≺ of 

Li1,k′ and G2(i1,i2)∪A1(i1,i2) is a Gr¨obner basis with respect to ≺ of Li1,i2,k′. Also, it follows from Theorem 1.1 that G3(i2,k′) ∪ A3(i2) 

∪ B2(k′) is a Gr¨obner basis with respect to ≺ of Li2,k′. Hence, it follows from [1, Lemma 1.27] that the S-polynomials which we only 

have to check are 
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Now, the result of computation of (4.1.1),··· ,(4.1.6) is as follows: 

 
 

 
 

Lemma 4.2. For i2 − i1 = 2, the set 

G1(i1,k′) ∪ G2(i1,i1 + 2) ∪ G3(i1 + 2,k′) ∪ A1(i1) ∪ A3(i1 + 2) ∪ B1(k′) ∪ B2(k′) 

is a Gr¨obner basis of IL2(n1,n2)[k′,i1,i1+2] with respect to the inverse lexicographic order induced by (2.1.1). 

Proof. Since i2 = i1 + 2, we have G2(i1,i1 + 2) = {ai1+1bk′ − ai1ai1+2}. Hence, we have Theorem 4.2 by [1, Lemma 1.27] and the 

computational result of (4.1.1),(4.1.2),(4.1.5) and (4.1.6). 

Now, we prove Theorem 1.3. 

The proof of Theorem 1.3. By Theorem 4.1 and 4.2, the join-meet ideal IL2(n1,n2)[k′,i1,i2] is squarefree with respect to the inverse 

lexicographic order induced by (2.1.1). Hence, it is radical.  

4.2. A finite lattice On1. Let n = n1. Let i be odd number. We denote On by L2(n,n) which satisfies ai < bi+1 < ai+2. Figure 8 (A) 

displays the Hasse diagram of {ai,ai+1,ai+2,bi,bi+1,bi+2}, where i is odd number. 
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Figure 8. The Hasse diagram of a poset {ai,ai+1,ai+2,bi,bi+1,bi+2} and a finite lattice O5, where i is odd number 

 

Let prove Therorem 1.4. The outline of proof of it is to show that a system of generators of the join-meet ideal IOn is a Gr¨obner 

basis of IOn with respect to the inverse lexicographic order induced by (2.1.1). In short, we show that On is a distributive lattice. Note 

that ≺ is a rank reverse lexicographic order on K[On]; see [1, Example 6.16] for definitions. 

The proof of Therorem 1.4. At first, we clarify a system of generators of the join-meet ideal IOn. Let R be a system of generators of 

IOn. Since a1,··· ,an are incomparable with b1,··· ,bn respectively, then we have 

 
Hence, we must consider the following cases: 

Case 1: The calculation of fai,bj for i ≡ 0(mod2),  

Case 2:The calculation of fai,bj for i ≡ 1(mod2). 

(Case 1) Let i be even nummber. Now, a finite lattice On satisfies the following inequality: s ≤ b1 ≤ b2 ≤···≤ bi−2 ≤ ai−1 ≤ ai ≤ ai+1 ≤ 

bi+2 ≤···≤ bn ≤ t. (4.2.1) 

By (4.2.1), we have 

b1 ≤···≤ bi−2 ≤ ai ≤ bi+2 ≤···≤ bn. (4.2.2) 

Hence, it follows from (4.2.2) that we have fai,bj = 0 for j ≤ i − 2, i + 2 ≤ j. On the other hand, since ai is incomparable to bi−1, bi, 

bi+1 respectively, we must consider the calculation of ai ∨ bℓ, ai ∧ bℓ, where ℓ = i − 1,i,i + 1. 

First, in the case j = i − 1, since 

bi−2 ≤ ai−1 ≤ ai ≤ ai+1, bi−2 ≤ bi−1 ≤ bi ≤ ai+1,we have  

ai ∨ bi−1 = ai+1, ai ∧ bi−1 = bi−2. Hence, for j = i − 1, we have 

fai,bj = fai,bi− 1 = aibi−1 − ai+1bi−2. 

Second, in the case j = i, since 

ai−1 ≤ ai ≤ ai+1, ai−1 ≤ bi ≤ ai+1, 

we have ai ∨ bi = ai+1, ai ∧ bi = ai−1. Hence, for j = i, we have 

fai,bj = fai,bi = aibi − ai−1ai+1. 

