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Covid-19 is a disease caused by a new corona virus that has spread throughout the world and 

become a pandemic. It is classified as an infectious disease that can be transmitted from human to 

human through droplets. So that we need controls to reduce the spread of Covid-19. The optimal 

control that will be carried out this work is self-precaution, treatment and quarantined that will be 

applied to the dynamical modelling of Covid-19 spread using the Pontryagin’s Maximum Principle 

(PMP) to find out the optimal solution for the control. According to this principle the optimal 

control, corresponding optimal state, and adjoint function must minimize the Hamiltonian function. 

PMP converts the optimal control problem into a multipoint boundary value problem. That is, the 

optimality condition results in control. The optimal control variable, corresponding state and adjoint 

can be computed by solving an Ordinary Differential Equation system. The control strategies is 

aimed to reduce covid-19 transmission. Numerical results show the effectiveness of the control 

strategies in reducing Covid-19 spread. It is found that self-precaution more effective than treatment 

and quarantined. 
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I. INTRODUCTION 

An outbreak of severe respiratory pneumonia recently 

emerged in China related to the 2019 novel coronavirus 

(Covid-19) caused by the SARS-CoV-2 virus. symptoms in 

people infected with the virus experience mild to moderate 

respiratory distress [1]. This disease mostly affects the 

elderly and people who have underlying medical conditions 

such as cardiovascular disease, diabetes, chronic respiratory 

disease, or cancer will develop serious illnesses [2-6]. Covid-

19 is a disease that can be transmitted from person to person 

through droplets on infected people [7-9]. 

Coronavirus has become a serious global phenomenon in 

recent years, thus negatively impacting the world's health and 

economy. Currently, scientists are conducting research to 

obtain drugs and vaccines to prevent the spread of 

quantitative and qualitative information about the etiology of 

this disease is very important for us in the formation of 

mathematical models [10]. Based on data released by the 

official website of the World Health Organization (WHO) in 

early June 2022, there are more than 528 million confirmed 

cases of infection, with more than 6 million deaths 

worldwide. In Indonesia, as of June 3, 2022, there were 

6,056,017 confirmed cases of COVID-19 with 156,604 

deaths, which were reported by WHO [11]. 

Mathematical modeling plays an important role in 

describing the Coronavirus Disease 2019 (COVID-19) 

outbreak using Ordinary Differential Equations (ODE) and 

Fractional Differential Equations [12]. Several mathematical 

models were developed Several useful mathematical models 

have been formulated in some endemic disease transmission. 

Compartment models and real cases are more effective in 

providing valuable information about a particular disease 

outbreak. The dynamics of the Covid-19 pandemic use 

different compartments, namely susceptible, exposed, 

asymptomatic infective, symptomatic infective, 

hospitalization, and recovery. Global stability analysis was 

carried out using the Lyapunov method when the basic 

reproduction number was greater than one [13,14]. 

Further, dynamical modeling studies can be of great help 

in understanding the natural history of this new disease, 

treatment and vaccine efficacy [15]. The control of the 

COVID-19 outbreaks using the SEIRV model was 

formulated and analyzed using optimal control with 

preventive measures, surface disinfection and medical 

measures to minimize the number of individuals exposed and 

infected by considering implementation costs. PMP is used 

to determine the optimal strategy needed to reduce disease 

[16,17,18]. Several researchers have published the 
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application of the optimal control theory of COVID 19 used 

for pandemic surveillance, four controls are introduced i.e 

preventive, detection of asymptomatic cases, detection of 

symptomatic cases, and vaccination. Optimal strategy in 

scenarios that involve administration of vaccines, increased 

vaccine supply, and limited combinations of interventions 

[19-23]. Furthermore, the mathematical model is extended to 

the optimal control problem by including control variables in 

the model as surgical face masks, social distancing, self-

isolation, sensitization and awareness of disease 

transmission, as well as control including reducing the cost 

infrastructure such as testing facilities, which can lead to 

detection fast cases infected with Covid [24-29]. 

