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This research paper considers the dynamics in epidemic model. Since understanding the 

mechanism of the spread and the transmission dynamics of a disease, is very crucial in preventing 

and controlling disease. We describe the mechanisms of disease transmission model of infectious 

agents. Optimal control theory was used to deduce the optimal strategy aimed at curtailing the 

spread of syphilis. 
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1 INTRODUCTION 

Syphilis is a systemic disease from the outset and is caused 

by the spirochaete,  Treponema pallidum (T. pallidum). The 

infection can be classified as congenital (transmitted from 

mother to child in utero) or acquired (through sex or blood 

transfusion).  More than 25 infectious organisms are 

transmitted primarily through sexual activity and studies 

reveal that sexually transmitted diseases (STDs) are among 

the many related factors that affect the board continuum of 

reproductive health [Okonko et al, 2012 & Shafer, M. & 

Moscicki, A. 2006]. In the 1930s and 1940s, syphilis was 

perhaps the most prominent public health issue in the U.S., 

with more federal dollars spent on syphilis than any other 

infectious disease [Brown, W, 1971]. Acquired syphilis is 

divided into early and late syphilis. Early syphilis comprises 

the primary, secondary and early latent stages. Late syphilis 

refers to late latent syphilis, gummatous, neurological and 

cardiovascular syphilis. Nowadays early stage of the disease 

can be easily treated by a single dose of antibiotics such as 

penicillin or azithromycin. 

        The first effective treatment (Salvarsan) was developed 

in 1910 by Paul Ehrlich, which followed by trials of 

penicillin and confirmation of its effectiveness in 1943. 

Despite the successful reduction in syphilis in the U.S. and 

other developed countries over the last half century, the 

trend appears to have reversed. Infection rates for syphilis 

are rising in North America, Western Europe and Australia 

[Fentol, K. et al, 2008]. The sharpest rise has occurred in 

men who have sex with men (MSM), accounting for over  

 

60% of primary and secondary U.S. syphilis cases in 2004 

as compared to only 4% of U.S. cases in 2000. This is an 

alarming demographic shift given the high-risk sexual 

behavior and elevated chance for HIV infection among 

MSM [Chen, S.et al, 2003 & Heffelfinger, J. et al, 2007]. 

Mathematical Model of (STDs) transmission was developed 

in 1970s [Yorke, J.A. & Hethcote, H. W., 1973] in response 

to concern over the dramatic increases in the number of 

reported gonorrhoea cases in the USA during the 1970s. 

After their model, researchers developed mathematical 

models to simulate the spread of a wide range of (STDs) 

such as syphilis, HIV/AIDS, gonorrhoea, Hepatitis B virus 

[World Health Organization (WHO), 2006]. 

    Mathematical modelling continues to play a significant 

role in epidemiology by providing deeper insight into the 

underlying mechanisms for the spread of emerging and re-

emerging infectious diseases and suggesting effective 

control strategies. Epidemiology modelling has contributed 

to the design and analysis of epidemiological surveys, 

suggested crucial data that should be collected, identified 

trends, made general forecasts, and estimate the uncertainty 

in forecasts [Hethcote 2000]. Optimal control theory has 

proven to be a successful tool in understanding ways to 

curtail the spread of infectious diseases by devising the 

optimal diseases intervention strategies. 

 In this paper, we develop a model for the transmission 

dynamics of syphilis, which is an extension of the existing 

models of syphilis which includes two susceptible class, two 

infected classes with complications and treated class 

inclusive and an optimal control model for syphilis 

dynamics. 
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2.  MODEL FORMULATION 

The model sub-divides  the total human population at time t denoted by N(t) into six compartments of susceptible male 𝑆𝑚(𝑡) ,  

susceptible female  𝑆𝑓(𝑡), infected male   𝐼𝑚(𝑡) , infected female  𝐼𝑓(𝑡), complications C(t) and Treated T(t), where N(t) is given 

as 

N (t) =  𝑆𝑚(𝑡) + 𝑆𝑓(𝑡) + 𝐼𝑚(𝑡) + 𝐼𝑓(𝑡) + C (t) + T(t)                                    (1) 

 

The susceptible are individuals that have not contracted the 

infection but may be infected through sexual contacts. The 

population recruits into the susceptible classes at the rate 𝜋𝑚 

for susceptible male and 𝜋𝑓 for the susceptible female. 

