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A connection is a device that defines the concept of parallel transport on a bundle, that is 

identifies fibers over nearby points. Fiber bundles form are the natural mathematical framework 

for the gauge filed theories. Also affine connection is the most elementary type of connection, 

a means of parallel transfer of tangent vectors on a manifold from one point to another. In any 

manifold with a positive dimension there is an infinite number of the affine connection; 

junctions are among the simplest methods to determine the differentiation of sections of vector 

bundles. Our goal in this paper is to identify the concept of connection in fiber bundles. We 

followed the analytical historical mathematical method and we found that the connection on the 

fiber bundle is a smooth distribution over the total bundle area, which is of central importance 

in modern geometry and leads to appropriate formulas for geometry constants.                             
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1. INTRODUCTION

     In mathematics, and especially differential geometry and 

gauge theory, a connection is a device a notion of parallel 

transport on the bundle; that is, a way to "connect" or identify 

fibers over nearby points. A principal G-connection on a 

principal G-bundle P over a smooth manifold M is a particular 

type of connection which is compatible with the action of the 

group G. A principal connection can be viewed as a special 

case of an Ehresmann connection, and is sometimes called a 

principal Ehresmann connection. It gives rise to (Ehresmann) 

connections on any fiber bundle associated to P via the 

associated bundle construction. In particular, on any 

associated vector bundle the principal connection induces a 

covariant derivative, an operator that can differentiate 

sections of that bundle along tangent directions in the base 

manifold. Principal connections generalize to arbitrary 

principal bundles the concept of a linear connection on the 

frame bundle of a smooth manifold.                                          

                                   

2. CONNECTIONS ON PRINCIPAL BUNDLES 

Perhaps we should pause to recapitulate ended with some 

rather vague mutterings about an appropriate replacement for 

the classical vector potential of a monopole consisting of 

some sort of "bundle of circles above𝑆2" and a procedure for 

lifting path in 𝑆2 to that bundle space. In section we found 

that such bundles actually arise in nature and are of 

considerable importance in areas not (apparently) related to 

mathematical physics. However, we also saw that there are, 

intact, many different ways to construct such circle bundles 

over the 2-sphere and it is not clear how one should make a 

selection from among these. But here's a coincidence for you 

Monopole field strengths g are "quantized" (Dirac 

Quantization Condition). In effect, there is one monopole for 

each integral (assuming there are any monopoles at all, of 

course). On the other hand, we have also pointed out that the 

principal U (1)-bundles over𝑆2are classified by the elements 

of the fundamental group 𝜋1(U (1)) of the circle and, there is 

one principal U(1)-bundle over 𝑆2 for each integer. This 

tantalizing one-to-one correspondence between monopoles 

and principal U (1)-bundles over  𝑆2 suggests that the 

monopole strength may dictate the choice of the bundle with 

which to model it. Precisely how this choice is dictated is to 

be found in the details of the path lifting procedure to which 

we have repeatedly alluded. We will consider here only the                                                                                                                                        

simplest nontrivial case.                                                            

    The Dirac Quantization Condition asserts that, for any 

charge q and monopole strength g, one must have qg = (½) n 
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for some integer n. For a charge of unit strength (q=1) this 

becomes g = (½) n so that the smallest positive value for g (in 

the units we have tacitly adopted) is g = 
1

2
                                   

For this case, the potential 1-forms for the monopole are 

𝐴𝑁=
1

2
 (1- cos ∅) dθ on 𝑈𝑁⊆𝑆

2,                (1) 

and  

𝐴𝑠 =
1

 2
 (1+ cos ∅) dθ on 𝑈𝑠⊆𝑆

2,                   (2) 

𝐴𝑁= 𝐴+| 𝑈𝑁 and 𝐴𝑠=𝐴−| 𝑈𝑠). Thus, on  𝑈𝑠∩ 𝑈𝑁, 𝐴𝑁- 𝐴𝑠= dθ 

so 

𝐴𝑁= 𝐴𝑠+ dθ on  𝑈𝑠∩ 𝑈𝑁.                               (3) 

  At this point we must be the reader's indulgence. We are 

about to do something which is (quite properly) considered to 

be in poor taste. We are going to introduce what will appear 

to be a totally unnecessary complication. For reasons that we 

will attempt to explain once the deed is done, we replace the 

real-valued 1- forms 𝐴𝑁 and 𝐴𝑠 by the pure imaginary 1-

forms 𝐴𝑁 and𝐴𝑠 defined by                                                       

𝒜𝑁 = -i𝒜𝑁 on  𝑈𝑁 and 𝒜𝑠= -i 𝒜𝑠 on 𝑈𝑠.               (4) 

Now (4) becomes 𝒜𝑁=𝒜𝑠 - i dθ which, for no apparent 

reason at all, we prefer to write as                                            

𝒜𝑁= 𝑒𝑖𝜃𝒜𝑠𝑒
−𝑖𝜃  +𝑒𝑖𝜃 d𝑒−𝑖𝜃                   (5) 