Optimal control theory in epidemiology is useful for 

understanding how spread strategies by applying a 

combination of isolation, quarantine, vaccination and 

treatment controls are often needed to reduce infectious 

diseases. Optimization strategies have been used in several 

COVID-19 studies [30, 31]. The COVID-19 deterministic 

mathematical model was formulated to extensively 

investigate optimal control as a preventive measure to reduce 

the transmission and spread of COVID-19 [32-34]. So it is 

very important to apply optimal control theory to determine 

strategies in controlling the spread of Covid-19 disease.  

Fitriyani, et. al. [35], studied the STQIR model for the 

Covid-19 outbreak and proved its stability in several 

analytic. It is theoretically proven that dynamic transmission 

depends on basic reproduction numbers so that its 

epidemiological relevance has also been proven. However, 

this model has not been given control to prevent the spread 

of Covid-19. Therefore, the purpose of this paper is to 

develop a mathematical model [35] by adding three controls 

variables, namely self-prevention, treatment, and quarantine 

to reduce the transmission of COVID-19 while minimizing 

the functional objective. Self-prevention (the use of hand 

sanitizer, medical masks, physical distancing) to reduce the 

infection probability, treatment to accelerate recovery, and 

quarantine to prevent disease transmission. Further we will 

determine the effectiveness of the control strategies. To 

verify the proposed model, we estimated the parameters 

values base on data from Central Java, Indonesia. 

The work is organized as follows, in the Section 1 we 

give introduction consist of scientific background, 

importance, and objectives. Proposed dynamical model with 

control variables is presents in the Section 2. The optimal 

conditions and analysis of the optimal control model by 

using Pontryagin’s Maximum Principle are described in 

Section 3. Section 4 presents numerical simulations of the 

optimal control and control effectiveness analysis. Next, 

conclusions are given in the last section.  

 

II. COVID-19 SPREAD DYNAMICAL MODEL WITH 

CONTROL 

In this section, we develop a dynamical model with control 

based on the pandemic situation. The human population 

(size N) is divided into five class, i.e susceptible individuals 

(S), exposed individuals (T), quarantine individuals (Q), 

infected individuals (I), and recovered individuals (R). 

Consider mathematical model without control [29] as 

follows. 

     

     

       

   

 

1

1 2 1 2

1 2 1

2 2

1 2

1

1

1 1

S t ST r S r S

T t ST r T T T

Q t S r T Q Q

I t T I I

R t Q I R

    

      

      

   

  

     

      

       

   

  

 

where the initial condition    0 0, 0 0S T    

     0 0, 0 0, 0 0Q I R   with parameters is recruitment 

rate of S class,  is infection rate, r is rate of people become 

probable, is rate of people become suspect,
1 is rate at 

which traced people back to susceptible class,
2 is rate at 

which traced individuals become infected, 
1 is recovery rate 

of quarantined class, 
2 is recovery rate of infected class,   

is death rate due to the infection,  is natural death rate. 

We proposed the developed mathematical model with 

control as follows 

          

       

            

     

     

1 1 1

1 1 2 1 2

1 1 2 3

2 2

3 2

1 1 1

1 1

1 1 1

S t ST u t r S u t r S

T t ST u t r T T T

Q t S u t r T Qu t Q

I t T Iu t I

R t Qu t Iu t R

    

      

     

  













       

       

        

   

  

 (2.2) 

where  1u t  is control variable for self precaution,  2u t is 

control variable for covid-19 treatment and  3u t  is control 

variable for quarantined. 

 

III. PONTRYAGIN MAXIMUM PRINCIPLE FOR 

OPTIMAL CONTROL  

In this section, we derive the maximum principle for optimal 

control problem (2.2) and (3.1). We proposed the necessary 

conditions for optimal controls. Let objective functional 

corresponding with control variables and the dynamic model 

(2.2) 

       

      

1 2 3 1 1 1
0

2 2 2

1 1 2 2 3 3

, , min

1

2

T

J u u u AT t AT t AT t

w u t w u t w u t dt

  


   



  (3.1) 

 

where 
1 2 3, ,A A A is the weight of traced, quarantined, and 

infected sub-population. While
1 1 2 2 3 3, ,w u w u w u is cost 

function of 
1 2,u u  and 

3u . 

