

2655 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

 International Journal of Mathematics and Computer Research

 ISSN: 2320-7167

 Volume 10 Issue 04 April 2022, Page no. – 2655-2661

 Index Copernicus ICV: 57.55, Impact Factor: 7.184

 DOI: 10.47191/ijmcr/v10i4.04

About One Approach to Deploying an API Gateway Development

Environment

Denis Zolotariov

Ph.D., Kharkov, Ukraine, https://orcid.org/0000-0003-4907-7810

ARTICLE INFO ABSTRACT

Published online:

26 April 2022

Corresponding Author:

Denis Zolotariov

The article outlines the problem of an integral approach to building an API gateway that includes

the API gateway itself, the development of documentation for the API, sandbox for API end users,

and automated testing. This problem is divided into tasks, each of which is solved. As a result, a

general approach has been developed for deploying an environment for developing and executing

API gateway, which takes into account: convenient configuration and launch of the gateway server,

flexible development of APIs’ documentation and its convenient viewing by end users, as well as

end-to-end and performance testing developed APIs. A demo example is given and its

implementation features are described. The ways of its further development are proposed.

KEYWORDS: API, API gateway, microservices, API documentation, cloud computing

I. INTRODUCTION

In the modern world, there are more and more Internet

services that use APIs in their work [1,2]. Akamai publishes

a report [3] according to which more than 83% of all web

traffic currently comes from API-based services. According

to [1,4], these are regular sites, web components (maps,

widgets) and web applications and programs for mobile

platforms.

According to Slashdata [2], at the end of 2020, 69% of

developers use third-party APIs, and 20% use internal or

private APIs. In total, according to [1], about 90% of

developers use the API in their work. And that is why the

API management market will be worth $5.1 billion by 2023

[5].

The wider the practice of using the API, the more often it

becomes necessary to standardize its development within the

company to unify this process. There are already approaches

to API standardization, such as OpenAPI [6] or Open Digital

Architecture [7], but they are either limited to an external

API interface or intended for a full digital transformation of

enterprise software. The task of standardizing the complex

development of API-gateways within small and medium

APIs remains unexplored.

The article proposes one of the options for building such a

process for developing and executing a highly productive

API gateway, including the flexible development of API

documentation and its convenient viewing by API end users,

as well as end-to-end and performance testing of developed

APIs.

II. PROBLEM STATEMENT

The above problem can be solved based on the following

components.

Since the API-gateway must be highly productive, it is

proposed to use nginx [8] as a server or its assembly, for

example, OpenResty [9].

Documentation for APIs is proposed to be maintained in

accordance with the OpenAPI Specification (OAS) [10]

version 3.0 – the one of the world standards for RESTful

APIs, which has been developed since 2015 and has gone

through many stages of transformations and improvements.

This specification creates a RESTful interface by mapping

all API resources and their associated operations into a

single yaml file. This greatly simplifies API development,

testing and use for developers, DevOps and API end users.

The final yaml file itself is proposed to be created using a

wide range of snippets, developed once for a whole family

of APIs.

To view the documentation developed in this way, it is

proposed to use web-based software, which should allow to

view and use the API in a sandbox mode in a web browser,

which will allow a wide range of people to do this without

installing additional software.

Also, an important component is the general testing of the

developed API. This type of testing includes end-to-end and

https://doi.org/10.47191/ijmcr/v10i4.04

“About One Approach to Deploying an API Gateway Development Environment”

2656 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

performance testing, which should also be taken into

account.

III. APPROACH

To separate each component from the rest, but at the same

time to combine them all into a single system that is

understandable and convenient for the developer, DevOps

specialist and system administrator, it is proposed to use a

single directory with the following subdirectory structure.

All data regarding one API-gateway is stored in one

directory. The basic overall folder structure (ordered

alphabetically) is shown in Fig. 1 and corresponds to the

proposed approach:

 bash – contains service scripts for first run and

reload configuration of API-gateway and others;

 conf – configurations for the nginx server and the

logrotate service;

 logs – logs of the web server, the application itself,

and other applications;

 openapi – contains snippets for building API

documentation according to the OpenAPI

Specification;

 tests – end-to-end and performance tests of the API

to check the correct operation of the API, as well as

determine the regression of API performance;

 www – web applications for viewing and editing

documentation according to the OAS specification,

as well as ready-made files for such

documentation.

Fig. 1. Common basic folder structure for API

development environments

Let's take a closer look at each of the components.

A. Configurations

The configuration directory shown in Fig. 2 contains files

with settings for the logrotate service [11] and the nginx

server [8].