   All of this algebraically quite trivial, of course, but the 

motivation is no doubt obscure (although one cannot help but 

notice that the transition functions for the Hop f bundle have 

put in an appearance). Keep in mind that our purpose in this 

preliminary chapter is to illustrate with the simplest case the 

general framework of gauge theory and that the process of 

generalization often requires that the instance being 

generalized undergo some cosmetic surgery first (witness the 

derivative of f: ℝ →ℝ at a ∈ R as a number �́�(a), versus the 

derivative of f: 𝑅𝑛 → 𝑅𝑚at a ∈ 𝑅𝑛 as a linear transformation 

D𝑓𝑎:(𝑅𝑛 → 𝑅𝑚).                                       

    The process which led to the appropriate generalization in 

our case was particularly long and arduous and did not reach 

tuition until the 1950, with the work of Ehresmann [Ehr]. 

  Ehresmann was attempting to generalize to the context of 

bundles such classical notions from differential geometry as 

"connection," "parallel translation," and "curvature," all of 

which had been elegantly formulated by Elie car fan in terms 

of the so-called "frame bundle".                                               

 

3.  CONNECTIONS ON FIBER BUNDLES 

 Before doing that, it helps to generalize slightly and consider 

an arbitrary fiber bundle π: E →M, with standard fiber F. now 

parallel transport along a path γ (t) ∈ M will be defined by a 

smooth family of diffeomorphisms 𝑃𝛾
𝑡: 𝐸𝛾(0)→ 𝐸𝛾(𝑡). Now 

however, we are differentiating paths through the fiber 𝐸𝑥≅ 

F, which is generally not vector space, so ∇𝑠(𝑥)X is not in the 

fiber itself but rather in its tangent space 𝑇𝑠(𝑥)( 𝐸𝑥) ⊂𝑇𝑠(𝑥)E. 

Remember that the total space E is itself a smooth manifold, 

and has its own tangent bundle TE →E.                                    

Definition 3.1[4] 

Let π: E →M be a fiber bundle. The vertical bundle VE →Eis 

the sub bundle of TE →E defined by                                         

VE = {𝛏∈ TE⃒𝜋∗𝜉 = 0}.               (6) 

Its fibers 𝑉𝑝E ≔(𝑉𝐸)𝑝⊂𝑇𝑝E are called vertical subspaces. 

     Then 𝑉𝑝E =𝑇𝑝((𝐸𝜋(𝑝)), so the vertical sub bundle is the set 

of all vectors in TE that are tangent to any fiber. 

By the above definition, the covariant derivative defines for 

each section s: M → E and x∈ M a map 

∇𝑠(𝑥) : 𝑇𝑥M →V𝑠(𝑥)𝐸. 

    We shall require the definition of parallel transport in fiber 

bundles to satisfy two (not quite independent) conditions: 

1- The definition of ∇𝑋𝑠  in (3.1) is independent of γ except for 

the tangent vector Ὑ (0) = X. 

2- The map  ∇𝑠(𝑥) : 𝑇𝑥M →V𝑠(𝑥)𝐸 is linear. 

Proposition 3.2 [3]       

Suppose π: E→ M is a fiber bundle and for every path γ (t) ∈ 

M there is a smooth family of diffeomorphisms 𝑃𝛾 
𝑡 : E𝛾(0) → 

E𝛾(𝑡)  satisfying 𝑃𝛾 
𝑜 = Id and conditions (1) and (2). Then for 

each x∈ M and p ∈E𝑥, there is a unique linear injection            

Hor𝑝: 𝑇𝑥M → 𝑇𝑝E                                                  

Such that Hor𝑝(Ὑ(0)) = 
𝑑

𝑑𝑡
𝑃𝛾 
𝑡(𝑝)⃒𝑡=0 for all paths with γ (0) 

= x. Moreover, the image of Hor𝑝 is complementary to 𝑉𝑝E in 

𝑇𝑝E.                                                                                          

Proof: Fix𝑥0∈M and 𝑝0∈E𝑥0. Then for any path γ (t) ∈M with 

γ (0) =𝑥0, the family of diffeomorphisms 𝑃𝛾 
𝑡 : E𝑥0→E𝛾(𝑡) is 

the flow of some vector field Y(t, p) on the total space of the 

pullback bundle 𝐸𝛾
∗ . Choosing any section s: M →E with s 

(𝑥0) = 𝑝0 and writing F (t, p) = (𝑃𝛾 
𝑡)−1(p), we have 

∇Ὑ(0)𝑠 = 
𝑑

𝑑𝑡
 F (t, s (γ (t)))⃒𝑡=0 = 

𝜕𝐹

𝜕𝑡
 (0, 𝑝0) + 𝐷2F (0, 𝑝0) ᴏ T 

s (Ὑ (0)) 

= −Y (0,𝑝0) + T s (Ὑ(0)), 

Thus  

Hor𝑝0  (Ὑ (0)) = 
𝑑

𝑑𝑡
𝑃𝛾 
𝑡(𝑝0)⃒𝑡=0 =Y (0, 𝑝0) = T s (Ὑ (0)) 