Infected individuals are those with the infection and can 

transmit the disease to the susceptible classes during sexual 

intercourse. 𝛼1 , 𝛼2 Represent the rate of movement of 

susceptible to infected classes. The complications are 

individuals in the population with the infection at the latent 

stage that can leads to other diseases or death, the 

progression rate into the complication class is through 𝛽1, 𝛽2 

and 𝑟1 , 𝑟2 denote the recovery rate of the infected classes . 

We assumed that the death rate is not negligible therefore, 

the natural death rate is represented by µ while the induce 

disease caused untreated syphilis is represented by  𝑣. 

Treated are people in the population that have recovered due 

to treatment. The model equation is given as: 

 
𝑑𝑆𝑚

𝑑𝑡
 =  𝜋𝑚   - 𝛼1𝐼𝑓𝑆𝑚 - µ𝑆𝑚 

𝑑𝑆𝑓

𝑑𝑡
 =  𝜋𝑓   - 𝛼2𝐼𝑚𝑆𝑓  - µ𝑆𝑓 

𝑑𝐼𝑚

𝑑𝑡
 =  𝛼1𝐼𝑓𝑆𝑚 – (𝑟1 +  𝛽1 +  µ)𝐼𝑚 

𝑑𝐼𝑓

𝑑𝑡
 =  𝛼2𝐼𝑚𝑆𝑓 – (𝑟2 + 𝛽2 +  µ)𝐼𝑓 

𝑑𝐶

𝑑𝑡
 =  𝛽1𝐼𝑚  +  𝛽2𝐼𝑓   – (𝑣 +  µ +  𝛿) C 

 𝑑𝑇

𝑑𝑡
 =  𝑟1𝐼𝑚  +  𝑟2𝐼𝑓   + 𝑣𝐶 −  µT                                                                                     (2) 

 

2.1           Basic Properties of the Model 

Lemma 1: If 𝑆𝑚 (0) > 0 , 𝑆𝑓  (0) > 0 , 𝐼𝑚 (0) > 0 , 𝐼𝑓(0) > 0, 𝐶(0) > 0 , 𝑎𝑛𝑑  𝑇(0) > 0  , then the solutions  

𝑆𝑚(𝑡),  𝑆𝑓(𝑡),  𝐼𝑚(𝑡), 𝐼𝑓(𝑡), 𝐶(𝑡), 𝑎𝑛𝑑  𝑇(𝑡)   of the system of equations (2)  are positive for all 𝑡 ≥ 0 . 

Proof: Under the given initial conditions, it is easy to prove that the solutions of the system of equations (2) are positive; if not, we 

assume a contradiction that there exists a first time 𝑡1 such that  

𝑆𝑚  (0) > 0,                 𝑆𝑚  (𝑡1) = 0 ,              𝑆′𝑚  (𝑡1)   ≤   0, 

𝑆𝑓  (𝑡) > 0,                 𝐼𝑚  (𝑡)  > 0 ,              𝐼𝑓  (𝑡)   >   0, 

𝐶(𝑡)  > 0,   𝑇(𝑡) > 0,      0 ≤ 𝑡 ≤   𝑡1 

In that case, from equation (2), we have 

𝑆′𝑚  (𝑡1) =     𝜋𝑚   > 0 

Which is a contradiction meaning that   𝑆𝑚 (𝑡) > 0, 𝑡 > 0. 

Or there exists a 𝑡2  such that 

𝑆𝑓  (0) > 0,                 𝑆𝑓  (𝑡2) = 0 ,              𝑆′𝑓  (𝑡2)   ≤   0, 

𝑆𝑚 (𝑡) > 0,                 𝐼𝑚  (𝑡)  > 0 ,              𝐼𝑓 (𝑡)   >   0, 

𝐶(𝑡)  > 0,   𝑇(𝑡) > 0,      0 ≤ 𝑡 ≤ 𝑡2 

From equation (2), we have  

𝑆′𝑓  (𝑡1) =     𝜋𝑓   > 0 

Which is a contradiction meaning that 𝑆𝑓 (𝑡) > 0, 𝑡 > 0. 