Fig. 2. The structure of the configuration directory of the

API gateway

In the base case, the logrotate system service is used to

manage the logs of a web server and API applications, as the

most simple and common way. The

conf/logrotate/nginx.conf file contains the nginx log rotation

settings for the gateway API being developed.

The conf/nginx/conf.d/openapi.nginx file describes the

settings for the API documentation viewer web application

according to the OAS specification.

The conf/nginx/upstreams directory contains settings for

nginx of the same name, which are placed here for ease of

editing.

If a separate copy of nginx is launched for the gateway API

being developed, then the full nginx configuration is written

to the conf/nginx/conf.nginx file. Otherwise, a soft-link is

created from conf/nginx/conf.nginx to the /etc/nginx/api-

enabled/ directory, all configurations from which should be

automatically included in the main configuration file

/etc/nginx/nginx.conf when loading a single copy of nginx.

Also, it's worth noting that the OpenResty build can be used

instead of the default nginx build because it includes a lot

more features based on Lua programming language.

B. Service scripts

The bash directory shown in Fig 3 contains scripts that are

responsible for:

 make_yaml.sh – assembly of yaml documentation

for viewing;

 reloady.sh – updating the configuration on the

running nginx server;

 run.sh – the initial launch of the new API with the

addition of configuration to nginx and logrotate.

Fig. 3. Service scripts

The standard yaml file does not have the ability to include

links to external yaml sources. Therefore, to solve this

problem, a PHP yaml builder has been developed, located in

“About One Approach to Deploying an API Gateway Development Environment”

2657 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

the bash/php/make_yaml.php file, and wrapped in a bash

script bash/make_yaml.sh for ease of calling via the CLI.

The finished documentation is collected by the builder in the

www/openapi/yaml directory.

The yaml builder is developed using standard PHP

functions: yaml_parse, yaml_parse_file, yaml_emit_file.

And it additionally includes the possibility of both simple

substitutions like “{{name}}”, which replaces it with some

static text, and recursive substitutions of the contents of

other files with parameters, for example:

!include

"relative/path/to/file|param1=value1|param2=value2",

where the parameters are simple substitutions of the first

type, for example “{{param1}}” will be replaced by the

string “value1”.

Also, the following mechanism is used to add fields of a

yaml file to the contents of another yaml file. The “x-

placeholder” and the name of the yaml file to replace it are

specified in the main yaml file, and the “include_add”

section is added to it as follows:

 Components:

 examples:

 x-error-examples: !include "example/error"

 include_add:

 'components.examples.x-error-examples':

'components.examples'

In this case, the contents of the yaml file example/error.yaml

will be added to the contents of the current yaml file to

“components.examples” yaml-path. The introduction of the

“x-error-examples” intermediate directive is only necessary

for convenient identification of the place of adding by the

developer of documentation, which was the result of

practical tests of the yaml builder.

As a starting point for building, the yaml builder uses the

.exports.yaml file located at the root of the directory, the

path to which is passed to it as a command line parameter

when called. This file contains 3 sections: “dest”, “replace”

and “files”. The “dest” section describes the path to the

directory where the finished yaml files will be saved. The

“replace” section contains an array of static replacements of

the form “name: replace string”. The next section, “files”, is

the main one, as it contains a list of files in the root of the

directory that need to be processed by the yaml builder.

This approach allows you to build a single yaml file

recursively from multiple sources using dynamic

parameters. This allows you to use many once-designed

general purpose yaml files as snippets.

C. API documentation

The API documentation is generated according to the

OpenApi Specification, in this work the current version of

OAS 3.0 is used, and is located in directories according to

the following hierarchy (see Fig. 4).

Fig. 4. Directory structure for developing documentation

The main API documentation files are formed in the

openapi/ root directory, each yaml file from which includes

snippets from the file openapi/.exports.yaml for simple static

substitutions and openapi/include/ subdirectory. When

properly formed, the main yaml files are essentially

collections of links to snippet-files.

Let's take a closer look at the subdirectories in

openapi/include/. This directory contains a general purposes

snippets like an API general description or a sandbox

servers.

The subdirectory ./components contains snippets for: server

responses (./response) for one object, array of objects and

errors with examples for them (./response/example); object

(model) fields description (./model) with examples; and

security modes (./security) like cookie, query string or

bearer.

The subdirectory ./http-method contains snippets for HTTP-

methods for each type of request to API, for example, GET,

POST or DELETE. For a client request, these are the query

string parameters (./parameter) and the request body

(./request-body). For a server response, these are response

codes with corresponding response body (./response).