−∇Ὑ(0)𝑠.  (8) 

This expression is clearly a linear function of Ὑ (0). It is also 

injective since ∇Ὑ(0)𝑠∈𝑉𝑝0E if and only if Ὑ (0) = 0, as we 

can see by applying 𝜋∗. The same argument shows (im 

Hor𝑝0) ∩ 𝑉𝑝0E = {0}, and since any non-vertical vector 

𝜉∈𝑇𝑝0E∖𝑉𝑝0E can be written as T s (Ὑ (0)) for some path γ 

and section s, clearly                                                                  

im Hor𝑝0⊕𝑉𝑝0E = 𝑇𝑝0E.           (9) 

    The moral is that parallel transport, if defined properly, 

determines for every p ∈ E a horizontal subspace 𝑇𝑝E ≔ im 

Hor𝑝 complementary to the vertical subspace 𝑉𝑝E. 

conversely, it's easy to see that choosing such complimentary 

subspace 𝐻𝑃E determines 𝑃𝛾 
𝑡  uniquely. This should be 

sufficient motivation for the following definition.                   

Definition 3.3 [3]  

A connection on the fiber bundle π: E → M is a smooth 

distribution HE on the total space such that HE ⊕ VE = TE. 
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For any p ∈ E, the fiber 𝐻𝑃E ⊂𝑇𝑃E  is called the horizontal 

subspace at p.        

    We can now recast all of the previous concepts in terms of 

horizontal subspace. Assume a connection (i.e. a horizontal 

sub bundle) has been chosen. Then for each x∈ M and p ∈𝐸𝑥, 

the linear map 𝜋∗: 𝑇𝑃E → 𝑇𝑥M  restricts to an isomorphism 

𝐻𝑃E →𝑇𝑥M . Its inverse is called the horizontal lift 

𝐻𝑜𝑟𝑃:  𝑇𝑥M → 𝑇𝑃E . 

A path through the total space E is called horizontal if it is 

everywhere tangent to HE. Then given 𝑥0∈ M and 𝑝0∈𝐸𝑥0, 

any path γ (t) ∈ M with γ (0) = 𝑥0 lifts uniquely to a horizontal 

path �̃� (0) =𝑝0. This path is similarly called the horizontal lift 

of γ, and its tangent vectors satisfy                                            
𝑑

𝑑𝑡
�̃�(t) = 𝐻𝑜𝑟�̃�(t) (�̇�(𝑡)).             (10) 

By considering horizontal lifts for all possible p ∈𝐸𝑥0, we 

obtain naturally the parallel transport diffeomorphism 𝑃𝛾 
𝑡 :  

𝐸𝑥0 → 𝐸𝛾(𝑡). Finally, (4.3.3) yields a convenient formula for 

the covariant derivative with respect to any vector X ∈𝑇𝑥M, 

∇𝑥𝑠= 𝑇𝑠(X) − 𝐻𝑜𝑟𝑠(𝑥)(𝑋).             (11) 

Note that since 𝜋∗𝑇𝑠(X) = X, the second term on the right is 

simply the projection of 𝑇𝑠(X) to the horizontal subspace. We 

can express this more simply by defining the vertical 

projection                                                                                    

K: TE →VE, 

which maps each 𝑇𝑃E to the vertical subspace 𝑉𝑃E by 

projecting along 𝐻𝑃E. Then 

∇𝑥𝑠 = K о 𝑇𝑠(X)                      (12) 

So the covariant derivative is literally the "vertical part" of the 

tangent map. For a section s (t) ∈ E along a path γ (t) ∈M, we 

have the analogous formula                                                       

∇𝑡𝑠(t) = K (�̇�(𝑡)).                    (13) 

As one would expect, it is clear from this formula that s (t) is 

a horizontal lift of γ (t) if and only if ∇𝑡𝑠≡ 0. 

     The projection K: TE →VE is called a connection map, 

and it gives an equivalent definition for connections on fiber      

bundles. 

Definition 3.4: [3] 

A connection on the fiber bundle π: E →M is a smooth fiber 

wise linear map K: TE → VE such that K (𝜉) = 𝜉 for all 𝜉∈ 

VE.                                                                                            

   The two definitions are related by setting HE = ker K. 

Remark 3.5: [3]     

     The existence of connections for bundles on infinite 

dimensional manifolds is a far more intricate problem, 

because such manifolds do not generally admit smooth 

partitions of unity. However, more direct constructions of 

connections succeed in many interesting cases.                         

 

4. CONNECTIONS ON VECTOR BUNDLES 

   Let 𝛤 (E, π, B, V, G) be the space of smooth sections of a 

vector bundle. A connection ∇ provides a map from T (M) × 

𝛤 (E, π, B, V, G) → 𝛤 (E, π, B, V, G) written ∇ ×s, with X ∈ 

T (M) and s ∈𝛤 (E, π, B, V, G) such that 

(i) ∇𝑋(s + s') = ∇𝑋s + ∇𝑋s'. 

(ii) ∇𝑋+𝑋′𝑠 = ∇𝑋s +∇𝑋′𝑠. 

