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Tuberculosis is an infectious disease with transmission through the air and droplets of infected 

people. The problem of spreading and treating tuberculosis needs some development. The 

model used in this study is a model of development, in which infected individuals are divided 

into two subpopulations, namely the active infection subpopulation stage one and second stage 

infection is MDR (multi drug resistant). Four optimal control strategies are implemented with 

the aim of reducing the rate of spread of tuberculosis TB infection, prevention by increasing a 

clean and healthy lifestyle, and using masks when interacting between infected and susceptible, 

vaccination for family and close friends of infected individuals, implementing the DOTS 

strategy (Directly Observed Treatment Shortcourse) for infected individuals, and Intensive care 

in hospital. Then the optimal control of the model was analyzed using Pontriagin's Maximum 

Principle while for global stability using Lyapunov. The numerical results are obtained that the 

optimal control strategy given can accelerate in reducing the rate of spread of tuberculosis in 

Indonesia.  this is evidenced by the graph of the population infected with tuberculosis every 

year after the control has decreased the number of infected, and the graph is heading to the 

equilibrium point. 
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I. INTRODUCTION 

Based on the Global Tuberculosis (TB) Report in December 

2020 [1] the number of tuberculosis cases found and treated 

in Indonesia was 271,750. Where in 2018 TB cases in 

Indonesia reached 570,289 and in 2019 there were 568,987. 

In addition, based on data from the Semarang City Health 

Service, the number of tuberculosis patients in 2020 in 

Semarang has decreased, where in 2018 there were 4253 

cases, 2019 there were 4307 cases and 2296 cases in 2020. 

This is one form of achievement of the targets that have been 

declared by the United Nations on 26 September 2018 

regarding Tuberculosis. One of its targets is to diagnose and 

treat 40 million people with tuberculosis in the 5-year period 

from 2018-2022. The decrease in the number of cases of 

tuberculosis in 2020 cannot make individuals ignore the 

seriousness of tuberculosis, because tuberculosis can attack 

anyone, when and wherever individuals are. Therefore, 

development in the field of medical science plays a very 

important role in overcoming tuberculosis. The problem of 

the spread and treatment of tuberculosis is very complicated, 

so it is necessary to make analyzes and estimates so that the 

global target for ending tuberculosis can achieve the expected 

results. Mathematical models were used to analyze and 

simulate the spread and impact of tuberculosis treatment. 

The dynamics of the spread of tuberculosis has been 

studied by several previous researchers, including; research 

by Abdullah Idris, et al [2] analyzed the spread of tuberculosis 

with a case study model in Nigeria with the linearization 

method. N. Anggiani, et al[3] analyzed the optimal control of 

the epidemic SIR model with the effect of vaccination and 

immigration factors. Virendra Kumar Gupta, et al [4] also 

analyzed a mathematical model of the spread of tuberculosis 

with the effect of resistance levels on the first or second 

treatment for infected and resistant individuals, using the 

Ruth-Hurwitz and Lyapunov method. Fatmawati, et al [5] 

also discussed the optimal control strategy for tuberculosis 
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control, but focused more on the pediatric and adult 

population. The model used was the method used in 

analyzing the model was the Pontryagin maximum principle. 

In addition to discussing TB control based on age, Fatmawati, 

et al [17] also analyzed the optimal control strategy with 

prevention using the model. Isa Abdillah baba, et al [6] 

analyzed the tuberculosis model using a model with optimal 

control of care and therapy given to infected people. Saif 

Ullah, et al [7] analyzed tuberculosis with 3 controls, namely 

vaccination and treatment of infected individuals, the 

methods used were Routh-Hurwitz, Center manifold and 

Hamiltonian. Siyu Liu, et al[8] discussed the tuberculosis 

model in the form of a model to study tuberculosis control in 

China with the Pontryagin maximum principle analysis 

method. Sutimin, et al [9] analyzed tuberculosis with an 

epidemic model used in saturated infection strength and only 

used one type of infection with two treatment scenarios. 

Dhiraj K, et al [10] in their research discusses the analysis of 

global dynamics of a tuberculosis model with sensitivity of 

the smear microscopy. From some of these researchers there 

are several differences with this study including the form of 

the model used and the method chosen, in this study using a 

model which is a development of the tuberculosis model [9]. 

In this study, the subpopulation was devided into five, 

namely susceptible, latent or exposed, infectious 1, MDR 

infected and recovery. Where the optimal control strategy is 

also applied to the model which aims to reduce the spread of 

tuberculosis. Optimal control with four control variables, 

namely prevention by promoting a healthy lifestyle and 

wearing masks when interacting with infected individuals, 

vaccination for family and closest friends, outpatient treatment 

with DOTS strategy, intensive care in hospital. 