The following lines in the file openapi/mymodel.yaml can

serve as an example of including these snippets:

info:

 title: MyApi/{{File_name}} API

security: !include "security-all"

tags:

- name: "Get MyModel"

 description: >

 Get MyModel [docs]({{url_ui}}?yaml=mymodel)

paths:

 /:

 delete: !include "http-method |method=delete|code=405"

components:

 schemas:

“About One Approach to Deploying an API Gateway Development Environment”

2658 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

 Basic: !include "components/model/basic"

 examples:

 x-error-examples: !include "response/example/error"

include_add:

 'components.examples.x-error-examples': 'compo-

nents.examples'

The contents of the openapi/.exports.yaml file can be as

follows:

dest: www/openapi/yaml

replace:

 url_ui: https://example.com/openapi/ui/

files:

- mymodel

D. View documentation

Viewing the final documentation is intended primarily for

end users – application developers who use the proposed

API for their needs. To view it, the Swagger UI web

application [12] is used, which loads ready-made yaml files

located in the www/openapi/yaml directory (see Fig. 5).

Fig. 5. The directory structure of the finished API

documentation

Swagger UI was chosen because it is a simple, single-page

web application written in a pure HTML and JS that runs

entirely client-side in a browser.

It is also worth noting that for the Swagger UI to work

correctly, the www/openapi/swagger-ui/index.html file must

have several minor changes in start of JS code:

const params = new URLSearchParams(

 window.location.search);

const yaml=params.get('yaml');

const ui = SwaggerUIBundle({

 url: window.location.protocol + '//' +

 window.location.host + '/openapi/yaml/' + yaml,

These changes will allow short links to files like

https://example.com/openapi/ui/?yaml=filename.

In addition, to use short URLs for yaml files like

https://example.com/openapi/yaml/filename.yaml, the

following alias must be specified in the nignx configuration

file conf/nginx/conf.d/openapi.nginx:

location ~ ^/openapi/yaml/(?<yaml>[^/]+)$ {

 alias / path/to/example.com/www/openapi/yaml/;

 try_files $yaml.yaml =404;

}

IV. APPROACH VALIDATION

Based on the approach proposed in the article, a demo

example of the API for Warehouse and it's Orders and

Products was developed, below in Fig. 6 shows the

configuration for an API based on the Orders and Products

microservices:

 warehouse → orders (/v1/warehouse/orders),

 warehouse → products (/v1/warehouse/products)

and

 order → product (/v1/warehouse/orders/10/prod-

uct).

Fig. 6. Structure of nginx server settings for Warehouse

API gateway

Access to each of them is determined by the firewall, as well

as the static secret token from upstreams/auth.nginx.

Multiple upstreams for each of them is described in

upstreams/backends.nginx.

In all templates and snippets of the documentation presented

in Fig. 7 and Fig. 8, the principle of inheritance is applied:

there is a “basic” model, from which all subsequent ones are

inherited: “order” and “product”. The file openapi/api.yaml

correctly describes errors for requests to URLs / and /v1/.

Fig. 7. Main yaml documentation files

The final view of the finished documentation in the Swagger

UI viewer looks like in Fig. 9.

“About One Approach to Deploying an API Gateway Development Environment”

2659 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

Fig. 9. Swagger UI for developed documentation for Warehouse/Orders API

End-to-end tests are built on the top of PHP Unit

Framework and check the correctness of the gateway API

and application API responses to all possible correct and

incorrect REST requests. Without going into

implementation details, as this is not the subject of this

article, the general structure of the tests is shown in Fig. 10.

File openapi/.exports.yaml contains the following yaml code:

dest: www/openapi/yaml

replace:

 url_ui: https://example.com/openapi/ui/

 uri_server: https://example.com

files:

- api

- warehouse

- products

- orders

As mentioned earlier, the files in the openapi/ root directory contain, for the most part, only links to the snippet files in the

openapi/include subdirectory. For example, the most informative part of the openapi/orders.yaml file looks like this:

info:

 title: Warehouse/{{File_name}} API

x-info-replacer: !include include/info

servers: !include "include/servers|path_prefix=warehouse/{{file_name}}"

security: !include "security-all"

tags:

- name: "Get product"

 description: >

 Get Product ([API documentation]({{url_ui}}?yaml=products)) from Order.

paths:

 /:

 get:

 responses:

 '200': !include "include/http-method/response/200|schema=ResponseOrderArray|example_name=Array of

Orders|example=ResponseOrderArray"

 '4XX': !include "include/http-method/response/errors-list-400,401,403,429"

 '5XX': !include "include/http-method/response/5XX"

 post:

“About One Approach to Deploying an API Gateway Development Environment”

2660 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

 requestBody: !include "include/http-method/request-body/simple|entity=Order|entity-example=Order-Create"

 responses:

