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The ample availability and importance of large-scale protein-protein interaction (PPI) data demand 

a flurry of research efforts to understand cells' organization, processes, and functioning by analyzing 

these data at the network level. In the bioinformatics and data mining fields, network clustering 

requires a lot of attraction to discover clusters of interacting proteins. Clustering proteins in a PPI 

network has been an excellent method for discovering functional modules, disclosing functions of 

unknown proteins, and other tasks in numerous research over the last decade. In this research, a 

unique graph mining approach is proposed to detect dense neighborhoods (highly connected 

regions) in an interaction graph, including protein complexes. Our technique first finds size-3 

cliques and then expands these size-3 cliques based on their affinity to produce maximal dense 

regions. To highlight the efficiency of our suggested strategy, we present experimental results using 

yeast and human protein interaction data. Our predicted complexes match or overlap much better 

with the gold standard protein complexes in the CYC-2008 and CORUM benchmark databases than 

other existing approaches. 
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I. INTRODUCTION 

Biological networks are used to describe biological processes 

and understand their functioning [1, 2]. Identification of 

genes and proteins linked to diseases, network-based disease 

classification, protein function annotation, protein 

superfamily classification, prediction of protein complexes, 

prediction of new interactions, drug design, and so on are 

some of the important applications of these networks. Graph 

data structures represent biological networks in the context of 

network analysis. PPI networks are usually represented as 

undirected graphs, with nodes representing proteins and 

edges representing protein interactions in an organism [3]. 

In such networks, there is no direction associated with 

interactions [4]. The features of biological networks can be 

divided into two categories: global and local [4]. Global 

properties are used in network modelling and 

characterization, including small-world property, scale-free 

network characteristics, power-law degree distributions, and 

clustering coefficients [5]. Clustering and network motifs are 

examples of local properties that can be used to represent an 

extensive, complicated network as a collection of small 

subgraphs. 

 

Clustering is the process of grouping data in which the data 

in each group is very similar to each other [6]. Potential 

protein complexes can be considered as subgraphs in a PPI 

network with high structural and functional cohesion [7] that 

can be found by searching high-density regions [8]. Fig. 1 

depicts high-density regions in an E. coli PPI network 

obtained from the DIP database [9]. 

 
Figure 1: Some of the high-density regions of the PPI 

network of S. cerevisiae taken from the DIP database 

[Xenarios et al. (2000)] (marked with red, yellow and blue 

color) 

https://doi.org/10.47191/ijmcr/v10i5.04
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Density search in the local neighborhood (LD) is an 

essential category of graph-based algorithms. A local 

neighborhood density search (LD) aims to optimize cluster 

density by adjusting a few parameters. Gary Bader and C. 

Hogue proposed the first graph-based clustering algorithm, 

MCODE (Molecular COmplex DEtection), in 2003 [10]. 

This technique examines the dense region of a vast PPI 

network to detect protein complexes. This approach starts 

with a seed node and then uses a local neighborhood search 

strategy to extend it. MCODE solely considers the network 

topology and ignores the protein organization within the 

network.   

 

Palla et al. created the CFinder (Complex Finder) algorithm 

in 2005 to locate and analyses overlapping clusters using the 

clique percolation idea [11]. Amin et al. suggested DPClus 

(Density-Periphery-based Clustering) in 2006 to predict 

protein complexes using the LD method [12]. DPClus is 

based solely on network topology and ignores the internal 

network organizations. In 2004, King et al. presented the 

Restricted Neighborhood Search (RNSC) algorithm to 

predict protein complexes using a cost-based local search 

(CL) strategy [13]. Mokhtarul et al. introduced the 

PROCODE (PROtein COmplex DEtection) algorithm in 

2018 [14] that uses the LD method. To anticipate protein 

complexes, PROCODE considers the dense portions of the 

PPI network and the inherent organization of proteins within 

the network. 

 

We offer an effective and efficient algorithm for predicting 

protein complexes from protein-protein interaction graphs in 

this study using the basic clique expansion technique. First, 

we use our suggested polynomial-time technique to locate 

size-3 cliques (a clique consisting of three vertices) in an 

interaction network. Our technique builds the fundamental 

cliques into more dense graphs for protein complex 

identification. It's worth noting that we use dense graphs 

rather than cliques to anticipate complexes. Our 

methodology is less susceptible to incomplete protein 

interaction data than traditional clique recognition methods 

since the dense graphs do not need to be fully connected. 

We tested our method using yeast protein interaction data 

and human interaction data. We discovered that the F-

measures predicted by our technique are much higher than 

those detected by previous computational methods. 

 

II. PROPOSED METHOD 

In this research, we propose to employ a Subgraph 

Expansion Technique (SET) to locate maximal dense 

subgraphs in the input PPI network for predicting protein 

complexes. Our SET approach has two fundamental phases 

to identify maximal dense subgraphs in the network. The 

basic cliques of size-3 for all the vertices in the network are 

computed in the first phase. This is because a maximal 

dense region covering vertices in the network must contain a 

basic clique of size-3 by definition. We next expand these 

basic cliques to build maximal dense graphs in the second 

stage. 