 

II. MATHEMATICAL MODEL FORMULATION 

As a preliminary study, we have been publishing a local 

stability analysis of a tuberculosis epidemic model [11] and 

the model proposed in this paper was developed by 

considering four controls. Significant novelties have been 

considered in this new work, which are explained as follows. 

In this study, we proposed the global stability analisys and 

control involved in our proposed model so that it becomes the 

novelty in this work.   

Let
1 2SEI I R  epidemic mathematical model as follows,  
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The notations and descriptions of the parameters for 

mathematical modelling are given in Table 1.  

Table 1: Descriptions of parameters. 

Symbol Descriptions 

  :Recruitment rate 

  :Natural death rate 

  :The rate of change of the latent 

subpopulation to infected-1  

1  :Death rate due to tuberculosis in infected-1 

individuals   

2  :Death rate due to tuberculosis in infected-2 

individuals  

  :The rate of change in the subpopulation 

infected-1 to infected-2  

  :The rate of change in the infected 2 

subpopulation to recovery  

1r  :Fraction number of the infected-1 treatment 

effectiveness   

2r  :Fraction number of the infected-2 (MDR) 

treatment effectiveness  

p  :The rate of contact with tuberculosis 

infected-1 individuals  

q  :The rate of contact with tuberculosis 

infected-2 (MDR) individuals  

1  :Transmission rate of the susceptible 

individual become infected due to contact 

with a tuberculosis infected-1 individuals   

2  :Transmission rate of the susceptible 

individuals become infected due to contact 

with tuberculosis infected-2 (MDR) 

individuals   

 

Then model is developed by adding optimal control so 

the equation becomes: 
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 (2)  

TB model in equation 1 is built by five variables, that is 

1 2SEI I R where S  (Susceptible), E (laten),
1I (infected 1) , 

2I  

(infected 2 or TB-MDR), and R  (Recovery)). in this model 

have two possibilities are; the first possibility is the 

susceptible individual passes through the exposed phase then 

becomes infected by tuberculosis and the second possibility 

is susceptible individuals can be directly infected with active 

tuberculosis without going through the exposed phase who 

have weak body immunity. Tuberculosis infection is devided 

into two categories are infectious 1 and Infectious 2 (MDR). 

first and second treatment are intered into the parameters 
1r  

and 
2r . The difference between the first  and second treatment 
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is the duration of the treatment and addition of injection drug 

in the second infection. Then the optimal control strategy is 

added to model (2) where the strategy has the aim of 

minimizing the cost function which includes first and second 

infection as well as prevention costs by improving a clean and 

healthy lifestyle, and always using mask when interacting 

with infected( 1u ), Vaccination( 2u ), and maximizing the 

DOTS strategy in the treatment of infected individuals( 3u ), 

and intensive care in the hospital(
4u ). 

 

III. MODEL ANALYSIS 

Model (1) has two equilibrium points, namely the disease-

free equilibrium (DFE) and the endemic equilibrium point.  

The value of DFE and endemic equilibrium point can be seen 

in [11] then the eigen values are obtained from the matrix
1NGM FV   and 1

0 ( )FV    obtained as follows; 
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,    (3) 

with 
1 0r  . 

 Case 1: 
10 1r  , so equation (3) becomes; 
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It is proven that
0 0  . 

Case 2: 
1 1r  , we have  

 1 2 2 2 1( ) ( ) ( 1 )( )p r r q                 

so that 
0 0  . 

Theorem 1. If 0 1,  the non-endemic equilibrium point 

0 is locally asymptotically stable, if 0 01,   it is stable, 

and if 0 01,   it is unstable.  

Proof  

Theorem 1 has been proven on paper [11] 

Theorem 2. If 0 1  then the endemic equilibrium point 

1( ) will be global asymptotically stable. 

Proof. 

