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1. INTRODUCTION 

It is known that in the work of E.Del Vecchio, a technique was given for constructing fundamental solutions to an equation with 

multiple characteristics and, as an application, a fundamental solution of equations was constructed (see [1])  
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Further, L. Cattabriga, developing the work of E. Del Vecchio in 1961, studied the properties of the potentials of fundamental 

solutions of equation (1), i.e. constructed the theory of potentials of fundamental solutions of the equation (see [2]). Further 

researchers considered a number of boundary value problems for equation (1) with local and nonlocal boundary conditions, for 

example, (see [2]-[5]). 

 In this paper, the following problem is considered: 

It is required to find the function ( , ) uu x t K , which is a regular solution to the equation.  
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in the area of = {( , ) :0 < <1, 0 < }x t x t T   and satisfies the conditions 

( ,0) = ( , ), = ,u x u x T const       (4) 

1 2(0, ) = ( ), (0, ) = ( ), (1, ) = ( ).xx x xu t t u t t u t t     (5) 

Here 
4,1 2,0
, ,={ ( , ) : ( , ) ( ) ( ), ( )}.u x t x t xtK u x t u x t C C u C       

 It is known that the fundamental solutions of Eq. (2) have the form (see [2]).  
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 For the function ( ; ), ( ; ), ( ), ( )U x t V x t f z z        , the following relations are true   
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2. MAIN RESULTS 

 Theorem 1. Let 
2 exp{ }.T    Then problem (3)-(5) does not have more than one solution.  

 Proof. Let problem (3)-(5) have two solutions: 1 2( , ), ( , ).u x t u x t  Then sloping 1 2( , ) = ( , ) ( , )v x t u x t u x t  

we get the following problem regarding the function ( , )v x t   
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 ( ,0) = ( , ),v x v x T       (17) 

 (0, ) = 0, (0, ) = 0, (1, ) = 0.xx x xv t v t v t    (18) 

 Now we differentiate equation (16) with respect to x  and introduce the notation ( , ) = ( , ).xw x t v x t  Then, with 

respect to the function ( , )w x t , we obtain the following problem  
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( ,0) = ( , ),w x w x T      (20) 

(0, ) = 0, (0, ) = 0, (1, ) = 0.xw t w t w t    (21) 

 Consider the identity 
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Integrating by parts, taking into account the homogeneous boundary conditions (20), (21), we have  
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From here, ( , ) = 0w x t  в .  Due to continuity ( , ) = 0w x t  in  . Then ( , ) = 0 ( , ) = ( ).xv x t v x t p t  Because 

(0, ) = 0v t , то (0, ) = ( ) = 0v t p t  at [0, ].t T   Therefore, ( , ) = 0v x t  in .  

 Теорема 2. Let 
1 1 1
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to problem (3)-(5). 

 Proof. Consider the auxiliary problem: 

 Find the function ( , ) uu x t K  which is a regular solution to the equation  
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in the area of = {( , ) :0 < <1, 0 < }x t x t T   and satisfies the conditions 

( ,0) = ( ),u x x       (24) 

1 2(0, ) = ( ), (0, ) = ( ), (1, ) = ( ).xx x xu t t u t t u t t      (25) 

By virtue of [3], the solution of problem (23)–(25) will be in the following form 
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 Denote ( , ) = ( ).u x T x  Then passing to the limit t T  from (26) we get  
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 Thus, we have obtained an integral equation of the Fredholm type with respect to the function ( )x   
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 Due to the uniqueness of the solution of problem (3)-(5), the integral equation (28) has a unique solution. 
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