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This work considers networks of two nodes with bidirectionally and unidirectionally linear 

coupling. Each node is represented by a system of ordinary differential equations of FitzHugh-

Nagumo type which is obtained by simplifying the famous Hodgkin-Huxley model. From two 

network topologies, the existence of global attractors, and the sufficient condition under the 

coupling strength are sought such that the synchronization phenomenon occurs. The result shows 

that the network with bidirectionally linear coupling synchronizes more easily than the other. The 

paper also shows this theoretical result numerically and see that there is a compromise. 
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I. INTRODUCTION 

Synchronization is a ubiquitous feature in many natural 

systems and nonlinear science. The word synchronization 

means having the same behavior at the same time. Therefore, 

the synchronization of two dynamical systems usually means 

that one system copies the movement of the other. When the 

behaviors of many systems are synchronized, these systems 

are called synchronous. Aziz-Alaoui [1] and Corson [2] 

suggested that a phenomenon of synchronization may appear 

in a network of many weakly coupled oscillators. A broad 

variety of applications have emerged to increase the power of 

lasers, synchronize the output of electric circuits, control 

oscillations in chemical reactions or encode electronic 

messages for secure communications [1, 3]. 

 In recent years, the synchronization has been extensively 

studied in many fields, many natural phenomena also reflect 

the synchronization such as the movement of birds forming 

the cloud, the movement of fishes in the lake, the movement 

of the parade, the reception and transmission of a group of 

cells, ...etc [1, 4-7]. Therefore, the study of the 

synchronization in the network of cells is very necessary. In 

order to make the study easier, the network of two neurons 

interconnected together with linear coupling is investigated 

and the sufficient condition on the coupling strength is sought 

to achieve the synchronization. Each neuron is represented by 

a dynamical system named FitzHugh-Nagumo model. It was 

introduced as a dimensional reduction of the well-known 

Hodgkin-Huxley model [4, 5, 7-10]. It is more analytically 

tractable and  maintains some biophysical meaning. The 

model is constituted a common form of two equations in the 

two variables u and v . The first variable is the fast one called 

excitatory which represents the transmembrane voltage. The 

second is the slow recovery variable which describes the time 

dependence of several physical quantities, such as electrical 

conductivity of ion currents across the membrane. The 

FitzHugh-Nagumo equations (FHN) are given by: 

( )t

t

du
u f u v

dt

dv
v au bv c

dt




  

    


                        (1) 

where ,a b  and c are constants ( a  and b  are strictly 

positive), 0 1  and 
3( ) 3f u u u   . 

 System (1) is considered as the model of a neuron, then we 

would like to form the model of a neural network of two 

neurons coupled bidirectionally and unidirectionally. Notice 

that a neural network describes a population of physically 

interconnected nerve cells. Communication between cells is 

mainly due to electrochemical processes. This work focuses 
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on analyzing the behavior of a set of neurons connected 

together with a given topology by  electrical. Thus, the 

complex system based on a network of interactions between 

neurons is considered in which each network node is modeled 

by FHN type. Specifically, the network of two neurons with 

bidirectionally linear coupling is given by the following 

system: 

1
1 1 1 1 2

1
1 1 1

2
2 2 2 2 1

2
2 2 2

( ) ( )

(2)

( ) ( )

t syn

t

t syn

t

du
u f u v g u u

dt

dv
v au bv c

dt

du
u f u v g u u

dt

dv
v au bv c

dt

 

 


    


    


     



   
  

And the network of two neurons with unidirectionally linear 

coupling is given by the following system: 

1
1 1 1 1 2

1
1 1 1

2
2 2 2

2
2 2 2

( ) ( )

(3)

( )

t syn

t

t

t

du
u f u v g u u

dt

dv
v au bv c

dt

du
u f u v

dt

dv
v au bv c

dt

 

 


    


    


   



   


 

 In this work, we would like to prove the existence of 

global attractors of the system (2) and (3). The sufficient 

conditions for synchronization of those networks are also 

investigated. From those results, we would like to see the 

synchronization speed of those networks. The simulations in 

C++ are also shown in this paper to check out if there is a 

compromise between the theoretical results and the numerical 

ones. 

 

II. EXISTENCE OF THE GLOBAL ATTRACTORS 

OF NETWORKS CONSISTING OF TWO NEURONS 

FHN LINEARLY COUPLED 

In this section, the existence of global attractors of the system 

(2) and (3) in 
4

is shown. The global attractor is a compact 

invariant set for the flow that attracts all trajectories (see for 

example [11]). Practically, it is very important since it is the 

set where all the solutions asymptotically evolve. In 

particular, all the patterns and solutions relevant for 

applications belong, asymptotically, to the global attractor 

(see [12, 13]). 