Based on the equation in the model at an endemic equilibrium 

state, it is obtained that: 
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Therefore, the system of equations can be written as; 
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Than, defined function 5:V D  and ex D the 

equilibrium point of the non-linear differensial system,with
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0 1 2, ,b b b  positive constant. The function V is a Lyapunov 

function because it ful fill: 

1. The function is continuous in D  because the function V  

contains a logarithmic function. The first partial 

derivative V is also a continue function on D . 
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0 1 1 2 2 0 1 0 1 1 0 2 2* * * *

1 2

( (1 ) (1 ) ) (1 ) 1 (1 ) 1
I IS E S E

b p SI q SI b A E b p S I b q S I
S I E S I E

   
   

            
   

 

     
** *

* * * * *1 2 1
1 1 1 2 2 1 2 1 1 1 1 1 2 2 1* * * * *

1 2 1

1 1 1
I I IS E S E E

b p SI q SI E b A I b p S I b q S I b E
S I E S I E I E

     
     

              
     

 

   
*

* 2 1
2 1 1 2 3 2 2 1 1 *

2 1

(1 ) (1 ) 1
I I

b r I b A I b r I
I I

 
 

      
 

                       (6) 

Suppose * ** *

1 2

1 2

, , , ( , , , )
I IS E

x y z w
S E I I

 
 

 

, then (6) be; 

  
    

2
*

* * * * * * * *

1 1 2 2 1 1 2 2 1 1 2 2( ) 1 1
S S

x S I x S I SI SI S I S I
S

      


          
 

   * * * *

0 1 1 2 2 0 1 0 1 1 0 2 2

1 1 1 1
( (1 ) (1 ) ) (1 ) 1 (1 ) 1b p SI q SI b A E b p S I y b q S I y

x z x w
   

   
            

   

     * * * * *

1 1 1 2 2 1 2 1 1 1 1 1 2 2 1

1 1 1 1 1
1 1 1b p SI q SI E b A I b p S I y b q S I y b E z

x z x Iw y
     

    
             

     

    *

2 1 1 2 3 2 2 1 1

1
(1 ) (1 ) 1b r I b A I b r I w

z
 

 
      

 

   (7) 

The value 
0 1 2, ,b b b is taken such that the coefficient 

1 2 1 2, , , ,SI SI I I E  is 0 so that; 

1 0 1 1

2 2 1

*

1 1 2 2 1

*

2 2 3

0 1 1

0

0

(1 ) 0

0

0

o

b p

b q

S b A b r

S b A

b A b

 

 

 





  

  

   

 

  

    (8) 

Then calculate the value 
0 1 2, ,b b b as follows; 

0 1 1 1

1
0

1 1 1

1

b p

b
p p

 







 

       

With 
1 (1 )p p   

2 1 2

2

2 1 1

1

o

o

b q

b
q q

 







 

      

Where 
1 (1 )q q   

Next, look for the value of 1b ; 

 

1 1

1
1

1
1

1

1

1

1

1

b A
p

A
b

p

A
b

p







 
  

 

  
   

   




  and  

 

1 1

1
1

1
1

1

1

1

1

1

b A
q

A
b

q

A
b

q







 
  

 

  
   

   




 

 

And value of 
2b  obtained; 

*

2 2 3

*

2 3 2

*

2
2

3

0S b A

b A S

S
b

A







 





      

Based on the equation (11) we get the value 
0

1

(1 )
b

p



or 

0

1

(1 )
b

q



, 

 
1

1
1

A
b

p



or 

 
1

1
1

A
b

q



, and 

*

2
2

3

S
b

A


  

So that it is obtained; 

 
      

2
*

* * * * * *

1 1 2 2 0 1 1

1 1
( ) 1 1 (1 ) 1

S S
x S I x S I b p S I y

S x z
   

  
          

 

     * * * * * *

0 2 2 1 1 1 1 2 2

1 1 1 1 1 1
(1 ) 1 1 1b q S I y b p S I y b q S I y

x w x z x w
  

     
           

     

 * *

1 2 1 1

1 1
1 (1 ) 1b E z b r I w

y z
 

   
      

  

   (9) 

Because value 
0

1

(1 )
b

p




 and 
0

1

(1 )
b

q




 so, the equation 

becomes; 

 
      

     

 

2
*

* * * * * *

0 1 1 0 2 2 1 1

* * * * * *

2 2 1 1 1 1 2 2

* *

1 2 1 1

1 1 1
( ) 1 1 (1 ) 1

(1 )

1 1 1 1 1 1 1
(1 ) 1 1 1

(1 )

1 1
1 (1 ) 1

S S
b x S I b x S I p S I y

S p x z

q S I y b p S I y b q S I y
q x w x z x w

b E z b r I w
y z

   

  

 

    
            

   

       
             

       

   
     

 



 

 
      

     

 

2
*

* * * * * *

0 1 1 0 2 2 1 1

* * * * * *

2 2 1 1 1 1 2 2

* *

1 2 1 1

1 1
( ) 1 1 1

1 1 1 1 1 1
1 1 1

1 1
1 (1 ) 1

S S
b x S I b x S I S I y

S x z

S I y b p S I y b q S I y
x w x z x w

b E z b r I w
y z

   