A.  Size-3 Cliques Extraction 

The first step of our SET algorithm is to find the size-3 

cliques in the input graph G. For each edge from graph G, 

we extract the size-3 clique consisting of that edge and then 

remove all the edges of this clique from the graph. The 

pendant edges are also removed after the removal of the 

discovered clique. The details of our SET algorithm to mine 

size-3 cliques (LC) are shown in Algorithm-1. 

 

Algorithm-1: SET algorithm phase-1 (Clique extraction): 

Finding Size-3 cliques from input graph 

INPUT: G: Input network 

OUTPUT: S3: Size-3 clique set 

1: BEGIN 

2: Initialize an empty set S3 

3: Remove all pendant edges from G 

4: Take an edge (u, v) from input graph G 

5: Choose a common Neighbor(w) of both u and v 

6: Add (u, v, w) to the clique set S3  

8: Remove the edges (u, v), (v, w) and (u, w) from graph G 

9: Remove all pendant edges corresponding to the pendant 

vertices u, v, and w                                    

10: Go to step-4 for next untraversed edge 

11: Return S3 

12: END 

 

B. Subgraph Expansion Technique (SET) 

A large protein complex is more likely to be displayed as a 

maximal dense neighborhood consisting of a size-3 clique as 

the center of an interaction graph with incomplete 

interaction data. After the size-3 cliques have been 

identified, the SET algorithm undertakes an extension phase 

to detect dense graphs that better match the larger 

complexes. Our SET algorithm aims to expand the subgraph 

starting from size-3 cliques with a cluster density greater 

than 50% of the maximum density feasible. The expansion 

step is repeated iteratively to update the partially generated 

dense subgraph. The details clique expansion step of our 

SET method is described in Algorithm-2. 

 

Algorithm-2: SET algorithm phase-2 (Subgraph Expansion): 

Expansion of the subgraphs to mine protein complexes in a 

PPI network 

INPUT: G: Input network., S3: Set of size-3 cliques 

OUTPUT: C: List of predicted protein complexes in the 

input PPI network G 

1: BEGIN 

2: Initialize an empty complex set C 

3: Take a size-3 clique from the list S3 

4: Set Maximum Cluster Density MCD = 1  

5: Initialize Partially form Complex PC = size-3 clique 

6: Set Current Cluster Density CCD = 1  
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7: Set Vertex Count of partially form Complex VC = 3  

8: Set Edge Count of partially form Complex EC = 3 

9: Go to step-20 if CCD < (1/2) MCD 

10: Take an untraversed vertex v neighboring to any one 

vertex u ∈ PC 

11:  Set the PC connectivity count of v as Cnt =1  

12:  Increase connectivity count (Cnt) of v for each internal 

vertex w ∈ PC connected to v 

13:   If Cnt < (1/2)VC then go to step-10 

14:   PC = PC U {v} 

15:   Increment VC and EC 

16:  Go to step-10 for next untraversed vertex 

17:  Update MCD = VC*(VC-1)/2 

18:  Update CCD = EC 

19:  Go to step 9 

20:   Update the complex set C= C U {PC} 

21: Go to step-3 for next clique to be expanded 

22: END 

 

III. PERFORMANCE EVALUATION 

For assessing the complicated prediction tools and 

algorithms, various PPI network datasets are accessible. 

Some algorithms may only use a single dataset, whilst 

others may use a large variety of datasets. However, almost 

all tools and algorithms make use of at least one PPI 

network dataset. In this part, we test our proposed SET 

algorithm on a real-world interaction graph derived from 

yeast and human protein-protein interaction data. We 

selected to infer protein complexes using yeast and human 

interaction data since it is currently the most publicly 

available organism with the most comprehensive 

experimental datasets. We will compare our results to those 

of existing algorithms MCODE [10], RNSC [13], DPClus 

[12], and CFinder [11], using the same datasets to 

demonstrate the usefulness of our technique. 

 

A. Dataset for Protein Interaction Graph 

The performance of the proposed algorithm is tested on two 

extensively utilised species: yeast and humans. To build our 

protein interaction graph for mining complexes, we leverage 

the DIP and BioGRID datasets [15, 16]. The DIP dataset for 

yeast has 24574 experimentally determined protein-protein 

interactions between 5038 yeast proteins, while the 

BioGRID dataset contains 137675 protein-protein 

interactions between 18270 human proteins. 

 

B. Protein Complex Gold Standard and Evaluation 

Metric 

The collection of known yeast protein complexes acquired 

from the CYC2008 Database [17] serves as the benchmark 

against which we test our method. After filtering the 

predicted protein complexes from the dataset, we acquired a 

final set of 408 yeast complexes with 1627 proteins as our 

gold standard for evaluation. We analyse our proposed 

approach using the gold standard CORUM dataset [18] for 

the human data. There are 1843 gold standard protein 

complexes in this dataset. The efficiency of the proposed 

SET method is validated using several validation metrics, 

including recall, precision, F-measure, sensitivity, PPV, and 

accuracy. 