Or there exists a 𝑡3  such that 

𝐼𝑚  (0) > 0,                 𝐼𝑚 (𝑡3) = 0 ,              𝐼′𝑚  (𝑡3)   ≤   0, 

𝑆𝑚  (𝑡) > 0,                 𝑆𝑓  (𝑡)  > 0 ,              𝐼𝑓 (𝑡)   >   0, 

𝐶(𝑡)  > 0,   𝑇(𝑡) > 0,      0 ≤ 𝑡 ≤ 𝑡3 

From equation (3), we have  

𝐼′𝑚  (𝑡3) =    𝛼1𝐼𝑓𝑆𝑚    > 0 

Which is a contradiction meaning that 𝐼𝑚 (𝑡) > 0, 𝑡 > 0. 
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Or there exists a 𝑡4  such that 

𝐼𝑓  (0) > 0,                 𝐼𝑓  (𝑡3) = 0 ,              𝐼′𝑓  (𝑡3)   ≤   0, 

𝑆𝑚  (𝑡) > 0,                 𝑆𝑓  (𝑡)  > 0 ,              𝐼𝑚 (𝑡)   >   0, 

𝐶(𝑡)  > 0,   𝑇(𝑡) > 0,      0 ≤ 𝑡 ≤ 𝑡4 

From equation (4), we have  

𝐼′𝑓  (𝑡4) =    𝛼2𝐼𝑚𝑆𝑓    > 0 

Which is a contradiction meaning that  𝐼𝑓 (𝑡) > 0, 𝑡 > 0. 

Similarly, it can be shown that 𝐶(𝑡)  > 0,   𝑇(𝑡) > 0,  for all  𝑡 ≥ 0 . Thus the solutions 𝑆𝑚(𝑡),  𝑆𝑓(𝑡),  𝐼𝑚(𝑡), 𝐼𝑓(𝑡), 𝐶(𝑡),

𝑎𝑛𝑑  𝑇(𝑡)   of the system of equations (2) are positive for all  ≥ 0 . 

 

3. ANALYSIS OF THE MODEL 

Disease Free Equilibrium 

The Disease free of the syphilis model exists and is given by  

𝐸0    =   (
𝜋𝑚

𝜇
  ,    

𝜋𝑓

𝜇
  , 0 , 0, 0  , 0)                                                            (3) 

In the absence of syphilis, the susceptible male and susceptible female changes in proportion to the ratio of their recruitment rates 

to the death rate. 

Existence of Endemic Equilibrium 

Calculating the endemic point, where𝐼𝑚  ≠ 0 ,    𝐼𝑓 ≠ 0,   𝐶 ≠ 0  we obtain, 

 

𝐼∗
𝑓  =  

𝜋𝑚  −   𝜇 𝑆∗
𝑚 

𝛼1𝑆∗
𝑚

 

𝐼∗
𝑚  =  

𝜋𝑓  −   𝜇 𝑆∗
𝑓 

𝛼1𝑆∗
𝑓

 

𝐶∗  =  
𝛼1𝛽1𝑆∗

𝑚(𝜋𝑓  −   𝜇 𝑆∗
𝑓 )  + 𝛼2𝛽2𝑆∗

𝑓(𝜋𝑚  −   𝜇 𝑆∗
𝑚 )  

𝛼1𝛼2𝑆∗
𝑚𝑆∗

𝑓 (𝑣 +  µ +  𝛿 ) 
 

𝑇∗  =  
(𝑣 + µ + 𝛿 )+ (𝐾1+ 𝐾2) + 𝐾3 + 𝐾4  

𝛼1𝛼2𝑆∗
𝑚𝑆∗

𝑓 (𝑣 + µ + 𝛿 ) 𝜇
                                           (4) 

 

 

Where 

𝐾1   =   𝛼1𝑟1𝑆𝑚(𝜋𝑓 −  µ𝑆𝑓) 

𝐾2   =   𝛼2𝑟2𝑆𝑓(𝜋𝑚 −  µ𝑆𝑚) 

𝐾3   =   𝛼1𝛽1𝑆𝑚(𝜋𝑓 −  µ𝑆𝑓) 

𝐾4   =   𝛼2𝛽2𝑆𝑓(𝜋𝑚 −  µ𝑆𝑚) 

 

4. BASIC REPRODUCTION NUMBER   ( 𝑹𝟎   ) 

The Basic Reproduction Number which is defined as the average number of secondary infections that occur when one infection is 

introduced into a complete susceptible host population [Derick, N. & Grossman, S. (1976)]. For this research work the method of 

next generation matrix was used. It is given by 

𝐹 =  (

0 𝛼1𝑆𝑚 0
𝛼2𝑆𝑓 0 0

𝛽1 𝛽2 0
) 

V   =  (

(𝑟1+ 𝛽1 +  µ ) 0 0
0 (𝑟2+ 𝛽2 +  µ ) 0

0 0 (𝑣 +  µ +  𝛿 ) 
) 

 