(iii) ∇𝑋(f s) = f∇𝑋s + (X f) s,    ∀f∈𝐶∞(B). 

(iv)∇𝑓𝑋s = f∇𝑋𝑠,         ∀ f ∈𝐶∞(B). 

The curvature 2-form F is defined by  

F (X, Y) s = ∇𝑋∇𝑌s -∇𝑌∇𝑋s - ∇[𝑋,𝑌]s.           (14) 

In a natural basis                                                                         

𝐹𝜇𝑣s = (∇𝜇∇𝑣 -∇𝑣∇𝜇) s.                                (15) 

Suppose that 𝑠𝑎, a = 1, 2… dim V is a local basis of section 

such that s =  𝑠𝑎𝑠
𝑎 let  

 𝑠𝑎𝐴𝜇 𝑏
𝑎 =  ∇𝜇  𝑠𝑏,                                           (16) 

Then     

(∇𝜇𝑠)
𝑎 =𝜕𝜇 𝑠

𝑎 + 𝐴𝜇 
𝑎 𝑏𝑠

𝑏
.                                   (17) 

The connection 1-forms transform under change of basis in 

the obvious way                                                                        

𝑠𝑎 →𝛬𝑎𝑏𝑠
𝑏
,           𝑠𝑎 →  𝑠𝑏(𝛬−1)𝑏a,                     

𝐴𝜇   𝑏
  𝑎  →𝛬𝑒

𝑎𝐴𝜇
𝑒(𝛬−1)    𝑏

𝑐  - (𝛬−1)𝑎𝜕𝜇𝛬   𝑏
𝑐  .              

 The curvature two-form is given by 

𝐹   𝑏𝜇𝑣
  𝑎  = 𝜕𝜇𝐴𝑣   𝑏

   𝑎  - 𝜕𝑣𝐴𝜇  𝑏
  𝑎  +[𝐴𝜇 , 𝐴𝑣]    𝑏 

𝑎 ,          (18) 

And transforms homogeneously  

𝐹  𝑏𝜇𝑣
𝑎  →𝛬𝑎𝐹𝑒 (𝛬−1)    𝑏

𝑐 .         

     

 4. CONNECTIONS 

To start with, we recall the notion of killing vector field, given 

a Lie group action (P, G, 𝜳), every element A of the Lie 

algebra g of G defines a vector filed 𝐴∗via the flow 𝛹exp (𝑡𝐴), 

that is,                                                                                        

 (𝐴∗)𝑝= 
𝑑

𝑑𝑡⨡0
𝛹exp (𝑡𝐴)(p) =  𝛹𝑝

′(A). 

 𝐴∗ is called the Killing vector field generated by A. 

Now, consider a principal fiber bundle (P, G, M, 𝜳, π). We 

denote the vertical distribution spanned by the killing vector 

fields of the G-action by V and call  𝑉𝑝⊂ 𝑇𝑝P the vertical 

subspace of  𝑇𝑝P at p∈ P                                                            

Lemma 4.1[1] 

    The vertical distribution V has the following properties.  

1- It is equivariant , that is, 𝑉𝜓𝑎(𝑝)= 𝜓𝑎
′ (𝑉𝑝). 

2- The mapping 

𝛙: P × g →V, (p, A) ↦ = 𝜓𝑎
′ (𝐴) 

 Is an isomorphism of vector bundles. In particular, the 

mappings= 𝜓𝑎
′  : g →𝑉𝑝 are isomorphism's of vector spaces. 

3- For every p ∈ P, the vertical sub space  𝑉𝑝 coincides with 

the tangent space of the fiber at p and, thus, with Ker (𝜋𝑝
′ ) 

Definition 4.2: [1] 

     (Connection on principal fiber bundle) Let (P, G, M, 𝛙, π) 

be a principal fiber bundle. A connection on P is a distribution 

𝛤 on P such that                                                                         

1- 𝛤𝑝 ⊕𝑉𝑝 =𝑇𝑝 𝑃      for all p∈ P, 

2- 𝛤𝜓𝑎(𝑝) = 𝜓𝑎
′ (𝛤𝑝 )     for all p∈ P and a∈ G. 

𝛤𝑝 Is called the horizontal subspace at p. 

A connection on principal bundle will be often referred to as 

a principal connection.                                                              

Remark 4.3:[1] 
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1-Bypoint1, every tangent vector 𝑋𝑝  ∈ 𝑇𝑝 𝑃admitsaunique 

decomposition into a horizontal component hor  𝑋𝑝  ∈ 𝛤𝑝  and 

a vertical component ver  𝑋𝑝  ∈ 𝑉𝑝 ,                                          

𝑋𝑝 = hor 𝑋𝑝 + ver𝑋𝑝 .                  (19) 

Since both 𝛤 and V are smooth, the mappings hor : TP → 𝛤 

and ver : TP → V are smooth .sthus , if X is a smooth vector 

filed on P, then hor X and ver X are smooth vector fields, too. 