The conditions to determine the optimal control that 

minimizes the objective functional can be found by using 

Pontryagin’s maximum principle [36,37]. The principle of 

the PMP method is to transform the model (2.2) that 
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minimizes the objective functional (3.1) into a problem that 

minimizes the Hamiltonian function. Consider Halmitonian 

function (H) as follows 

       

      

1 2 3

2 2 2

1 1 2 2 3 3

1 2 3 4 5

, , ,

1

2

H x u t AT t A Q t A I t

w u t w u t w u t

dS dT dQ dI dR

dt dt dt dt dt



    

  

  

         
             

         

 (3.2) 

The goal of objective functional is to minimize the 

number of infected individuals and the cost of control 

measures. Then define the optimal control * * *

1 2 3, ,u u u and 

solutions * * * * *, , , ,S T Q I R of system (2.2) for minimizing 

 1 2 3, ,J u u u  over U ,  

with       * * *

1 2 3: , , | 0 1, 1,2,3, 0,i fU u u u u t i t t       

Theorem 1. There exist optimal control 

 * * * *

1 2 3, ,u u u u U  minimizing  1 2 3, ,J u u u .Then 

1 2 3 4 5, , , ,      are adjoin variables that satisfies: 

         

         

         

      

         

       

    

1
1 1 1 1

2 1 1 3 1

2
1 1 1 1 1

2 1 1 2 1 2

3 1 1 2 4 2

3
2 3 3 5 3

4
3 4 2

1 1 1

1 1 1

1 1 1

1 1

1 1 1

d
T u t r T u t r

dt

T u t r T u t r

d
A S u t r S u t r

dt

S u t r

S u t r

d
A u t u t

dt

d
A u t

dt


    

    


   

       

      


   


  

      

     

       

       

      

     

         5 2

5

u t

d

dt






  (3.3)

  

Hamilton function will be minimized by transversality 

condition,  

           1 2 3 4 5 0f f f f f ft t t t t t            (3.4) 

and the control * *

1 2,u u  and *

3u satisfy the optimality 

condition: 

       

    

* * * * *

1 1max 2 1 3

1

* *

1 1

1
min ,max 0, 1

1

u t u S T r S T r
w

S T r r

    

   

 
    

 

   

   

   

* *

2 2max 4 5

2

* *

3 3max 3 5

3

1
min ,max 0,

1
min ,max 0,

u t u I
w

u t u Q
w

 

 

   
   

   

   
   

   

   (3.5) 

Proof. The adjoint system (3.3) is found by partially 

differentiating the Hamiltonian function (3.2) with respect to 

the associating state variables , , ,S T Q I and R as follows. 

         

         

         

      

         

    

1
1 1 1 1

2 1 1 3 1

2
1 1 1 1 1

2 1 1 2 1 2

3 1 1 2 4 2

3
2 3 3 5

1 1 1 ,

1 1 1 ,

1 1 1 ,

1 1 ,

1 1 1 ,

d H
T u t r T u t r

dt S

T u t r T u t r

d H
A S u t r S u t r

dt T

S u t r

S u t r

d H
A u t u

dt Q


    

    


   

       

      


   


        



     


         



       

      


       


  

       

3

4
3 4 2 5 2

5

,

,

,

t

d H
A u t u t

dt I

d H

dt R


   





        




  



 (3.6) 

with condition (3.4), the characterization of the controls of 

(3.5) are obtined by solving * * *

1 2 3, ,u u u  from the equations, 

     

     

 

 

* * *

1 1 1 1

1

* * * *

2 1 3

* *

2 2 4 5

2

* *

3 3 3 5

3

0 1

1

0

0

H
w u S T r r

u

S T r S T r

H
w u I

u

H
w u Q

u

   

    

 

 


     


   


   



   


  (3.7)  

Thus, we find 

     

     

 

 