Theorem 1: There exists a positive constant K and 0T 

such that for all 
2( (0), (0))i iu v   

( ) , ( ) , 1,2, ,i iu t K v t K i for all t T     

Where ( , )i iu v is defined by system (2). 

Proof. Let    2 2 2 2

1 1 1 2 2

1 1
( ) .

2 2
t au v au v        

By deriving the function 
1( )t

 

with respect to ,t  there is 

the following:  

     

     

   

   

 

1
1 1 1 1 2 2 2 2

1 1 1 1 2 1 1 1

2 2 2 2 1 2 2 2

2

1 1 1 1 1 1 2 1 1 1 1

2

2 2 2 2 2 2 1 2 2 2 2

1 1 2

( )
t t t t

syn

syn

syn

syn

d t
au u v v au u v v

dt

au f u v g u u v au bv c

au f u v g u u v au bv c

au f u au v au g u u au v bv cv

au f u au v au g u u au v bv cv

a u f u u

 


   

        

        

      

      

       

 

2 1 1 2 2 2 1

2 2

1 2 1 2( )

syn synf u a u g u u u g u u

b v v c v v

        

   

 

We can find a positive constant  such that:  

   1 2 1 21 .syng u u u u     

Hence,  

     

 

 

     

   

   

1
1 1 2 2 1 2

1 1 1 2 2 1 2 2

2 2

1 2 1 2

3 3

1 1 1 2 2 2 1 2

2 2 2 2

1 1 2 2 1 2 1 2

2 2
4 4 2 2 1 2
1 2 1 2

2

1

( )

. . . .

( )

. 3 . 3

2 . ( )

1 1
3

2 2 2 2

d t
a u f u u f u a u u

dt

a u u u u u u u u

b v v c v v

a u u u u u u a u u

a u u u u b v v c v v

u u
a u u a u u a

a u














     

   

   

        
 

      

 
         

 

   

     

 

2 2
2 2 21 2
2 1 2 1 2

2 2
4 4 2 2 2 21 2
1 2 1 2 1 2

2 2

1 2 1 2

2 ( )
2 2

3 2
2 2

( ).

u u
u b v v c v v

u u
a u u a u u a a u u

b v v c v v

 

  
       

  

 
         

 

   

 

We can find the constants 0,   0K  , and for all 0h 

such that:
  

   

   

   

( )
4 4 2 21 ( )
1 2 1 2 1 2

2 22 2
2 2 2 2 1 22
1 2 1 2 2 2 2 2

2 2 2
2 2 2 2 1 22 .
1 2 1 2 2 2

d t
u u K b v v c v v

dt

hv hvc c
u u K b v v

h h

hv hv c
u u K b v v

h



 

 


       

          

         

 

Finally, we can find the other constants 0  and 0K    

such that:  

1
1

( )
( ) .

d t
t K

dt
 


   

 

This implies that: 

1 1( ) exp( ) (0) (1 exp( )).t t K t       

 

Let t  reach infinity, Theorem 1 will then be proved. 

 

Theorem 2: There exists  a positive constant K and 0T 

such that for all 
2( (0), (0))i iu v   
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( ) , ( ) , 1,2, ,i iu t K v t K i for all t T     

where ( , )i iu v is defined by system (3). 

Proof. Let    2 2 2 2

2 1 1 2 2

1 1
( ) .

2 2
t au v au v       

By deriving the function 
2( )t

 

with respect to ,t  there is 

the following: 

     

   

   

 

     

2
1 1 1 1 2 2 2 2

1 1 1 1 2 1 1 1

2 2 2 2 2 2

2

1 1 1 1 1 1 2 1 1 1 1

2

2 2 2 2 2 2 2 2

1 1 2 2 1 1 2

( )
t t t t

syn

syn

syn

d t
au u v v au u v v

dt

au f u v g u u v au bv c

au f u v v au bv c

au f u au v au g u u au v bv cv

au f u au v au v bv cv

a u f u u f u au g u u b v

 


   

        

      

      

    

        2 2

1 2 1 2( ).v c v v  

 

We can find a positive constant  such that:  

   1 2 1 21 .syng u u u u     

Hence, 

     

   

     

   

   

2
1 1 2 2 1 2

2 2

1 1 1 2 2 1 2 2 1 2

1 2

3 3

1 1 1 2 2 2 1 2

2 2 2 2

1 1 2 2 1 2 1 2

2 2
4 4 2 2 1 2
1 2 1 2

2

1

( )

. . . .