Finally, in the case j = i + 1, since 

ai−1 ≤ ai ≤ ai+1 ≤ bi+2, ai−1 ≤ bi ≤ bi+1 ≤ bi+2, 

we have ai ∨ bi+1 = bi+2, ai ∧ bi+1 = ai−1. Hence, for j = i + 1, we have 

fai,bj = fai,bi+1 = aibi+1 − ai−1bi+2. 

Therefore, the polynomial fai,bj is as follows: 

,                                            (4.2.3) 

Hence, for i ≠ j, we have fai,bj = 0 by (4.2.5). On the other hand, for i = j, since ai and bi are incomparable, we have fai,bi = aibi − 

bi−1bi+1 by (4.2.4). Hence, the polynomial fai,bj is as follows: 
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                                                   (4.2.6) 

 

Therefore, R consists of (4.2.3) and (4.2.6). 

Next, we show that R is Gr¨obner basis of IOn with respect to compatible monomial order ≺. Let j and r be non-negative integer. Let 

check that S- polynomials 

S(fai,bj,fak,bℓ) for i,k ≡ 0(mod2), 

S(fai,bj,fak,bℓ) for i,k ≡ 1(mod2), 

S(fai,bj,fak,bℓ) for i ≡ 1(mod2),k ≡ 0(mod2). 

Reduce to 0 with respect to generators of R. 

First, we check that S(fai,bj,fak,bℓ) reduces to 0 with respect to generators of R, where i,k ≡ 0 (mod 2). It follows from (4.2.3) that 

we have 

 
 

From above equation, for each i = k and i ≠ k, it is necessary to consider the calculation of 

S(fai,bj,fak,bℓ). 

(The case i = k) Since a initial monomial of fai,bj and fai,bℓ are as follows: 

 

 
reduces to 0. Now, it follows from (4.2.7) that we have 

, 
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Hence, S(fai,bj,fai,bℓ) reduces to 0. 

(The case i = ̸k) Suppose i < k and let ε = k − i. Then, a initial monomial of   fai,bj and fak,bℓ are as follows: 

 
 

 

Then, we must consider that we look for ε such thatand ℓ satisfy bj = bℓ   in   the above calculation result. Below, we consider the 

following cases: 

Case 2.1 : bi−1 = bi+ε− 1,bi+ε,bi+ε+1, 

Case 2.2 : bi = bi+ε− 1,bi+ε,bi+ε+1, 

Case 2.3 : bi+1 = bi+ε− 1,bi+ε,bi+ε+1. 

(Case 2.1) In this case, sincei − 1 = i + ε − 1, i + ε, i + ε + 1, we have ε = 0,−1, −2. Since ε > 0, then ε = 0,−1,−2 can’t satisfy Case 

2 

(Case 2.2) In this case, since i = i+ε−1,i+ε,i+ε+1, we have ε = −1,0,1. Since ε > 0 and since it is even, then ε = −1,0,1 can’t satisfy 

Case 2.2. 

(Case 2.3) In this case, since i + 1 = i + ε − 1,i + ε,i + ε + 1, we have ε = 0,1,2. Since ε > 0 and since it is even, then ε = 2 only 

satisfies Case 2.3. 

From three cases, at first, for ε > 2, since in≺ (fai,bj) and in≺(fak,bℓ) are relatively prime, S(fai,bj,fak,bℓ) reducess to respect to 

fai,bj,fak,bℓ. Next, for ε = 2, we have 

, 

Hence, for 

(j,ℓ) = (i − 1,i + 1),(i − 1,i + 2),(i − 1,i + 3),(i,i + 1),(i,i + 2),(i,i + 3),(i + 1,i + 2),(i + 1,i + 3), 

since in≺ (fai,bj) and in≺(fak,bℓ) are relatively prime, S(fai,bj,fak,bℓ) reduces to 0 with respect to fai,bj,fak,bℓ. On the other hand, for (j,ℓ) 

= (i + 1,i + 1), since we have 

S(fai,bi+1,fai+2,bi+1) = ai+3fai,bi − ai−1fai+2,bi+2, 

S(fai,bi+1,fai+2,bi+1) reduces to 0 with respect to fai,bi, fai+2,bi+2. Therefore, we checked that S(fai,bj,fak,bℓ) reduces to 0 with respect to 

generators of R. 