2- For a given connection 𝛤, the restriction of 𝜋′to the 

horizontal subspace  𝛤𝑝 yields an isomorphism of  𝛤𝑝 and 

𝑇𝜋(𝑝)M. thus, every vector field X on M admits a unique 

horizontal lift, that is, a vector field 𝑋ℎon P with values in the 

horizontal distribution which is π-related to X. It is obtained 

by applying the inverse of the above isomorphism point wise 

to X. By construction, 𝑋ℎis 𝛙 invariant. Conversely, every 

𝛙- invariant horizontal vector field on P is the horizontal lift 

of a vector field on M.                                                              

3- Every connection on a principal bundle P induces a 

connection on any bundle associated with P. indeed, let 𝛤 be 

a connection on the principal bundle P (M, G) and let E= P × 

GF be an associated bundle. For f ∈ F.                                     

Definition 4.4: [1] 

(Connection form) Let (P, G, M, 𝛙, π) be a principal bundle 

and let 𝛤 be a connection on P. The 1-form ω on P with values 

in g defined by                                                                           

𝜔𝑝 (X) :=(𝛹𝑝
′)−1 (verX),         p ∈ P,    X  ∈ 𝑇𝑝 𝑃 

Is called the connection form of 𝛤.                                           

 As an immediate consequence of this definition, we obtain 

the following formula of the horizontal component of a 

tangent vector X ∈ 𝑇𝑝 𝑃:                                                           

(19) Hor X =X− 𝛹𝑝
′(ω(X)). 

Proposition 4.5: [6] 

If π: P→M is a principal G-bundle, then 

(Rg)∗𝛔 (X) = 𝛔 (Ad(g−1)X)                   (20) 

For every x∈ X and g∈ G.     

Proof: Since 

Rg ○ σu(h) =uhg=ugg−1hg=𝜎𝑢𝑔 ○ 𝑖g−1(h)                 

For u ∈ P and h ∈G, we have that 

 ((Rg)∗𝛔 (X))𝑢𝑔=(Rg)∗𝛔 (X)𝑢 = (Rg)∗ ○ 𝜎𝑢∗(X)      

 = 𝜎𝑢𝑔∗○ Ad (g−1)(X) = 𝛔 (Ad (g−1)𝑋)𝑢𝑔.                            (21)  

Corollary 4.6: [6] 

If π: P→ M is a principal G-bundle, then 

𝑉𝑢𝑔= (Rg)∗𝑉𝑢                   (22) 

  For every u∈ P and g∈ G. 

Proof: by proposition 4.1we have that    

(Rg)∗ ○ 𝜎𝑢∗= 𝜎𝑢𝑔∗○ Ad (g−1)                    (23)             

So that 

(Rg)∗𝑉𝑢= (Rg)∗ ○ 𝜎𝑢∗(g) = 𝜎𝑢𝑔∗(g) =𝑉𝑢𝑔.              

Definition 4.7: [6] 

A (principal) connection in a principal G-bundle   π: P→ M 

is a distribution  H on P such that                                              

(i) 𝑇𝑢𝑃= 𝐻𝑢⊕𝑉𝑢 for every u ∈ P. 

(ii) 𝐻𝑢𝑔= (Rg)∗𝐻𝑢 for every u ∈ P and g ∈ G.      

The subspace 𝐻𝑢 of 𝑇𝑢𝑃  is called the horizontal subspace at 

u, and vectors in  𝐻𝑢 are called horizontal tangent vectors at            

u. 

Definition 4.8: [6] 

 Let π: P →M be a principal G-bundle. Then a g-valued 1-

form  

ω on P is called a connection form if it satisfies  

     (i) ω (u) (σ(𝑋)𝑢) = X for every u ∈ P and X ϵ g. 

      (ii) 𝑅𝑔
∗  ω = Ad (g−1). ω for every g ∈G. 

Proposition 4.9: [6] 

     If H is a connection in principal G-bundle π : P → M, then 

the map ω : P →⋀1 (TP ;g) defined in 4.3.3 is a connection 

form on P with 𝐻𝑢 = ker ω(u) for u ∈P.                                    

Proof: formula (i) in the definition is just a reformulation of 

the formula                                                                                 

𝜔𝑢 ○ 𝜎𝑢∗= id g established in 4.3.3. 

      We next show that ω is a 𝑔-valued 1-form on P. let 𝓁= 

{𝑋1,…,𝑋𝑚} be a basis for 𝑔, and let u ∈P. 

 

5. CONNECTION FORM 

Let P be a principal bundle over V and 𝛤 a connection on P. 