( )

. 3 . 3

2 . ( )

1 1
3

2 2 2 2

d t
a u f u u f u a u u

dt

a u u u u u u u u b v v

c v v

a u u u u u u a u u

a u u u u b v v c v v

u u
a u u a u u a

a u














     

     

 

        
 

      

 
         

 

   

     

 

2 2
2 2 21 2
2 1 2 1 2

2 2
4 4 2 2 2 21 2
1 2 1 2 1 2

2 2

1 2 1 2

2 ( )
2 2

3 2
2 2

( ).

u u
u b v v c v v

u u
a u u a u u a a u u

b v v c v v

 

  
       

  

 
         

 

   

 

 

We can find the constants 0,   0K  , and for all 0h 

such that: 

   

   

   

4 4 2 22
1 2 1 2 1 2

2 2 2 2
2 2 2 2 1 2
1 2 1 2

2 2 2
2 2 2 2 1 2
1 2 1 2

( )
( )

2
2 2 2 2

2 .
2 2

d t
u u K b v v c v v

dt

hv c hv c
u u K b v v

h h

hv hv c
u u K b v v

h



 

 


       

          

         

Finally, we can find the other constants 0  and 0K   

such that:  

2
2

( )
( ) .

d t
t K

dt
 


   

 

This implies that:  

2 2( ) exp( ) (0) (1 exp( )).t t K t       

 

Let t  reach infinity, Theorem 2 will then be proved. 

III. SYNCHRONIZATION SPEED OF NETWORKS 

CONSISTING OF TWO NEURONS FHN LINEARLY 

COUPLED 

In this section, the sufficient conditions to obtain the 

synchronization in network of two neurons are found, and the 

minimal value of coupling strength to get the synchronization 

is investigated by numerical experiments.  

Definition 1 (see [1]).  Let ( , ), 1,2,...,i i iS u v i n   and 

1 2( , ,..., )nS S S S  be a network. We say that S  

synchronizes identically if 

lim 0 lim 0, , 1,2,..., .j i j i
t t

u u and v v for all i j n
 

      

Let 

( )3
1

, 1

( )
sup ,

!

k
k

u B x k

f u
M x

k



  

   B  is a compact interval 

including u  and 
( ) ( )kf u  is the kth derivative of f  with 

respect to .u  The existence of B  is due to Theorem 1 and 2. 

We have then the following results. 

Theorem 3.  If ,
2

syn

M
g   the network (2) synchronizes in 

the sense of Definition 1. 

Proof. Let consider the Lyapunov function 

   
2 2

1 2 1 2 1

1
( ) .

2 2

a
W t u u v v


     

By deriving the function 1( )W t  with respect to ,t  there is 

the following: 

     

         

1
2 1 2 1 2 1 2 1

2

2 1 2 1 2 1 2 1

( )

. 2 .

t t t t

syn

dW t
a u u u u v v v v

dt

a u u f u f u g u u b v v

     

        

 

By applying the Taylor formula for function ,f  we have then: 

   
   

 
3

1

2 1 2 1

1

.
!

k
k

k

f u
f u f u u u

k

    

Hence, 

 
   

   

 

 
   

 

 

   

3
11

2 1 2 1 2 1

1

2

2 1

3
2 11

2 1 2 1

1

2

2 1

2 2

2 1 2 1

( )
2

!

2
!

2

k
k

syn

k

k
k

syn

k

syn

f udW t
a u u u u g u u

dt k

b v v

f u
a u u u u g

k

b v v

a u u M g b v v







 
     

  

 

 
    

  

 

      



  

If 
2

syn

M
g  , then 

1
1 1 1

( )
( ) ( ) (0) ,tdW t

W t W t W e
dt

      
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where 
2

min 2 ,2 .
syng M

b


 
  

 
 Thus, the 

synchronization occurs if the coupling strength verifies 

.
2

syn

M
g   

Theorem 4.  If ,syng M  the network (3) synchronizes in 

the sense of Definition 1. 

Proof. Let consider the Lyapunov function  

   
2 2

2 2 1 2 1

1
( ) .

2 2

a
W t u u v v


     

By deriving the function 2( )W t  with respect to ,t  there is 

the following: 

       

       

 

2
2 1 2 1 2 1 2 1

2 1 2 1 2 1

2

2 1

( )

.

.

t t t t

syn

dW t
a u u u u v v v v

dt

a u u f u f u g u u

b v v

     

      

 

 

By using the same technic of the proof of Theorem 3. We 

have then: 

 
   

   

 

 
   

 

 

   

3
12

2 1 2 1 2 1

1

2

2 1

3
2 11

2 1 2 1

1

2

2 1

2 2

2 1 2 1

( )

!