𝑅0   =  𝜌(FV-1) = 
√(𝑟2+ 𝛽2+ µ )(𝑟1+ 𝛽1+ µ )𝛼1𝛼2𝜋𝑚𝜋𝑓 

(𝑟2+ 𝛽2+ µ ) (𝑟1+ 𝛽1+ µ )  𝜇
                              (5) 
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5.   ANALYSIS OF OPTIMAL CONTROL 

We now incorporate time-dependent controls into the model (2) to obtain the following: 
𝑑𝑆𝑚

𝑑𝑡
 =  𝜋𝑚   - (1 − 𝑢1) 𝛼1𝐼𝑓𝑆𝑚 - µ𝑆𝑚 + 𝑢2 ∅ 𝐼𝑚 

𝑑𝑆𝑓

𝑑𝑡
 =  𝜋𝑓   -  (1 − 𝑢1)𝛼2𝐼𝑚𝑆𝑓 -  µ𝑆𝑓 +  𝑢2 ∅ 𝐼𝑓 

𝑑𝐼𝑚

𝑑𝑡
 =  (1 − 𝑢1)𝛼1𝐼𝑓𝑆𝑚 – (𝑟1 +  𝛽1 +  µ +  𝑢2 ∅ )𝐼𝑚 

𝑑𝐼𝑓

𝑑𝑡
 =   (1 − 𝑢2)𝛼2𝐼𝑚𝑆𝑓 – (𝑟2 + 𝛽2 +  µ + 𝑢2 ∅ )𝐼𝑓 

𝑑𝐶

𝑑𝑡
 =  𝛽1𝐼𝑚  +  𝛽2𝐼𝑓   – (𝑣 +  µ +  𝛿) C 

𝑑𝑇

𝑑𝑡
 =  𝑟1𝐼𝑚  +  𝑟2𝐼𝑓   + 𝑣𝐶 +  µT.                                                                       (6) 

where 𝑢1 and 𝑢2  are time dependent controls, 0 ≤ 𝑢1  ≤

1 is a preventive control measure on the susceptible from 

becoming infected with the disease (e.g proper education 

campaign and  use of condoms) and the control 0 ≤ 𝑢2  ≤

1 deals with the effort necessary to curtail the Infection i.e 

the  control on treatment. 

To investigate the optimal level of efforts that would be 

needed to control the disease, we give the objective 

functional J, which is to minimize the number of human 

infective and the cost of applying the control 𝑢1  , 𝑢2 . 

𝐽 = max
𝑢1,𝑢2

 ∫ 𝑎0𝐼𝑚 + 
𝑡𝑓

0

𝑎1𝐼𝑓 +  
𝑐𝑢1

2

2
+  

𝑑𝑢2
2

2
  𝑑𝑡                           (7) 

 

With 𝑎0 , 𝑎1 , 𝑐 , 𝑑   are positive weights, where we want to 

minimize the infected groups while also keeping the cost of 

controls 𝑢1(𝑡) and 𝑢2(𝑡)  low. It is generally assumed that 

the cost of control is usually nonlinear with the quadratic 

form which is a convex function. The 𝑎0𝐼𝑚  , 𝑎1𝐼𝑓  represents 

the cost of infection, while the term  
𝑐𝑢1

2

2
 (𝑡),

𝑑𝑢2
2

2
(𝑡) , 

represents the cost of controls at the time t. The goal is to 

find an optimal control, 𝑢1
∗,  𝑢2

∗, such that 

  

𝐽(𝑢1
∗,   𝑢2

∗) =  min
𝛺1

𝐽(𝑢1 ,   𝑢2)                                          (8) 

Where 𝛺1 =  {𝑢 | 0 ≤ 𝑢1, 𝑢2 ≤ 1,      𝐿𝑒𝑏𝑒𝑠𝑞𝑢𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒}                         

The necessary conditions that an optimal must satisfy come from Pontryagin’s Maximum Principle [Pontryagin L. S. et al, 1962]. 