  

 

  
         

 

     
          

     

   
      

  

 

 
      

     

 

2
*

* * * * * *

0 1 1 0 2 2 1 1

* * * * * *

2 2 1 1 1 1 2 2

* *

1 2 1 1

( ) 1 1 1

1 1 1

1 (1 ) 1

S S y
b x S I b x S I S I

S xz

y y y
S I b p S I b q S I

xw xz xw

z w
b E b r I

y z

   

  

 

  
         

 

     
          

     

   
      

  

 

 
     

2
*

* * * * * *

0 1 1 0 2 2 1 1 1( ) 2 2 1
S S y y y

b x S I b S I x b p S I
S xz xw xz

   
      

               
     

   * * * *

1 2 2 1 2 1 11 1 (1 ) 1
y z w

b q S I b E b r I
xw y z

  
    

         
    

 (10) 

Multiplying the fifth equation of (8) by 
*E  and the second 

equation of (6) by 0b to get  

* *

0 1 1

* * * * *

0 1 0 1 1 2 2(1 ) (1 )

b A E b E

b A E b p S I q S I



 



   
  (11) 

Then using elimination, obtain; 

 
* * * * *

1 0 1 1 2 2

* * * * *

1 0 1 1 2 2

(1 ) (1 )

(1 ) (1 ) 0

b E b p S I q S I

b E b p S I q S I

  

  

   

    
 (12) 

Multiplying the equation (17) by 1( )F u  where 

 , , ,
T

u x y z w and 1( )F u is a function that will be 

determined later, so we get; 
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* * * * *

1 1 0 1 1 1 2 2 1( ) (1 ) ( ) (1 ) ( ) 0b E F u b p S I F u q S I F u        (13) 

Next, multiply the third equation of (8) by 
*

1I  and the third 

equation of (6) by 1b  as follows; 

* * * *

1 1 2 1 1 1 2 1

* * * * * *

1 1 1 1 2 2 1 1 2 1

(1 )S I b r I b A I

b p S I b q S I b E b A I

 

  

  

  
  (14) 

 Use elimination so that it is obtained; 
* * * * * * * *

1 1 1 1 2 2 1 1 1 2 1 1

* * * * * * * *

1 1 2 1 1 1 1 1 1 2 2 1

(1 )

(1 ) 0

b p S I b q S I b E S I b r I

S I b r I b p S I b q S I b E

    

    

    

     

 (15) 

Multiply the equation (15) with 2 ( )F u where 

 , , ,
T

u x y z w and 2 ( )F u is a function that will be 

determined later, so that it was obtained;  
* * * * *

1 1 2 2 1 1 2 1 1 1 2( ) (1 ) ( ) ( )S I F u b r I F u b p S I F u    

* * *

1 2 2 2 1 2( ) ( ) 0b q S I F u b E F u      (16) 

 

Substitution (14) and (15) to (10) so, that it produces; 

 
   

   

2
*

* * * *

0 1 2 1 1 0 2 2 1

* * * * *

1 1 1 2 1 2 2 2 1 1 2

( ) 2 ( ) ( ) 2 ( )

1 ( ) 1 ( ) 1 ( ) ( )

S S y y
b x F u F u S I b S I x F u

S xz xw

y y z
b p S I F u b q S I F u b E F u F u

xz xw y

  

  

    
              

   

    
             

     

  *

2 1 1 2(1 ) 1 ( )
w

b r I F u
z


 

   
 

    

Function 1( )F u  and 2 ( )F u are determined in such a way 

until the coefficient
*E  and 

*

1I  are 0, will produce; 

1 21 ( ) ( ) 0
z

F u F u
y

     and 
21 ( ) 0

w
F u

z
    

So 

2

2

1 ( ) 0

( ) 1

w
F u

z

w
F u

z

  

  

    

And substitution of value 2 ( )F u  to  

1 21 ( ) ( ) 0
z

F u F u
y

    , obtained; 

1 2

1 2

1

1

1 ( ) ( ) 0

( ) ( ) 1

( ) 1 1

( ) 2

z
F u F u

y

z
F u F u

y

w z
F u

z y

w z
F u

z y

   

  

    

   

    

So, the value of ( )V t is 

 
 

   

 

2
*

* *

0 1 1

* * * *

0 2 2 1 1 1

* * *

1 2 2 1

( ) ( ) 2 2 1

2 2 1 2

1 1 1 2

S S y w z w
V t b x S I

S xz z y z

y w z y w z
b S I x b p S I

xw z y xz z y

y w z w z
b q S I b E

xw z y z y

 