!

k
k

syn

k

k
k

syn

k

syn

f udW t
a u u u u g u u

dt k

b v v

f u
a u u u u g

k

b v v

a u u M g b v v







 
     

  

 

 
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If syng M , then 

2
2 2 2

( )
( ) ( ) (0) ,tdW t

W t W t W e
dt

      

where min 2 ,2 .
syng M

b


 
  

 
 Thus, the 

synchronization occurs if the coupling strength verifies 

.syng M  

As the results of Theorem 3 and 4 are given, we can easily 

see that to synchronize the network of two neurons with 

bidirectionally linear coupling is easier than to synchronize 

the one with unidirectionally linear coupling. Because the 

coupling strength syng  to synchronize the system (2) is 

smaller than the one to synchronize the system (3). 

 

IV. NUMERICAL SIMULATIONS 

In this section, we make the simulations to check if the 

numerical results will meet the theoretical results above. The 

simulation results are obtained by integrating the system (2) 

and (3), with the following parameter values: 

1, 0.001, 0,a b c    0.1.   The integrations of 

those systems were realized by using C++ and the patterns 

are presented by Gnuplot. 

 Figure 1 below illustrates the phenomenon of 

synchronization for the network of two neurons with 

bidirectionally linear coupling. The simulations show that the 

system synchronizes from the value 1.4.syng   Figures 

1(a), 1(b), 1(c), 1(d) represent the phase portraits  1 2,u u  

corresponding to the different values of coupling strength. 

Before  synchronization, for 0.0001syng  , Figure 1(a) 

represents the temporal dynamic  of 2u  with respect to 1;u

Figure 1(b) represents the temporal dynamic  of 2u  with 

respect to 1u  for 0.01syng  ; Figure 1(c) represents the 

temporal dynamic  of 2u  with respect to 1u  for 0.5.syng   

The synchronization occurs for 1.4.syng   It is easy to see 

that the synchronization occurs in Figure 1(d) for 

1.4syng  , since 1 2u u . 

 
Figure 1. - Synchronization in network of two neurons with 

bidirectionally linear coupling. The synchronization occurs 

for 1.4syng  . Before  synchronization, for 

0.0001syng  ,  figure (a) represents the temporal dynamic  

of 2u  with respect to 1u  ;  figure (b) represents the temporal 

dynamic  of 2u  with respect to 1u  for 0.01syng  ; figure 

(c) represents the temporal dynamic  of 2u  with respect to 1u  

for 0.5syng  .  For the value 1.4syng   in figure (d),  the  

synchronization of two neurons occurs: 1 2u u  

 Figure 2 below illustrates the phenomenon of 

synchronization for the network of two neurons with 

unidirectionally linear coupling. The simulations show that 
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the system synchronizes from the value 2.5.syng   Figures 

1(a), 1(b), 1(c), 1(d) represent the phase portraits  1 2,u u  

corresponding to the different values of coupling strength. 

Before  synchronization, for 0.5syng  , Figure 2(a) 

represents the temporal dynamic  of 2u  with respect to 1;u

Figure 2(b) represents the temporal dynamic  of 2u  with 

respect to 1u  for 1.0syng  ; Figure 2(c) represents the 

temporal dynamic  of 2u  with respect to 1u  for 1.4.syng   

The synchronization occurs for 2.5.syng   It is easy to see 

that the synchronization occurs in Figure 1(d) for 2.5syng 

, since 1 2.u u  

 
Figure 2. - Synchronization in network of two neurons with 

unidirectionally linear coupling. The synchronization occurs 

for 2.5.syng  Before  synchronization, for 0.5syng  ,  

figure (a) represents the temporal dynamic  of 2u with respect 

to 1;u   figure (b) represents the temporal dynamic  of 2u  

with respect to 1u  for 1.0syng  ; figure (c) represents the 

temporal dynamic  of 2u  with respect to 1u  for 1.4syng 

.  For the value 2.5syng   in figure (d),  the  synchronization 

of two neurons occurs: 1 2u u  

 As the numerical results are shown in Figures 1 and 2,  we 

need 2.5syng   to get the synchronization in the network of 

two neurons with unidirectionally linear coupling. 

Meanwhile, 1.4syng  can occur synchronization in the 

network of two neurons with bidirectionally linear coupling. 

It means to synchronize the network of two neurons with 

bidirectionally linear coupling is easier than the other. This 

result completely meets the theoretical results above. 

 

V. CONCLUSION 

The paper shows that there exist the global attractors of the 

networks of two neurons linearly coupled, and synchronizing 

the network of two neurons with bidirectionally linear 

coupling is easier than synchronizing the one with 

unidirectionally linear coupling. Because the coupling 

strength to synchronize the system (2) is smaller than the one 

to synchronize the system (3). It also presents the numerical 

results, and there is a compromise between the theoretical 

results and the numerical ones. 
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