Theorem 2.1 (Pontryagin’s Maximum Principle Lenhart and Workman (2007) 

If 𝑢∗(𝑡) and 𝑥∗(𝑡) are optimal for the problem 

max
𝑢

𝐽[𝑥(𝑡), 𝑢(𝑡)] 

Where 𝐽[𝑥(𝑡), 𝑢(𝑡)] =  max
𝑢

 ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)
𝑡𝑓

𝑡0
 ) 𝑑𝑡 

Subject to     {
𝑑𝑥

𝑑𝑡
= 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))

𝑥(𝑡0) =  𝑥0              ,
 

Then there exists a piecewise differentiable adjoint variable 𝜆(𝑡) such that 

𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡))  ≤ 𝐻 (𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡))  

For all controls u at each time t, where the Hamiltonian H is given by  

𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡))    = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) +  𝜆(𝑡)𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 

And 

{
𝜆′ (𝑡) =

𝜕𝐻((𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆(𝑡)) )

𝜕𝑥
𝜆(𝑡𝑓) =   0                              

 

While the Pontryagin’s Maximum Principle gives the necessary conditions for the existence of an optimal solution. This principle 

converts (1) into a problem of minimizing pointwise a Hamiltonian H with respect to 𝑢1 and 𝑢2. 

𝐻 =  𝑎0𝐼𝑚 + 𝑎1𝐼𝑓 +  
𝑐𝑢1

2

2
+ 

𝑑𝑢2
2

2
+  𝜆𝑆𝑚

 {𝜋𝑚  −  (1 − 𝑢1)𝛼1𝐼𝑓𝑆𝑚  −  µ𝑆𝑚 +  𝑢2 ∅ 𝐼𝑚} 

+     𝜆𝑆𝑓
{𝜋𝑓  −   (1 − 𝑢1)𝛼2𝐼𝑚𝑆𝑓  −   µ𝑆𝑓 + 𝑢2 ∅ 𝐼𝑓  } 

+     𝜆𝐼𝑚
{(1 − 𝑢1)𝛼1𝐼𝑓𝑆𝑚 – (𝑟1 + 𝛽1 +  µ + 𝑢2 ∅ )𝐼𝑚} 

+      𝜆𝐼𝑓
{(1 − 𝑢2)𝛼2𝐼𝑚𝑆𝑓  – (𝑟2 + 𝛽2 +  µ + 𝑢2 ∅ )𝐼𝑓 } 

+ 𝜆𝐶{𝛽1𝐼𝑚   +   𝛽2𝐼𝑓  –  (𝑣 +  µ +  𝛿)C  } 

+ 𝜆𝑇{𝑟1𝐼𝑚   +   𝑟2𝐼𝑓  +  𝑣𝐶 −  µT },                                                (9) 
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Where    𝜆𝑆𝑚
, 𝜆𝑆𝑓

, 𝜆𝐼𝑚
, 𝜆𝐼𝑓

, 𝜆𝐶   and 𝜆𝑇 are the adjoint variables or co-state variables. By applying Pontryagin’s Maximum 

Principle and the existence result for the optimal control [Fleming, W. H. et al, 1975], we obtain  

Preposition 1. For optimal control pair 𝑢1
∗ and 𝑢2

∗ that minimizes 𝐽(𝑢1 ,   𝑢2) over𝛺1, there exists  adjoint varibales     𝜆𝑆𝑚
,

𝜆𝑆𝑓
, 𝜆𝐼𝑚

, 𝜆𝐼𝑓
, 𝜆𝐶   and 𝜆𝑇 satisfying 

− 
𝑑𝜆𝑆𝑚

𝑑𝑡
=  ((1 − 𝑢1)𝛼1𝐼𝑓) (   𝜆𝑆𝑚

−    𝜆𝐼𝑚
) −  𝜇 𝜆𝑆𝑚

  , 

− 
𝑑𝜆𝑆𝑓

𝑑𝑡
=  ((1 − 𝑢1)𝛼2𝐼𝑚) (   𝜆𝑆𝑓

−     𝜆𝐼𝑚
) −  𝜇 𝜆𝑆𝑓    

, 

− 
𝑑𝜆𝐼𝑚

𝑑𝑡
=  − 𝑎0 + ((1 − 𝑢1)𝛼2𝑆𝑓) (   𝜆𝑆𝑓

−    𝜆𝐼𝑓
) + (   𝜆𝐼𝑚

−    𝜆𝑆𝑚
) 𝑢2 ∅ +  𝜇 𝜆𝐼𝑚    

− 𝛽1𝜆𝐶 − 𝑟1𝜆𝑇 

− 
𝑑𝜆𝐼𝑓

𝑑𝑡
=  − 𝑎1 + ((1 − 𝑢1)𝛼1𝑆𝑚)(   𝜆𝑆𝑚

−     𝜆𝐼𝑚
) +  (   𝜆𝐼𝑓

−     𝜆𝑆𝑓
) 𝑢2 ∅ +  𝜇 𝜆𝐼𝑓   

−  𝛽2𝜆𝐶 − 𝑟2𝜆𝑇 

− 
𝑑𝜆𝐶

𝑑𝑡
=  𝜆𝐶(𝑣 +  µ +  𝛿) −  𝑣 𝜆𝑇                                                                                                                                    

− 
𝑑𝜆𝑇

𝑑𝑡
=  µ  𝜆𝑇                                            (10)           