 

 

     
                

   

      
                  

      

   
            

    

  *

2 1 1

1

(1 ) 1 1

w

z

w w
b r I

z z


  
     
  

  
      

  

 

 
 

2
*

* *

0 1 1( ) ( ) 3
S S y z

V t b x S I
S xz y

 
  

      
 

   * * * *

0 2 2 1 1 14 1
y w z y w z

b S I x b p S I
xw z y xz z y

 
   

            
   

 * *

1 2 2 2
y w

b q S I
xw z


 

   
 

     

By applying the principle of arithmetical progression and 

geometric means obtained; 

1) For 3 1
y z

x
xz y

    ,  

Known value AM GM  where AM is Arithmetic means 

and GM is Geometric means, so; 

 

 

2

2

3

3
2

3

3
2

y z
x

y zxz y
x

xz y

y z
x

y zxz y
x

xz y

  
 

     
 

 
      

              
 

 

 
1

3
4

1 1

4 3

1

12

y z
x

xz y

y z
x

xz y

y z
x

xz y

 
     

 

 
     

 

 
    
 

 

So, the maximum value is
1

12

y z
x

xz y

 
    
 

. 

2) For 4 1
y w z

x
xw z y

     , 

AM GM ,so 

2

2

4

4
2

4

4
2

y w z
x

y w zxw z y
x

xw z y

y w z
x

y w zxw z y
x

xw z y

   
 

      
 

 
       

               
 
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1
4

4

1 1

4 4

1
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y w z
x

xw z y

y w z
x

xw z y

y w z
x

xw z y

 
      

 

 
      

 

 
     
 

 

So, maximum value is 
1

16

y w z
x

xw z y

 
     
 

. 

3) For 1 1
y w z

xz z y

 
     
 

 

AM GM ,so  

2
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1

1
2

1

1
2

y w z

xz z y y w z

xz z y

y w z

xz z y y w z

xz z y

 
    

         
 

  
                        

 

 

1
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4

1 1

4 1

1

4

y w z

xz z y

y w z

xz z y

y w z

xz z y

 
      

 

 
     
  

 
     

 

 

So, maximum value is 
1

4

y w z

xz z y

 
     
 

. 

4) For 2 1
y w

xw z

 
   

 
, AM GM , so 

 
2

2

2

2
2

2

2
2

y w

y wxw z

xw z

y w

y wxw z

xw z

 
  

       
 

  
                   

 
 

 

 

1
2

4

1 1

4 2

1

8

y w

xw z

y w

xw z

y w

xw z

 
    

 

 
    

 

 
   
 

 

So, maximum value is 
1

8

y w

xw z

 
   
 

.  

From Arithmetic and geometry means are seen that 

( ) 0V t   at 0 1  , so the endemic equilibrium point is 

globally asymptotically stable. This means that the disease is 

out of control. 

 

IV. OPTIMAL CONTROL STRATEGIES 

a) Optimal control existence 

The endemic equilibrium point is the state where there are 

infected individuals in a population. Therefore, then the value 

of 1 0I   and 2 0I  . From (1) the obtained endemic 

equilibrium point 
* * * * *

1 1 2( , , , )S E I I  , the point 
*R is 

omitted because it does not enter into the previous variables. 

From the system of equations (1), the endemic points are 

obtained as follows; 

2 2

2

1 2 2 1 2 2 2 1 1

( )
*

*( ) (1 ) *

r
S

I r r r I

   

        

 


      

1 2 1 2 2

1 1 2 2 2 1 1

*( (1 ) (1 )( ))
*

* (1 )( ) ( )( )( *)

I q r p r
E

I r r I

      

          

    


      

1 1
2

2 2

(1 ) *
*

r I
I

r



  




 
    (17) 

where
        

      
2 2 1 2 2 2 1*

1

2 2 1 1 2 1

r p r q r
I

r r

                   

               

           
 

          
the endemic equilibrium fulfill the following polynomial 

[13]; 

  2P X AX BX C  
    (18) 

where 

           

   

2 2 1 2

2 2 1

1 1A r p r q q

r

           

        

         

     

      

 

2 2

2 2 1 2 1 2 1

2 2 3

1 2 2 2 2

(1 ) 2 2 2

2 2 3

B p p r

r r

             

         

           

      

  2

2 2 1 1 3C r p                

For the case 0p q   a quadratic (17) having one root, 

0X  . This corresponds to a Disease-Free Equilibrium. 