If d𝜉∈𝑇𝜉 , then 𝛤 d𝜉∈𝔑𝜉  and a→ 𝜉 a is an isomorphism of 𝒴 

onto𝔑𝜉 . We define a differential form γ on P with values in 

𝒴 by setting γ (d𝜉) =a where (d𝜉) = 𝜉a. In order to prove that 

γ is differentiable, it is enough to prove that γ takes 

differentiable vector fields into differentiable functions with 

value in 𝒴. We have γ (𝑍𝑎)= a for every a ∈𝒴 and γ(X) =0 

for every X∈𝔍. Since the module (P) is generated by 𝔍 and 

the vector fields𝑍𝑎, γ(X) is differentiable for every 

differentiable vector filed X on P. Thus corresponding to 

every connection 𝛤 on P, there exists one and only one form 

with values in 𝒴 such that 𝛤 (d𝜉) =𝜉γ (d𝜉) for every d𝜉∈𝑇𝜉 . It 

is easily seen that γ satisfies                                                     

1- γ (𝜉a) = a for every 𝜉∈ P and a ∈𝒴 

2- γ (d𝜉s) = 𝑠−1γ(d𝜉)s for d𝜉∈𝑇𝜉  and s ∈G. 

A 𝒴- valued form on P satisfying 1- and 2-is called a 

connection form. Given a connection 𝛤 for which γ is easy to 

see that there exists one and only one connection 𝛤 for which 

γ is the associated form, i.e., 𝛤(d𝜉) = 𝜉γ(d𝜉) for every  d𝜉∈𝑇𝜉 . 

 

6. AFFINE CONNECTIONS 

Consider a smooth vector field Y on a manifold M and a 

tangent vector 𝑋𝑝∈𝑇𝑝𝑀 at a point p in M. to define the 

directional derivative of Y in the direction𝑋𝑝, it isnecessary 

to compare the values of Y in a neighborhood of p. If q is a 

point near p, in general it is not possible to compare the 

vector𝑠 𝑌𝑞 𝑎𝑛𝑑 𝑌𝑝by taking the difference𝑌𝑞 − 𝑌𝑝, since they 

are in distinct tangent spaces. For this reason, the directional 

derivative of a vector field on an arbitrary manifold M cannot 

be defined in the same way, we extract form the directional 

derivative in ℝ𝑛certain key properties and call any map D: 

(M) × (M) → (M) with these properties an affine connection. 
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Intuitively, an affine connection on a manifold is simply a       

way of differentiating vector fields on the manifold. 

     Mimicking the directional derivative inℝ𝑛, we define the 

torsion and curvature of an affine connection on a manifold 

M. miraculously, both torsion and curvature are linear over 

𝐶∞functions in every argument.                                               

     There are infinitely many affine connections on any 

manifold. On a Riemannian manifold, however, there is a 

unique torsion- free affine connection compatible with the 

metric, called the Riemannian or Leiv-Civita connection. As 

an example, we describe the Riemannian connection on a 

surface in ℝ3.                                                                             

    On an arbitrary manifold M, which is not necessarily 

embedded in a Euclidean space, we can define the directional 

derivative of a 𝐶∞function f in the direction 𝑋𝑝 ∈ 𝑇𝑝𝑀 in the 

same way as before:                                                                   

∇𝑋𝑝𝑓 = 𝑋𝑝𝑓.             (24) 

However, there is no longer a canonical way to define the                           

directional derivative of a vector filed Y. 

Definition 6.1: [5] 

An affine connection on a manifold M is an ℝ-bilinear map 

∇: (M) × (M) → (M), 

Written ∇𝑋Y for ∇(X, Y), satisfying the two properties 

below: if 𝓕 is the ring 𝐶∞(M) of 𝐶∞function on M, then for 

all X,Y ∈𝔛(M), 

i- ∇𝑋𝑌 is 𝓕-linear in X, 

ii- (Leibniz rule) ∇𝑋𝑌 satisfies the Leibniz rule in Y: for f ∈𝓕, 

∇𝑋(𝑓𝑌)= (Xf) Y + f∇𝑋𝑌.               (25) 

Example 6.2: [5] 

The directional derivative 𝐷𝑋 of a vector filed Y on ℝ𝑛is an 

affine connection onℝ𝑛, sometimes called the Euclidean 

connection on ℝ𝑛.                                                                     

 

7. CONNECTIONS AND CURVATURE 

In modern geometry, differential topology, and geometric 

analysis, one often needs to study not only smooth functions 

on a manifold, but more generally, spaces of smooth sections 

of a vector bundle 𝛤 (𝜁).( Notice that sections of bundles are 

indeed a generalization of smooth functions in that the space 

of sections of the n-dimensional trivial bundle over a 

manifold M, 𝛤 (∈𝑛) = 𝐶∞(M; 𝑅𝑛) = ⊕𝑛 𝐶
∞(M; R). similarly, 

one needs to study differential forms that take values in vector 

bundles. These are defined as follows.                                     