Second, we check that S(fai,bj,fak,bℓ) reduces to 0 with respect to generators of R, where i,k ≡ 1 (mod 2). For i ≠ j or k ≠ ℓ, it 

follows from (4.2.6) that S(fai,bj,fak,bℓ) reduces to 0 with respect to fai,bj,fak,bℓ. On the other hand, for i = j and k = ℓ, since in≺(fai,bi) 

= aibi and in≺ (fak,bk) = akbk, we have to consider the calculation of S(fai,bi,fak,bk) for each i = k and i ≠ k. 

(The case i = k) It follows from i = k that we have S(fai,bi,fak,bk) = 0. (The case i ≠ k) It follow from i ≠ k that in (fai,bi) and in≺(fak,bk) 

are relatively prime. Hence, S(fai,bi,fak,bk) reduces to 0 with respect to fai,bi, fak,bk. 

Therefore, we checked that S(fai,bj,fak,bℓ) reduces to 0 with respect to generators of R. 

Finally, we check that S(fai,bj,fak,bℓ) reduces to 0 with respect to generators of R, where i ≡ 1 (mod 2) and k ≡ 0 (mod 2). By 

(4.2.3) and (4.2.6), we have 

 
 

From above result, if i ≠ j, then we have S(fa ,b ,fa ,b ) = −fa ,b . On the other hand, for i = j, we have 
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, 

 

Hence, we checked that S(fai,bj,fak,bℓ) reduces to 0 with respect to generators of R. 

Therefore, we showed that R is a Gr¨obner basis of IOn with respect to ≺. By [1, Theorem 6.17], On is a distributive lattice. Hence, 

it follows from [1, Theorem 6.21] that IOn is radical. 

 

5. TOPICS RELATED TO SPECIAL FINITE LATTICE 

In this section, we introduce topics related to a distributive lattice On1. Note that it has little to do with the gist of this paper. 

5.1. Number-theoretic characterization. In this subsection, we introduce the relationship between On1 and number theory. By 

Theorem 1.4, a finite lattice On1 is distributive lattice. On the other hand, it looks abstract as the structure of the set and it has a 

difficult shape. However, it is not. By the following theorem, we can see On1 as number-theoretic finite lattice whose shape is very 

easy. 

Theorem 5.1. Let p and q be prime number with p ≠ q. For non-negative integer k, let 

 
Figure 9. The Hasse diagram of Lp,q,k 

 

Proof. At first, we prepare some things necessary to prove Theorem 5.1. 

Let Lp,q,k = Lk. Let define the map h1,k : O2k → Lk by setting 

 
We define the map h2,k : Lk → O2k by setting 
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Now, we prove Theorem 5.1. First, we show that h1,k is bijective. Since  

 
the mapping h1,k is bijective for k = 1. On the other hand, in the case k > 1, since 

 
for r = 2,··· ,k, the set Cp,q,r can be described inductively by {h1,k(s),h1,k(a1),h1,k(b1),h1,k(a2),h1,k(b2),h1,k(a3 and Cp,q,r′,  

where 1 ≤ r′ ≤ r−1. Hence, for k > 1, h1,k is bijective. Therefore, h1,k is bijective. 

Second, we show that h1,k is order-preserving. By definition of h1,k, it follows from a subset  that we have 

 
Hence, h1,k(ai) < h1,k(ai+1) for i = 1,2,··· ,2k − 1). Also, it follows from a subset   that we get 

 
Hence, for i = 1,··· ,2k − 1, we have h1,k(bi) < h1,k(bi+1). On the other hand, Lk satisfies the following inequality: 

 
 

Hence, we have h1,k(ar) < h1,k(br+1) < h1,k(ar+2) for i = 1,3,··· ,2k − 1. Thus, for a and b belonging to O2k with a < b, we have h1,k(a) 

< h1,k(b). Therefore, we showed that h1,k is order-preserving. 