Another root is 

 

  

       

2

2

2 2

2

1 2 2 2 21 1 3 2

p r q
X

p r

p p r p r

p

   

    

           

 




  

         




 

will be positive if and only if; 

   

       
2

2

1 2 2 2 21 1 3 2 0

K p r q p

p p r p r

     

           

  

           
 

with 0, 0p q  . If the quadratic equation   0P X  can be 

written as follows; 
2 0AX BX C    

It has one positive root and one negative root.  Positive roots 

are as follows; 

         

   

2

2 2 1 2

2 2 1

4

2 1 1

B B AC
X

r p r q q

r

           

        

 


        

      
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Therefore, the endemic equilibrium point is given as in (17) 

with 

 

 

 1, 2 0

0 0

lim
2 0

K
K K

X K
A K

A
  


 

  


  

So, 0K   is the threshold, which indicates that there is a 

basic reproduction number  0 . It means that the number 

of secondary infections produced by one infected individual 

who has just entered the population during the average period 

[13]. Values  0 are given as follows; 

1 2 1
0

1 2 2 1

( ) ( 1 )( )

( )( ) ( )( )( )

p r q

r

      

              

   
  

         

With 
1 2, 0
lim 0X

  
 , if 0 1   

1 2, 0
lim 0X

  
 ,if 

0 1   

For ,p q approach zero, using the binomial approximation

 
1

21 1
2

x
x   , so that from the equation (17) we get; 

 
2

2
2 1

CA
AX K K

K

 
   

   

If 
0 1  , so 0K  ;  

K C
X

A K
 

 

And if 
0 1  , so 0K  ; 

C
X

K


 
This indicates that it is at least ,p q close to zero. So the 

model (17) has a threshold of 
0 1  . For 0,p  and/or

0,q   disease remains endemic, so the system (1) has an 

endemic equilibrium point for the parameter value at which 

the disease will persist in the population. If 
0 1   as ,p q

is toward zero, then the endemic equilibrium tends to be 

disease free equilibrium. Conversely, if
0 1   it is ,p q  

towards zero, then the dynamics model of the spread of 

tuberculosis has a unique endemic equilibrium. 

b) Optimal Control Analysis 

The model (1) is modified by reducing the transmission rate 

1(1 )u where 1u is prevention by increasing a clean and 

healthy lifestyle and always using a mask when interacting 

with infected individuals for susceptible populations. 

Vaccination ( 2u ) for family and close friends for infected 

(latently infected). Maximizing the DOTS strategy ( 3u ) in 

the treatment of infected individuals. Intensive treatment and 

care ( 4u )in the hospital. Due to the addition of these actions, 

the system of equations becomes a system of model equation 

(2).  

 

1 1 2 2 1( )(1 )
dS

I I u S S
dt

       

1 1 2 2 1 2( (1 ) (1 ) ) (1 ) ( )
dE

p I q I S u E u E
dt

          

1
1 1 2 2 1 1 3 1( ) ( )

dI
p I q I S E I u I

dt
           

2
1 1 2 2 2 4 2(1 ) ( )

dI
r I r I u I

dt
        

1 1 2 2 2 3 1 4 2

dR
r I r I R u E u I u I

dt
         (19) 

Functional objective J formulate optimization problems to 

identify effective strategies. The optimal control strategy has 

the aim of minimizing the following cost functions which 

include infected 1 and infected 2 as well as prevention costs 

by improving a clean and healthy lifestyle and always using 

masks when interacting with infected individuals for 

susceptible populations 
2

1 1Tu . Vaccination 
2

2 2T u . 

Maximizing the DOTS strategy in the treatment of infected 

individuals 
2

3 3T u . Treatments and intensive care in the 

hospital 
2

4 4T u . Functional objective of (2) defined as; 

1 2 3 4

2 2 2 231 2 4
1 1 2 2 1 2 3 4

0, , ,
min

2 2 2 2

tf

u u u u

TT T T
J N I N I u u u u dt     

  (20) 

Where 
ft  is the final deadline and the coefficient of

1 2 1 2 3 4, , , , ,N N T T T T balancing the cost factor caused by the 

scale and importance of the six parts of the objective function. 