* * * * *

1 2 1 3

1

* *

1 1

* *

2 4 5

2

* *

3 3 5

3

1
1

1

1

1

u S T r S T r
w

S T r r

u I
w

u Q
w

    

   

 

 

   

   

 

 

   (3.8)  

If 0
i

H

u






at t, then  * 0iu t  , for 1,2,3i   and if 0
i

H

u






 at t, 

we take  * 1iu t   

Therefore, we can write the optimal control 
* * *

1 2 3, ,u u u  such 

as: 

       

    

* * * * *

1 1max 2 1 3

1

* *

1 1

1
min ,max 0, 1

1

u t u S T r S T r
w

S T r r

    

   

 
    

 

   

   

   

* *

2 2max 4 5

2

* *

3 3max 3 5

3

1
min ,max 0,

1
min ,max 0,

u t u I
w

u t u Q
w

 

 

   
   

   

   
   

   

  (3.9)

        
 

IV. NUMERICAL ANALYSIS AND DISCUSSION 

In this section, we consider the method to solve the COVID-

19 control system (2.2), numerically using the Runge Kutta 

4 method which has been extensively explored to solve the 

system optimality of the optimal control model. The 

optimality system results and the control parameter system 

are numerically obtained by Matlab R2015a. For design 

numerical scheme the optimal control strategies, we used 

parameter values that were fitted to the COVID-19 data  

Central Java Province, Indonesia as follows  
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10.063; 0.601; 0.07; 0.02057; 0.037462;r         

2 1 20.1227; 0.037462 0.028272; 0.0059; 0.033121        

final time   100ft  days. We use the initial values as 

follows

       0 21887966; 0 49690; 0 10340; 0 6892;S T Q I   

  1 2 30 11328; 0.2; 1; 0.2R w w w     

In the following figures, we present the control variables 

for self-precaution, covid-19 treatment and quarantined. At 

the beginning of the pandemic, the transmission of the 

disease (
0R ) was high, so susceptible and traced individuals 

reached a peak in a short time of 0-10 days, 150,000 and 

2,500,000 susceptible individuals were infected as shown in 

Figures (1) and (2). The proposed control parameters help 

control and reduce the spread of the disease. Figures (3) and 

(4) show a sloping curve from day 10 to 100, this is due to 

the application of control parameters to infected and 

quarantined individuals. Due to the reduction of infected sub 

population, the number of recovered sub population 

increased which is shown in Figure (5). 

 
Figure 1. The effect on susceptible class with and without 

controls. 

 

 
Figure 2. The effect on traced class with and without 

controls. 

 
Figure 3. The effect on quarantined class with and without 

controls. 

 
Figure 4. The effect on infected class with and without 

controls. 

 
Figure 5. The effect on recovered class with and without 

controls. 
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Figure 6. The Fig the intervention of Optimal Control of  

self-precaution, covid-19 treatment and quarantined. 

 

Figure 6 shows the optimal profile of the control strategy 

effective rate. It shows the optimal control of  is at upper 

bound for almost 100 days means that the optimal effort is 

given in the self precaution. Then we got the optimal control 

of  is at upper bound for 65 days and then decreasing. 

And for  is at upper bound for day 1 until early 90. This 

shows that the control provision in the form of self 

precaution is more effective that the other controls. 

 

V. CONCLUSION 

In this paper we have proposed a dynamical model of 

Covid-19 spread with implementation of control strategies, 

namely self-precaution, treatment and quarantine. We found 

the value of optimal control  by using Pontryagin’s 

maximum principle method. The necessary conditions for 

optimality control have been proven. To verify the proposed 

model, numerical simulations are given. From the 

simulation results, we obtained that giving control is in the 

form of self-precaution, treatment and quarantine in the 

system can reduce the transmission of COVID-19. The 

effectiveness of the controller at approximately 0 to 100 

days can reduce the number of individuals infected with 

COVID-19, so that the transmission of COVID-19 can be 

suppressed and increase the number of recovered individuals 

and be able to minimize the costs required to provide 

control. 
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