Definition 7.1: [4] 

    Let 𝜁 be a smooth bundle over a manifold M. a differential 

k-form with values in 𝜁 is defined to be smooth section of the 

bundle of homomorphism's, Hom (⋀𝑘(𝜏 (M)), 𝜁) = ⋀𝑘(τ 

(𝑀)∗) ⨂𝜁.                                                                                  

We write the space of k-forms with values in 𝜁 as 

𝛺𝑘(M; 𝜁) = 𝛤 (⋀𝑘(τ (𝑀)∗⨂𝜁).              (26) 

The zero forms are simply the space of sections, 𝛺0(M; 𝜁) = 

𝛤 (𝜁). Notice that if 𝜁 is the trivial bundle 𝜁 =∈𝑛, then one gets 

standard forms,                                                                          

𝛺𝑘(M; ∈𝑛)= 𝛺𝑘(M) ⨂𝑅𝑛=  ⊕𝑛 𝛺
𝑘(M).           (27) 

Even though spaces of forms with values in a bundle are easy 

to define there is no canonical analogue of the exterior 

derivative. There do however exist differential operators         

D: 𝛺𝑘(M; 𝜁) → 𝛺𝑘+1(M; 𝜁) 

That satisfies familiar product formulas. These operators are 

called covariant derivatives (or connections) and are related 

to the notion of a connection on principal bundle, which we 

now define and study.                                                                

   Let G be a compact Lie group. Recall that the tangent 

bundle τG has a canonical trivialization                                

𝜓: G × TG → TG 

(g, v) → D (𝓁g) (v) 

Where for any g ∈ G, 𝓁g: G → G is the map given by left 

multiplication by g, and D (𝓁g): 𝑇ℎG → 𝑇𝑔ℎG is its derivative. 

𝑟𝑔 and D (𝑟𝑔) will denote the analogous maps corresponding 

to right multiplication.                                                              

The differentials of right multiplication on G define aright 

action of G on the tangent bundle τ G. We claim that the 

trivialization 𝜓 is equivariant with respect to this action, if we 

take as the right action of G on 𝑇1G to be the ad joint action: 

𝑇1G × G →𝑇1G 

(v, g) → D (𝓁𝑔−1) (v) D (𝑟𝑔).                   

This bundle has following relevance. Let 𝑃∗(τ M): 𝑃∗(TM) → 

P be the Pull-back over the total space P of the tangent bundle 

of M. we have a subjective map of bundles                              

τ P → 𝑃∗(τ M). 

Define 𝑇𝐹P to be the kernel bundle of this map. So the 

fibre𝑇𝐹P at a point y ∈ P is the kernel of the subjective linear 

transformation D p (y): 𝑇𝑦P →𝑇𝑝(y) M. notice that the right 

action of G on the total space of the principal bundle P defines 

an action of G on the tangent bundle τ P, which restricts to an 

action of G on 𝑇𝐹P. Furthermore, by recognizing that the 

fibers are equivariantly homeomorphic to the Lie group G, 

the following is a direct consequence of the above 

considerations:                                                                          

Proposition 7.2: [4] 

𝑇𝐹P is naturally isomorphic to the Pull-back of the ad joint 

bundle 

𝑇𝐹P ≅𝑃∗(ad (p)). 

Thus we have an exact sequence of G-equivariant vector 

bundles over P.                                                                         

0 → 𝑃∗(ad (p)) → τ P 
𝐷𝑃
→ 𝑃∗(TM) → 0. 

Recall that short exact sequences of bundles split as 

Whitney sums. A connection is a G-equivariant splitting of 

this sequence. 

Definition 7.3: [4] 

  A connection on the principal bundle P is a G-equivariant 

splitting                                                                                    

ω A : τ P →𝑃∗(ad (P)) 

of the above sequence of vector bundles. That is, ωA defines 

a G-equivariant isomorphism                                                    

ωA ⊕ Dp: τP → 𝑃∗(ad (P)) ⊕𝑃∗(τM).            

The following is an important description of the space of 

connections on P, (P).                                                               
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Proposition 7.4: [4] 

The space of connections on the principal bundle P, 𝒜 (P), is 

an affine space modeled on the infinite dimensional vector 

space of one forms on M with values in the bundle ad (P), 𝛺1 

(M; ad (P)).                                                                               

Proof: consider two connection ωA and ωB 

ωA, ωB: τP → 𝑃∗(ad (P)). 

Since these are splitting of the exact sequence, they are both 

the identity when restricted to 𝑃∗(ad (P)) ↪ τP.                       

Thus their difference, ωA-ωB is zero when restricted to 𝑃∗(ad 

(P)). By exact sequence it therefore as a composition  

ωA-ωB: τP → 𝑃∗(τM)
𝛼
→  𝑃∗(ad (P)) 

For some bundle homomorphism α:𝑃∗(τM) → 𝑃∗(ad (P)). 

That is, for every y ∈P, α defines a linear transformation  

𝛼𝒚: 𝑃∗(𝑇𝑀)𝑦→𝑃∗(𝑎𝑑(𝑃))𝑦. 

Hence for every y ∈ P, defines a linear transformation  

𝛼𝒚: 𝑇𝑃(𝑦)M →𝑎𝑑(𝑃)𝑃(𝑦). 

Furthermore, the fact that both ωA and ωB are equivariant 

splitting says that ωA-ωB is equivariant, which translates to 

the fact 𝛼𝒚 only depends on the orbit of y under the G-action. 

That is,𝛼𝒚 =𝛼𝒚𝑔: 𝑇𝑃(𝑦)M → 𝑎𝑑(𝑃)𝑃(𝑦) for every g ∈ G. thus 

𝛼𝒚 only depends on P(y) ∈ M.                                                  

  Hence for every x∈ M, α defines, and is defined by, a linear 

transformation 

𝛼𝑥: 𝑇𝑥M →𝑎𝑑(𝑃)𝑥. 