Third, we show that h2,k is the inverse mapping of h1,k. Let h21,k be the composite mapping h2,k ◦h1,k and let h12,k the composite 

mapping h1,k ◦h2,k. For an arbitrary element belonging to O2k, we have the following result: 

h21,k(s) = h2,k(h1,k(s)) = h2,k(1) = s, 

h21,k(a1) = h2,k(h1,k(a1)) = h2,k(p) = a1, 

h21,k(a2r) 

h21,k(a2r+1) 

h21,k(b2r−1) 

h21,k(b2r) 

= 

= 

= 

= 

h2,k(h1,k(a2r)) = h2,k(pr+1qr−1) = a2r for r = 1,2,··· ,k, 

r+1 r h2,k(h1,k(a2r+1)) = h2,k(p q ) = a2r+1 for r = 1,2,··· 

,k, h2,k(h1,k(b2r−1)) = h2,k(p r−1qr) = b2r−1 for r = 1,2,··· ,k, 

r r h2,k(h1,k(b2r)) = h2,k(p q ) = b2r for r = 1,2,··· ,k. 

 

Hence, we have h21,k = idO2k. On the other hand, for an arbitrary element belonging to Lk, we have the following result: 

h12,k(1) = h1,k(h2,k(1)) = h1,k(s) = 1, 

h12,k(p) = h1,k(h2,k(p)) = h1,k(a1) = p, 

h12,k(pr+1qr−1) 

h12,k(pr−1qr) 

h12,k(pr+1qr) 

h12,k(prqr) 

= 

= 

= 

= 

h1,k(h2,k(pr+1qr−1)) = h1,k(a2r) = pr+1qr−1, for r = 1,2,··· ,k, 
r−1 r)) = h1,k(b2r−1) = pr+1qr−1 for r = 1,2,··· ,k, h1,k(h2,k(p q 

h1,k(h2,k(pr+1qr)) = h1,k(a2r+1) = pr+1qr for r = 1,2,··· ,k, h1,k(h2,k(prqr)) = h1,k(b2r) = prqr

 for r = 1,2,··· ,k. 

Hence, we have h12,k = idLk. Therefore, h2,k is the inverse mapping of h1,k. 

Finally, we show that h2,k is order-preserving. Since s < a1 < ··· < a2k < t and s < b1 <··· < b2k < t, we have 
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On the other hand, for r = 1,3,··· ,2k − 1, since ar < br+1 < ar+2, we have h2,k(prqr−1) <  < h2,k(pr+1qr). Hence, h2,k is order-

preserving. Therefore, O2k is isomorphic to Lk. 

In terms of appearance of shape, Theorem 5.1 means that pulling each two vertex 1 and pk+1qk of hasse diagram of Lp,q,k deformes 

the appearance of shape from Lp,q,k to O2k. We can consider that this deformation in appearance of shape is very natural in everyday 

life. Figure 10 displays the deformation in appearance of shape from Lp,q,2 to O4. 

                                                      
Figure 10. Deformation by pulling each two vertex 1 and p3q2 

 

5.2. Gorenstein ring. In this subsection, we give a non-trivial answer to the question of whether the Hibi ring RK[On1] = K[On1]/IOn1 

is Gorenstein. Let n1 = n. Let Pn denote the subposet of On consisting of all join-irreducible elements of On. By [1, Theorem 6.4 

(Birkhoff)], we have On = J(Pn). Then, we obtain the following result. 

Theorem 5.2. For n ≥ 4, the Hibi ring RK[On] is not Gorenstein. 

Proof. Suppose that 

P4 = {a1,a2,a4,b1,b3} 

is pure. Then, it follows from [1, Lemma 6.12] that P4 possesses a rank function ρ. Since a4 covers a2 and a2 covers a1 in P4, we have 

ρ(a4) = ρ(a2) + 1 = ρ(a1) + 2 = 2. (5.2.1) 

On the other hand, since b1 < b2 < a3 < a4 in O4, a4 covers b1 in P4. Thus, we have 

ρ(a4) = ρ(b1) + 1 = 1. (5.2.2) 

 
Figure 11. The Hasse diagram of O4 and a chain {b1,b2,a3,a4} 

 

Hence, (5.2.1) and (5.2.2) contradict the uniqueness of ρ. Therefore, P4 is not pure. 

For n ≥ 4, P4 is a subposet of Pn. Since P4 is not pure,≥ Pn is not pure for n ≥ 4. Hence,□ it follows from [3] that RK[On] is not 

Gorenstein for n 4. 
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