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1.  INTRODUCTION 

The Wigner-Ville distribution is a transform technique used in 

both the time and frequency domain for the signal processing 

theory. The main characteristics of this transform is that it is 

not limited by the uncertainty relation of time and frequency.  

It was originally proposed by E.Wigner in the context of 

quantum mechanics in 1932 [1] and later J.Ville introduced it 

for signal analysis in 1948 [2]. The Wigner-Ville distribution 

(abbreviated Wigner distribution hereafter) is defined by the 

combination of the Fourier transform and correlation 

calculation as  






  detxtxtW i

x )2/()2/(),( , 

where )(tx  is a conjugate of )(tx . 

This transformation has the advantage of high resolution of 

signals compared with the Fourier transform and it is often 

utilized as a tool to obtain instantaneous spectrum of signals.  

In this paper, the author tries to give another proof of the 

prime number theorem by using the Euler products for the 

Dirichlet series of the Mobius function obtained from the 

Wigner distribution analysis. 

 

2. EULER PRODUCT OF THE DIRICHLET SERIES BY THE WIGNER DISTRIBUTION ANALYSIS 

For the Dirichlet series given by 


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

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n

snnasz , we define the Wigner distribution function ),( tWz   shown as 
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where s  is a complex number given by its   .  As )(sz  can be rewritten as  
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Put kln   and rearranging the equation, we have 









  


denitlki

n

laka
tW i

lk

z )2/logexp(])/log(exp[
)()(

),(
,

 









 



2

log
])/log(exp[

)()(
2

,

n
tlki

n

laka

lk




 


















klnn

tlkilaka
n

n
])/log(exp[)()(

2

log1
2

1




 

where )(  is a Dirac delta function.  

We let 



kln

tlkilakatnb ])/log(exp[)()(),( , the Wigner distribution function of the Dirichlet series )(sz  becomes 
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To obtain the Euler product by the Wigner distribution analysis, we have to prove following Lemmas 

at first. 

 

Lemma.1.  Let 2/t  and  is  , we have 
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Proof;  We utilize the property of the Wigner distribution shown as [3] 
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As the left side integral of this equation yields 
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then we have 
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From the definition of ),( tnb , we can see ),(),( tnbtnb  , then Eq.(1) can be rewritten as 
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We let 2/t  and  is  , Lemma.1 can be obtained.                           (QED) 

 

Lemma.2.  Let )(na  be a multiplicative function, then ),( tnb  is a multiplicative function satisfying  

),(),(),( tnbtmbtmnb  .when 1),( nm . 
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Proof;  From the definition of ),( tnb , we have 
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.Hence, it can be seen that ),( tnb  is a multiplicative function.                        (QED) 

 

 From which, we can obtain the Euler product of the Dirichlet series as follows. 

  

Theorem.1.  The Dirichlet series )(sz  consisted of a multiplicative function gives the following Euler product.  
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where  is  . 

 

Proof;  If we let )(ng  be a multiplicative function, we have  
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 From Lemma.2, ),( nb  is a multiplicative function, thus we have 
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Then we can obtain Eq.(2) from Lemma.1.                                        (QED) 

                             

3. EULER PRODUCT OF THE DIRICHLET SERIES OF THE MOBIUS FUNCTION 

We try to obtain Euler products of the Dirichlet series of an absolute value of the Mobius function shown as follows; 

Theorem.2. Let its  and  is  , where 2/t , the Dirichlet series of the Mobius function has the Euler 

product given by 
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.Proof;  From Lemma.2, ),( nb  is a multiplicative function because it can be given by  
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4. ABSOLUTELY CONVERGENCE OF THE DIRICHLET SERIES OF THE MOBIUS FUNCTION 

At first, we prove the following equation. 
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From Eq.(4), we have 
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ss pptp 2)logcos(21    has a maximum value at 1)logcos( pt . 

From which, we have the maximum value shown as 

2

21

1
41)1( 
























p

p
pp ,                                           (5) 

Lemma.3: 
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Theorem.3: 
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When we let   is a transfinite number and   is an infinitesimal, we have 

  

p

p  )1(  for 10   and 



 



























 




p p

p
p

2

21

1
41  for 12/1   because  

)2(   is convergent for 2/1 . 

We have sr   for any positive numbers, r  and s  [5], then we have   . 

)2(

)(

1

1
)1(

1

1
41

2
2

2 










 
































   









p pp p

p
p

p

p
p



“Absolutely Convergence of the Dirichlet Series of the Mobius Function” 

2765 Takaaki Musha, IJMCR Volume 10 Issue 06 June 2022 

 

Hence, from Eq.(6), we have 
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Corollary: 

The Riemann hypothesis is true. 

Proof 


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 is absolutely convergent for 12/1  , which is identical to the Riemann hypothesis [4]. 

                                                              (QED) 

5. CONCLUSION 

By the Wigner-Ville distribution analysis, which is a tool 

developed for analyzing instantaneous spectrum of a signal. 

From which, absolutely convergence of the Dirichlet series of 

the Mobius function for 12/1   can be derived, 

which is identical to the Riemann hypothesis. 
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