Thus α may be viewed as a section of the bundle of 

homomorphism, Hom (TM, ad (P)), and hence is a one form,  

α ∈𝛺1(M; ad (P). 

Thus any two connections on P differ by an element in 𝛺1(M; 

ad (P) in this sense.                                                                   

   Now reversing the procedure, an element β ∈𝛺1(M; ad (P) 

defines an equivariant homomorphism of bundles over P, 

β: 𝑃∗(τM) → 𝑃∗(ad (P)). 

By adding the composition 

τP 
𝐷𝑃   
→  𝑃∗(τM) 

𝛽  
→ 𝑃∗(ad (P)) 

to any connection (equivariant splitting) 

ωA: τP → 𝑃∗(ad (P)) 

  One produces a new equivariant splitting of τp, and hence a 

new connection. The proposition follows.                             

Remark 7.5: [4] 

Even though the space of connections 𝒜 (P) is affine, it is not, 

in general a vector space. There is no "zero" in 𝒜 (P) since 

there is no pre-chosen, canonical connection. The one 

exception to this, of course, is when P is the trivial G-bundle, 

P = M ×G →M.                (28) 

In this case there is an obvious equvariant splitting of τP, 

which serves as the "zero" in 𝒜 (P). Moreover in this case the 

ad joint bundle ad (P) is also trivial,                                         

Ad (P) = M × g →M.          (29) 

Hence there is a canonical identification of the space of 

connection on the trivial bundle with 𝛺1(M; g) = 𝛺1(M) ⨂ g. 

Let P: P →M be a principal G-bundle and let ωA ∈ (P) be a 

connection. The curvature 𝐹𝐴 of ωA is two forms                     

𝐹𝐴∈𝛺
1(M; ad (p)). 

These measures to what extent the splitting ωA commutes 

with the bracket operation on vector fields. More precisely, 

let x and y be vector fields on M. the connection 𝜔𝐴 defines 

an equivariant splitting of τP and hence defines a "horizontal 

lifting of these vector fields, which we denote by �̃�and �̃� 

respectively.                                                                               

Definition 7.6: [4] 

The curvature 𝐹𝐴 ∈ 𝛺2(M; ad (p)) is defined by  

𝐹𝐴 (x, y) = 𝜔𝐴[�̃�, �̃�].           (30) 

For those unfamiliar with bracket operation on vector fields, 

another important construction with connection is the 

associated covariant derivative which is defined as follows. 

Definition 7.7: [4] 

The covariant derivative induced by the connection 𝜔𝐴 

𝐷𝐴:  𝛺0(M; ad (p)) → 𝛺1(M; ad (p)) 

Is defined by  

𝐷𝐴 (𝜎) (X) = [�̃�, 𝜎].              (31) 

where X is a vector field on M. 

The notion of covariant derivative, and hence connection, 

extends to vector bundles as well. Let 𝜁: 𝒫: 𝐸𝜁→ M be a finite 

dimensional vector bundle over M.                                          

Definition 7.8: [4] 

   A connection on 𝜁 (or a covariant derivative) is a linear 

transformation                                                                        

𝐷𝐴:  𝛺0(M; 𝜁) → 𝛺1(M; 𝜁) 

That satisfies the Leibnitz rule   

𝐷𝐴(f∅) = df ⨂∅ + f 𝐷𝐴(∅)              (32) 

For any f ∈𝐶∞(M; R) and any ∅∈𝛺0(M; 𝜁). 

Now we can model the space of connections on a vector 

bundle, 𝒜 (𝜁) similarly to how we modeled the space of 

connection on a principal bundle 𝒜 (P). Namely, given any 

two connections 𝐷𝐴 and 𝐷𝐵 on 𝜁 and a function f ∈𝐶∞(M; R), 

one can take the convex combination f ∙ 𝐷𝐴+ (1-f) ∙𝐷𝐵 and                              

obtain a new connection.                                                            

 

RESULTS 

A connection on a fiber bundle is a device that defines the 

concept of parallel transport on the bundle, which is a smooth 

distribution over the total area of the bundle. The idea of 

connection enables us to transfer precise local geometric 

objects such as tangent vectors along a curve in a parallel and 

consistent manner. Connection is of central importance in 

modern geometric because it allows conducting comparison 

between the local geometry at one point and the geometry at 

another point. The connections lead to appropriate formulas 

for the geometric constants the affine connection is the most 

elementary type of connection and a means of parallel 

transfer of tangent vectors on a manifold from one point to 

another.                                                                                      

 

CONCLUSION 

We dealt with the definitions of connection on principal, 

fibers and vector bundles, and we dealt with connection and 
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its relationship to curvature, and we concluded that the idea 

of connection enables us to transfer tangent vectors along a 

curve or groups of curves in a parallel and consistent manner. 

Affine connection is the most elementary type of connection 

and a means of parallel transmission of these vectors.             
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