To find optimal control on 
* * * *

1 2 3 4, , ,u u u u using; 

    * * * *

1 2 3 4 1 2 3 4 1 2 3 4, , , min , , , | , , , ,J u u u u J u u u u u u u u U  (21) 

where  

    1 2 3 4, , ,U u u u u      (22) 

Theorem 3. [14] Given an objective function J on the 

equation (20), where the control set given by (20) is a subject 

that can be measured in the equation (19) with the initial 

conditions given at 0t  , then there is an optimal control  

        * * * * *

1 2 3 4, , ,u u t u t u t u t  

such that  

             * * * *

1 2 3 4 1 2 3 4 1 2 3 4, , , : min , , , , , , ,J u t u t u t u t J u u u u u u u u U 

 

 proof: the existence of optimal control due to the convexity 

of the integrand J  to the control measure , 1,2,3,4ju j   

which is a priori solution boundedness between the equations 

of state and the adjoining equations and the Lipchitz property 

of the state system with respect to the state variables from 

[15]. Langrangian (L) and Hamiltonian (H) are used to find 

the optimal solution of the optimal control problem (19) and 

(20). the Lagrangian on the control problem is given by 

 
4

2

1 1 2 2

1

1
:

2 j j

i

L N I N I T u t

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To get the minimum value of the Lagrangian, we define the 

Hamiltonian function for the following system [16]; 

   
4

2

1 2

1

, , , , , ,
2

j j i i

i

T
H S E I I R u N t u f 



   ,  

thus obtained; 

     2 2 2 2

1 1 2 2 1 1 2 2 3 3 4 4 1 1 1 2 2

1
1

2
H N I N I Tu T u T u T u b S I I u S             

      2 1 1 2 2 21 1 1S p I q I u E E u E           

   3 1 1 2 2 1 1 1 1 3 11S p I q I u E I I I u I             

  4 1 2 2 2 2 2 4 21 r I I I r I u I         

 5 1 1 2 2 2 3 1 4 2r I r I R u E u I u I          (23) 

Where  , 1,2,3,4,5i i  is an adjoin variable or a co-state 

variable. The system is found by taking partial derivatives 

that correspond to the Hamiltonian (23) associated with the 

related state variables. 

 

Theorem 4. given an optimal control 
* * * *

1 2 3 4, , ,u u u u  and 

solution of 1 2, , , ,S E I I R  a suitable state system (19) and 

(20) that minimizes  1 2 3 4, , ,J u u u u against U . Then 

there is an adjoin variable 1 2 3 4, , ,     that fulfil 

i

j

d H

dt

 



.      

Where 1,2,3,4,5i  , 1 2, , , ,j S E I I R  ,  

and with the condition of transversality 

       1 2 3 4 0f f f ft t t t      
  

* 1 1 1 2 2 2 1 1 2 2 3 1 1 2 2
1

1

( ) ( (1 ) (1 ) ) (
min 1,max 0,

S I I S p I q I S I p I q
u

T

                  
   

   

* 2 5
2

2

( )
min 1,max 0,

E
u

T

    
   

   

 

* 1 3 5
3

3

( )
min 1,max 0,

I
u

T

    
   

   

 

* 2 4 5
4

4

( )
min 1,max 0,

I
u

T

    
   

   

   (24) 

Proof:  

Because (19) it provides optimal control existence due to the 

convexity of the integral J with respect to 1 2 3 4, , ,u u u u . A 

priority constraint of the state solution, and the Lipschitz 

property of the system with respect to state variables. The 

Hamiltonian function is used to determine the adjoin variable, 

so that the adjoining equation can be written; 

 1
1 1 1 2 2 2 1 1 3 1 1

2 1 3 1 2 1

( 1) ( 1) ( 1) ( 1)( )

( 1)( )

d
u I p I q I u p

dt

I u q


     

    

         

   

 

2
2 2 5 2 3( )

d
u u

dt


          

 

 

3
1 3 2 1 1

3 1 3 1 4 5 1 3 5 1

( 1) ( 1)

( ) ( 1)

d
u p p S

dt

u r r u N


   

       

       

        

   

 

4
1 3 2 1 2 2 4 2 4

2 4 5 2

( 1) ( 1)
d

u q q S r u
dt

r u N


       

 

           

   

5
5

dt


    

The solution for 
* * * *

1 2 3 4, , ,u u u u depending on the constraints, 

the characteristics on (24) can be derived, so that it is owned; 

      

 

1 1 1 1 1 2 2 2 1 1 2 2

1

3 1 1 2 2

0 1 1
H

T u S I I S p I q I
u

S I p I q

     

  


       


 
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2

0
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u T E E
u

 


   
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3 3 1 3 1 5

3

0
H

u T I I
u

 


   


 

2 4 2 5 4 4

4

0
H
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u

 


    
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Therefore, it is obtained  

* 1 1 1 2 2 2 1 1 2 2 3 1 1 2 2
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( ) ( (1 ) (1 ) ) ( )S I I S p I q I S I p I q
u