And with transversality conditions 

𝜆𝑆𝑚
(𝑡𝑓) = 𝜆𝑆𝑓

(𝑡𝑓) =  𝜆𝐼𝑚
(𝑡𝑓) = 𝜆𝐼𝑓

(𝑡𝑓) = 𝜆𝐶(𝑡𝑓) = 𝜆𝑇(𝑡𝑓), 

 𝑢1
∗ =  𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 

(1,   𝛼1𝐼𝑓𝑆𝑚
∗(𝜆1 − 𝜆3 ) +  𝛼2𝐼𝑚𝑆𝑓

∗(𝜆2 − 𝜆4 )) + 𝛼2𝑆𝑓𝐼𝑚
∗(𝜆2 − 𝜆4 ) + 𝛼1𝑆𝑚𝐼𝑓

∗(𝜆1 − 𝜆3 ) 

2𝑐
}  

𝑢2
∗ =  𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 

(1,   ∅𝐼𝑚
∗(𝜆3 − 𝜆1 ) +  ∅𝐼𝑓

∗(𝜆4 − 𝜆2 )) 

2𝑑
} 

Proof: Corollary 4.1 of [Fleming W. H.E, et al, 1975] gives 

the existence of an optimal control due to the convexity of 

the integrand of J with respect to 𝑢1 ,  𝑢2, a priori 

boundedness of the state solutions, and the Lipschitz 

property of the state system with respect to the state 

variables. The differential equations governing the adjoint 

are obtained by differentiation of Hamiltonian function 

evaluated at the optimal control. 

By standard control arguments involving the bounds on the 

controls, we conclude 

 

𝑢1
∗ = {

0                               𝐼𝑓  𝜑1
∗ ≤ 0

0                      𝐼𝑓  0 <  𝜑1
∗ < 1

1                        𝐼𝑓   𝜑1
∗   ≥ 1

} 

𝑢2
∗ = {

0                               𝐼𝑓  𝜑2
∗ ≤ 0

0                      𝐼𝑓  0 <  𝜑2
∗ < 1

1                        𝐼𝑓   𝜑2
∗   ≥ 1

} 

Where 

𝜑1
∗ = (

(1,   𝛼1𝐼𝑓𝑆𝑚
∗(𝜆1 − 𝜆3 ) +  𝛼2𝐼𝑚𝑆𝑓

∗(𝜆2 − 𝜆4 )) + 𝛼2𝑆𝑓𝐼𝑚
∗(𝜆2 − 𝜆4 ) + 𝛼1𝑆𝑚𝐼𝑓

∗(𝜆1 − 𝜆3 ) 

𝑐
) 

And 

𝜑2
∗ = (

(1,   ∅𝐼𝑚
∗(𝜆3 − 𝜆1 ) +  ∅𝐼𝑓

∗(𝜆4 − 𝜆2 )) 

𝑑
)                                    (11) 

Due to the a priori boundedness of the state system, adjoint 

system, and the resulting Lipschitz structure of the ODEs, 

we obtain the uniqueness of the optimal control for small 𝑡𝑓 . 

The uniqueness of the optimal control follows from the 

uniqueness of the optimality system, which consists of (9) 

and (10), with characterization (11). There is a restriction on 

the length of the time interval in order to guarantee the 

uniqueness of the optimality system. This smallness 

restriction of the length on the time is due to the opposite 

time orientations of (9) and (10); the state problem has 

initial values, and the adjoint problem has final values. This 

restriction is very common in control problems [ Lenhart S. 

&  Yong, J. 1995]. 

 

6.CONCLUSION 

In this paper, a deterministic model for the transmission of 

syphilis in a heterogeneous setting with complications. We 

calculated the basic reproduction number and investigated 

the existence and stability of the disease free equilibrium 

(DFE)  in which the (DFE)  is said to be locally 

asymptotically stable due to  𝑅0   < 1 which implies that 

syphilis will die out of the population, and performed 
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optimal control analysis of the model. Applying the control, 

we derived and anlayzed the conditions for optimal control 

of the disease with effective measures. Adequate control 

measures which adhered to these controls strategies would 

be a very effective way to curtail the disease.  
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