International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 10 Issue 12 December 2022, Page no. – 3050-3051

Index Copernicus ICV: 57.55, Impact Factor: 7.362

[DOI: 10.47191/ijmcr/v10i12.07](https://doi.org/10.47191/ijmcr/v10i12.07)

Pythagorean-Like Formulas for any Triangle

Francesco Laudano

Liceo Pagano, Via Scardocchia, Campobasso, Italy

I. INTRODUCTION

In [1], L. Hoehn, by using the tangent-secant theorem, (sometimes called Steiner's Theorem), obtains an elegant proof of Pythagoras' theorem and also tries a Pythagorean-like formula for isosceles triangles. In [2], the author generalizes the previous result to any triangle.

In the following we extend this results through the concept of cevian, providing some Pythagorean-like formulas valid for each triangle (Theorems 1 and 2), from which immediately follows the law of cosines.

Moreover, based on the same idea, we try a simple proof of the converse of Pythagoras' theorem (Theorem 3).

II. PYTAGOREAN-LIKE FORMULAS

Theorem 1. Let *a*, *b*, *c*, with $a \geq b$, be the lengths of the sides of a triangle. Let *d* be the length of the projection of *a* onto c, obtained by the cevian congruent to *b*. Then, $a^2 = b^2 + cd$. In particular, if the angle opposite to the side a is right, then $a^2 = b^2 + c^2$.

Proof. Given a triangle *ABC* with $BC = a \ge AC = b$ and $AB = c$, construct the circle with centre *C* and radius *b* as shown in Figures 1 and 2. By using the two secant theorem, we have $(a+b)(a-b)=cd$, then, $a^2=b^2+cd$.

Fig. 1: Case $a \leq c$, $(a+b)(a-b)=cd$, i.e. $a^2=b^2+cd$

In particular, if $B\hat{A}C$ is a right angle, then $c = d$, so we have Pythagoras' theorem. □

Similarly, in the case $BC = a \le AC = b$, by using the intersecting chords theorem as shown in Figures 3 and 4, we can see that *DB* : $AB = BF$: *BE*, i.e. (*b-a*) : $c = d$: (*b+a*). Therefore we can prove the following statement.

Theorem 2. Let *a*, *b*, *c*, with $a \leq b$, be the lengths of the sides of a triangle. Let *d* be the length of the projection of *a* onto *c*, obtained by the cevian congruent to *b*. Then, $a^2 = b^2 - cd$. In particular, if the angle opposite to the side b is right, then $a^2 = b^2 - c^2$.

Proof.

Fig. 3: Case $b \ge c$, $(b-a)(b+a) = cd$, i.e. $a^2 = b^2 - cd$

Fig. 4: Case $b < c$, $(b-a)(b+a) = cd$, i.e. $a^2 = b^2 - cd$.

Analyzing the diagrams in Figure 1, we can also derive that $c-d=2b \cos B \hat{A} C$. Similarly, analyzing the diagrams in Figure 2, we can see that $c+d=2b \cos B \hat{A} C$. In each of the previous cases we have $a^2 = b^2 + c(c - 2b \cos B \hat{A}c)$, from which follows the cosine law, that for completeness we enunciate below.

Corollary. Let *a, b, c* be the lengths of the sides of a triangle and let α the width of the angle opposite to the a side, then *a ²=b²+c² -2bc cos* α.

Finally, thinking by exclusion about the diagrams in Figure 1, we can also try a simple proof of the converse of Pythagoras' Theorem.

Theorem 3. Let *a, b, c* be the lengths of the sides of a triangle and let $a^2 = b^2 + c^2$. Then the angle opposite to the side *a* is right.

Proof. Given a triangle *ABC,* with *BC=a, AC=b, AB=c* and $a^2 = b^2 + c^2$, we have $a > b$. Then the circle with center *C* and radius *b* intersects the *BC* side in a point *D,* as in the previous Figures 1 and 2.

Let *F* be the other point where this circle intersects the *AB* side (or its extended side), and let *FB=d*. By *FC=b*, follows that FB is the projection of *a* onto *c* obtained by the cevian congruent to *b*. Then, for Theorem 1, we have $a^2 = b^2 + cd$ and a quick comparison with the hypothesis $a^2 = b^2 + c^2$ yields the conclusion that *c=d*.

Then *A* and *F* are coincident, so the segment *AB* is tangent to the circle, which implies that the angle $\angle BAC$ is right.

REFERENCES

- 1. Hoehn, L. "84.03 A neglected Pythagorean-like formula". The Mathematical Gazette, 84(499) (2000), 71--73. https://doi.org/10.2307/3621478
- 2. Laudano, F. "105.43 $c^2=a^2+bd$, a visual generalization of the Pythagorean theorem", [The](https://www.cambridge.org/core/journals/mathematical-gazette) [Mathematical Gazette,](https://www.cambridge.org/core/journals/mathematical-gazette) [105\(](https://www.cambridge.org/core/journals/mathematical-gazette/volume/F897F081DA8C8B20FDDA8000DBA490D0)[564\)](https://www.cambridge.org/core/journals/mathematical-gazette/issue/AFA5501E4CC8B96CD1A7E9190DD6F5A6) (2021), 520--521. <https://doi.org/10.1017/mag.2021.125>