T
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

* 2 5
2

2

* 1 3 5
3

3

* 2 4 5
4

4

( )
,

( )
,

( )

E
u

T

I
u

T

I
u

T

 

 

 










 

with the explanation of control standards involving control 

limits, it can be concluded that;  

*

1

* * *

1 1 1

*

1

0, 0

, 0 1

1, 1

u



 



 


  
 

  

*

2

* * *

2 2 2

*

2

0, 0

, 0 1

1, 1

u



 



 


  
 

 

*

3

* * *

3 3 3

*

3

0, 0

, 0 1

1, 1

u



 



 


  
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*

4

* * *

4 4 4

*

4

0 0

0 1

1 1

jika

u jika

jika



 



 


  
   

Where, 
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* 1 1 1 2 2 2 1 1 2 2 3 1 1 2 2
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1
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2

* 1 3 5
3

3
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( )
,
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,

( )

S I I S p I q I S I p I q
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T
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I

T

        


 


 


 


       






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V.  NUMERICAL RESULTS 

The data that has been obtained from 

http://.stoptb.org/resources/cd/IDN_Dashboard.html  

taken from the data from 2010 to 2021. Numerical results are 

given for the model with control and model without control. 

Parameters obtained by using the non-linear least square 

method, as follows 

1 2

1 2

1 2

4.008; 0.10835; 0.040468; 0.030981; 0.0064145;

0.71578; 0.10425; 0.048470; 0.0091056; 0.086943;

0.01541; 0.5; 0.016223.

p

q

r r

   

   



    

    

  

Based on the value of these parameters and the initial values 

are 
1 21000, 500, 8, 1, 2S E I I R     . We used Runge-Kutta 

4th order method to solve control model, where to solve the 

state system using forward Runge-kutta, while the backward 

Runge-kutta  is used to solve the co-state system.  

 
Figure 1.  Susceptible population when given control and 

without control 

 

The model simulation in figure 1 Shows the effect after 

administration of control. It can be seen that after giving 

control the susceptible graph is higher than without control, 

this is because giving control makes individuals more free 

without any restrictions on interacting with infected 

individuals, so that the level of population susceptibility 

becomes higher. So that the application of control is not 

appropriate if it is applied without other controls.  

 
Figure 2. Exposed population when given and without 

control 

 

Then for exposed individuals besides doing control are also 

given control (Vaccination), so the number of individuals 

who are exposedly controlled as shown in Fgure 2. 

  
Figure 3. Population infected 1 ehen given and without 

control 

\ 

It is seen in Figure 3 the graph of the tuberculosis infected 

population stage 1 without control increase every year, but 

after administration of graph control has decreased towards 

the equilibrium point, so that tuberculosis can be controlled 

  
Figure 4. Population Infected 2 when given and without 

control 

 

http://.stoptb.org/resources/cd/IDN_Dashboard.html
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In the infected population stage 2(MDR) after administration 

of the control of the number of individuals is infected, it is 

less, this is seen in the graphics that are illustrated in Figure 

4 which increasingly decreases close to the equilibrium point. 

  
Figure 5. Population recovered when given and without 

control 

 

Maximum control has an impact on the decrease in the 

number of infected populations and increasing the population 

heals significantly, as shown in Figure 5 of the five images 

above can be seen that the reduction in the spread of 

tuberculosis requires a long time, but with optimal control it 

can accelerate the control tuberculosis. 

 

VI. CONCLUSION 

Based on the results of the analysis obtained two equilibrium 

points, namely endemic and non-endemic. From the 

equilibrium, the stability at that equilibrium point is sought. 

Stability analysis is determined by the basic reproduction 

number, then searched using Routh Hurwitz criteria and 

Center manifold and Lyapunov. Next is to determine the 

optimal control conditions. Optimal control was determined 

using the Pontyagin Maximum principle method. Finally, a 

numerical simulation was sought to describe the differences 

in the dynamics of the spread of tuberculosis using optimal 

controls. Prevention and treatment are carried out as an effort 

to control the spread of TB infection. Optimal control 

analysis shows that preventing the spread of TB by 

susceptible and latent individuals can help reduce the rate of 

spread of TB, but if what is done is only prevention without 

intensive treatment and appropriate strategies for infected 

individuals, the spread of TB cannot be said to be controlled 

and still potentially endemic. Prevention and treatment must 

be done simultaneously, so as to get maximum results. 

Treatment with the DOTS strategy is carried out as one of the 

important things to reduce the rate of spread of TB. With the 

implementation of optimal control simultaneously, the spread 

of TB will be controlled within a period of 10 years. 
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