 

C. Experimental Results 

The proposed complex prediction algorithm is evaluated by 

using four PPI networks of two species. The results shown 

in Table-1 and Table-2 indicate the relative performance of 

the proposed algorithm as compared to others. The 

percentage of significant complexes represents the overall 

performance of the algorithms as compared to the total 

number of identified complexes. For example, out of the 316 

complexes predicted by the SET in DIP datasets for S. 

cerevisiae, 296 complexes are found to be significant, which 

is 93.67%. Similarly, SET predicts 551 protein complexes 

from the BioGRID dataset for human and out of those, 505 

complexes are significant. Table-1 and Table-2 show the 

matching score and coverage value of the above algorithms 

in the DIP and BioGRID datasets. 

 

Table 1. Experimental results on DIP dataset. 

(Performance on S. cerevisiae data) 

Algorithm Number of 

Significant 

Complexes 

Number 

of 

Predicted 

complexes 

Parentage 

of 

Significant 

Complexes 

MCODE 89 106 83.96 

DPClus 1106 1217 90.88 

RNSC 2352 2556 92.02 

CFinder 848 942 90.02 

SET 296 316 93.67 

 

Table 2. Experimental results on BioGRID dataset 

(Performance on Homosapiens data) 

Algorithm Number of 

Significant 

Complexes 

Number 

of 

Predicted 

complexes 

Parentage 

of 

Significant 

Complexes 

MCODE 224 276 81.16 

DPClus 699 781 89.5 

RNSC 3080 3415 90.19 

CFinder 1988 2249 88.39 

SET 505 551 91.65 

 

D. Evaluation measures Recall, Precision and F-measure 

Fig. 2 shows the comparison of the above evaluation 

measures among SET, MCODE, RNSC, DPClus and 

CFinder. The evaluation metrics like precision and F-

measure of the SET are comparable with the state-of-art 

algorithms. For the DIP dataset, the recall of the CFinder is 

highest, but SET has the highest recall value for S. 
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cerevisiae in the DIP dataset. The precision of MCODE is 

highest for humans in the DIP data. However, SET has the 

maximum precision value for S. cerevisiae in the DIP data. 

SET achieves the highest F-measure value for both datasets. 

For example, the evaluation metrics of the SET for Human 

interaction networks in the BioGrid data are 0.395, 0.481 

and 0.434, respectively. These experimental results signify 

the superior performance of the SET as compared to others 

in the interaction network of S. cerevisiae and Homosapiens. 

 

 

 
Figure-2: Evaluation metrics Precision, recall, and F-

measure for a) S. cerevisiae in DIP dataset, (b) Homosapiens 

in BioGRID dataset. 

 

E. Evaluation measures PPV, Sensitivity and 

Accuracy 

Fig. 3 shows the comparison of sensitivity, PPV, and 

accuracy among SET, MCODE, RNSC, DPClus and 

CFinder for the BioGRID and DIP datasets. For example, 

the evaluation metrics sensitivity, PPV and accuracy of the 

SET for S. cerevisiae in the DIP dataset are 0.308, 0.554 and 

0.413. The PPV of the proposed algorithm is also highest in 

humans in the DIP data. The proposed algorithm has the 

maximum value of sensitivity and accuracy for 

Homosapiens in the BioGRID dataset, indicating the 

excellent coverage of the predicted protein complexes. The 

sensitivity and PPV value of the proposed algorithm is 

comparable with the state-of-art algorithms. However, the 

accuracy of the SET is at par with other competing 

algorithms for both datasets. The higher value of sensitivity 

and accuracy of the SET indicates its superior performance. 

 

 

 

 

 
Figure-3: Evaluation metrics Sensitivity, PPV, and 

accuracy for (a) S. cerevisiae in DIP dataset, (b) 

Homosapiens in BioGRID dataset. 

 

IV. CONCLUSIONS AND FUTURE DIRECTIONS 

In recent years, protein complex prediction methods and 

algorithms have increasingly considered various biological 

aspects. As a result, current prediction algorithms are more 

efficient than prior methods that rely solely on network 

structural knowledge. Using the subgraph expansion 

technique, we describe an efficient and successful technique 

for mining protein complexes from protein interaction 

graphs. Our proposed algorithm uses a bottom-up approach 

that considers the size-3 cliques for each edge in the 

interaction graph and then expands the overlapping local 

cliques for maximal dense neighbourhoods. Because many 

fundamental biological processes in the cell are carried out 

through the formation of protein complexes, identifying 

protein complexes is critical for biological knowledge 

discovery. However, there is a significant data gap between 

protein complexes and technology for identifying pairwise 

protein-protein interactions. Our projected complexes 

matched or overlapped well with known protein complexes 

in the CYC2008 and CORUM benchmark databases; the 

unmatched complexes may be actual complexes. Thus, our 

method can be utilised to detect novel protein complexes 

from the CYC2008 and CORUM benchmark databases, 

with the unmatched complexes having the potential to be 

actual complexes. 
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