 '201': !include "include/http-method/response/201|schema=ResponseOrder|example_name=Order|example=

ResponseOrder"

 '4XX': !include "include/http-method/response/errors-create-400,401,403,413,415,422,429"

 delete: !include "include/http-method/not_allowed|METHOD=DELETE|httpcode=405"

components:

 parameters:

 id: !include "include/http-method/parameter/path/id32|name=id|entity=Order"

 schemas:

 Basic: !include "include/components/model/basic"

 Order: !include "include/components/model/order|basic=Basic"

 ResponseBasic: !include "include/components/response/basic"

 ResponseOrder: !include "include/components/response/entity|basic=ResponseBasic|Entity=Order"

 ResponseOrderArray: !include "include/components/response/entity_array|basic=ResponseBasic|Entity=Order"

 ResponseError: !include "include/components/response/error|basic=ResponseBasic"

 examples:

 Order:

 value: !include "include/components/model/example/order"

 Order-Create:

 value: !include "include/components/model/example/order-create"

 ResponseOrder: !include "include/components/response/example/entity|Entity=Order|example=order|code=200"

 ResponseOrderArray: !include "include/components/response/example/entity_array|Entity=Order|example=

order_array|code=200"

 x-error-examples: !include "include/components/response/example/error"

include_add:

 'components.examples.x-error-examples': 'components.examples'

Fig. 8. The structure of the documentation snippets

“About One Approach to Deploying an API Gateway Development Environment”

2661 Denis Zolotariov, IJMCR Volume 10 Issue 04 April 2022

V. IMPORTANT NOTES

To ease the deployment of the described environment for the

development of API gateway, it is recommended to create a

bash script containing commands for:

 creating an initial directory structure,

 creating a framework for generating API

documentation according to OAS 3.0,

 downloading the current version of Swagger UI

using the wget utility and changing its index.html

file in accordance with the recommendations

above,

 creating a framework for end-to-end and

performance tests (for example, using Composer

and PHP Unit Framework).

All files with content, such as yaml builder, and other static

data can be stored in this bash script as base64 code from

their archive, for example, in tar.xz. Also, the resulting

single bash script can be posted in the Git repository for

version history and constant updates.

Fig. 10. Structure of end-to-end tests based on PHP Unit

Framework

VI. CONCLUSION

The article developed an approach to deploying an

environment for developing and executing an API gateway,

taking into account: convenient configuration and launch of

the gateway server, flexible development of API

documentation and convenient viewing by API end users, as

well as end-to-end and performance testing of developed

APIs.

In the course of solving the problem of flexible and

convenient development of API documentation according to

OpenAPI Specification 3.0, a PHP yaml file builder was

developed for calling via CLI. It is shown for what purposes

it serves and why it is necessary.

A demo example is given and its implementation features

are described.

A mechanism for quick deployment of all necessary files

and directories is proposed according to the approach based

on a single bash file.

CONFLICTS OF INTEREST

The author declares that there is no conflict of interest

regarding the publication of this article.

REFERENCES

1. "APIs Have Taken Over Software

Development", Nordic APIs, (October 27,

2020), https://nordicapis.com/apis-have-taken-

over-software-development/.

2. "20 Impressive API Economy Statistics", Nordic

APIs, (February 9, 2022),

https://nordicapis.com/20-impressive-api-

economy-statistics/

3. "The State of the Internet Reports", Akamai,

(accessed April 19, 2022),

https://www.akamai.com/our-thinking/the-state-

of-the-internet

4. "The status of Open API adoption", TM Forum

Inform, (accessed April 19, 2022),

https://inform.tmforum.org/insights/2021/05/the-

status-of-open-api-adoption/

5. "API Management Market by Solution &

Services - 2023", MarketsandMarkets, (accessed

April 19, 2022),

https://www.marketsandmarkets.com/Market-

Reports/api-management-market-

178266736.html

6. "Open API Introduction", TM Forum, (accessed

April 19, 2022),

https://www.tmforum.org/oda/about-open-apis/

7. "Open Digital Architecture", TM Forum,

(accessed April 19, 2022),

https://www.tmforum.org/oda/

8. "nginx news", nginx, (accessed April 19, 2022),

https://nginx.org/

9. "OpenResty - Official Site", OpenResty,

(accessed April 19, 2022),

https://openresty.org/en/

10. "API Resources", Swagger, (accessed April 19,

2022), https://swagger.io/resources/open-api/

11. "logrotate(8) - Linux man page", die.net,

(accessed April 19, 2022),

https://linux.die.net/man/8/logrotate

12. "REST API Documentation Tool", Swagger UI,

(accessed April 19, 2022),

https://swagger.io/tools/swagger-ui/

