International Journal of Mathematics and Computer Research ISSN: 2320-7167 Volume 10 Issue 08 August 2022, Page no. – 2837-2839 Index Copernicus ICV: 57.55, Impact Factor: 7.362 [DOI: 10.47191/ijmcr/v10i8.02](https://doi.org/10.47191/ijmcr/v10i8.02)

An Important Conclusion for Fermat's Last Theorem

Alkis Mazaris

INTRODUCTION

Studying the Theorem using only mathematics that was known at the time of Fermat, we reached a very important conclusion:

The wording of the theorem should be different. The work employs the wellknown technique of the proof by contradiction and is structured in 2 parts, leading to the final result.

We accept that $a^v + b^v = c^v$ holds and in first part we arrive in a conclusion using the idea of the definition of the zerosequence of numbers. In the second part using the result of part 1 in $\left(\frac{a}{c}\right)^v + \left(\frac{b}{c}\right)^v = 1$ formula that is equivalent to a^v $+ b^{\nu} = c^{\nu}$ if c is not zero, we arrive at a contradiction.

A NOVEL APPROACH USING CLASSIC METHOD

Fermat's last theorem states that:

If a, b, c is non-zero natural number, there is no natural number $v > 2$ such that $a^v + b^v = c^v$.

We will assume that there are $a, b, c,$ non-zero natural numbers such that:

> $a^v + b^v = c^v$ (1)

Also let's assume that

$$
a \ge b \tag{2}
$$

It is very easy to prove that: $c > a \geq (Appendix A)$ Dividing all members of the relation (1) by c^v we will have:

$$
\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} = 1\tag{3}
$$

Part 1

Let us now consider the sequence of numbers $d_n = \left(\frac{a}{a}\right)^n$ like this:

a, c constant non-zero natural numbers $c > a$ and n is any non-zero natural number. It is very easy to prove that; this sequence is a zero-sequence of numbers (Appendix B). By the definition of the zero-sequence (Appendix C) it holds that: for every $\varepsilon > 0$ there is $n_0 \in N^*$:

For every
$$
n > n_0
$$
 holds: $\left(\frac{a}{c}\right)^n < \varepsilon$
\nSo, for $\varepsilon = \frac{1}{2}$ there is $n_0 \in N^*$ (we will calculate n_0):
\nFor every $n > n_0$ holds:
\n $\left(\frac{a}{c}\right)^v < \frac{1}{2}$
\nCalculation of n_0
\n $\left(\frac{a}{c}\right)^v < \frac{1}{2}$
\n $\ln \left(\frac{a}{c}\right)^v < \ln \frac{1}{2}$
\n $\ln \ln \frac{a}{c} < \ln \frac{1}{2}$
\n $n > \frac{\ln \frac{1}{2}}{\ln \frac{a}{c}} \qquad \left(\frac{a}{c} < 1\right)$
\nFinally:
\n $n > \frac{\ln 2}{\ln \frac{a}{a}}$ (5)
\nSo: $n_0 = \left[\frac{\ln 2}{\ln \frac{c}{a}}\right]$ (integral or integer part of $\frac{\ln 2}{\ln \frac{c}{a}}$)
\nWe reached to the following:

CONCLUSION A: When
$$
n > n_0 = \left[\frac{\ln 2}{\ln \frac{c}{a}}\right]
$$
 then
 $\left(\frac{a}{c}\right)^n < \frac{1}{2}$, $c > a$

Part 2

Now let's get back to the relation (3)

 $\left(\frac{a}{c}\right)^v + \left(\frac{b}{c}\right)^v = 1$ We study the quantity $\left(\frac{a}{c}\right)^{\nu}$, $c > a$, $c, a, v \in N^*$ According to CONCLUSION A: When $v > v_0 = \left[\frac{\ln 2}{\ln \frac{c}{c}}\right]$ then $\left(\frac{a}{c}\right)^v < \frac{1}{2}$, $c > a$ In this case, because $\left(\frac{a}{c}\right)^v > \left(\frac{b}{c}\right)^v$ (it holds $a \ge b$) We will have: $\left(\frac{a}{c}\right)^{v} + \left(\frac{b}{c}\right)^{v} < \frac{1}{2} + \frac{1}{2} = 1$ It means finally: $\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} < 1$ it is contradiction Because we have accepted that

$$
\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} = 1
$$

Therefore the relation $\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} = 1$ to be valid, it must be $v \leq n_0 = \left[\frac{\ln 2}{\ln 2}\right]$

(integral or integer part of a number). But the relations:

and $a^v + b^v = c^v$ are equivalent because $c \neq 0$, so we reached to CONCLUSION B.

CONCLUSION B:

The relation $a^v + b^v = c^v$ it could be right only if $v \leq n_0 = \left[\frac{\ln 2}{\ln 2}\right]$ (integral or integer part)

RESULTS

In Part 1 we reached the CONCLUSION A In Part 2 we used CONCLUSION A in the relation $\left(\frac{a}{c}\right)^v + \left(\frac{b}{c}\right)^v = 1$ to reach CONCLUSION B

DISCUSSION and CONCLUSION

1. According to CONCLUSION B the formulation of FLT should have been: if a , b , c are non-zero natural numbers, there is no natural

 Δ ¹

number $v > 2$, $v \leq \left| \frac{\ln 2}{c} \right|$ such that: $a^v + b^v = c^v$

It is a very important conclusion

Suppose looking for number ν such that:

$$
v + 5v = 6v
$$
, $v > 2$ We can

looking for only v such that:

$$
v \le \left| \frac{\ln 2}{\ln \frac{6}{5}} \right| = \left[\frac{\ln 2}{\ln 1.2} \right] = [3,8017...] = 3
$$

and not for any natural number ν .

2. Pythagorean theorem:

Ex. $3^2 + 4^2 = 5^2$

whichever applies

3. Simple addition of natural numbers: Ex. $4^1 + 2^1 = 6^1$

It must be
$$
1 \le \left[\frac{\ln 2}{\ln \frac{6}{4}} \right] = \left[\frac{\ln 2}{\ln 1.5} \right] = [1,7095...] = 1
$$

whichever applies

Acknowledgements

None

Conflict of interest

The author declares that there is no conflict of interest

APPENDIX A

If it holds $v + b^v = c^v$, $a, b, c, v \in N^*$ and $a \ge b$ then $c > a \ge 0$ **b** Proof: The minimum price for $b = 1$ So: $a^v + 1^v = c^v$ $a^v + 1 = c^v$ It means that $c^v > a^v$ So: $c > a$ And $c > a \ge b$

APPENDIX B

Because of Appendix A, $c > a$. Consider ϵ to be an arbitrary small

number such that
$$
\left(\frac{a}{c}\right)^v < \varepsilon
$$
.
\nThen $\ln \left(\frac{a}{c}\right)^v < \ln \varepsilon$ and finally $v > \frac{\ln \varepsilon}{\ln \frac{a}{c}}$, $(c > a)$
\nIf k_1 is the lower-value natural number that satisfy:

 $k_1 > \frac{\ln \varepsilon}{\ln \frac{\alpha}{\epsilon}}$ then for every natural number $v > k_1$ it holds $\left(\frac{a}{\tau}\right)^{\nu} < \varepsilon$

APPENDIX C

Definition: Let's assume a sequence of number like this:

$$
d_n = \left(\frac{a}{c}\right)^n, c > a, c, a \in N^*
$$

 $n \in N^*$ any non-zero natural number the d_n sequence is a zero-sequence of numbers when for every $\varepsilon > 0$ there is natural number n_0 non zero:

 $|d_n| < \varepsilon$ for every natural non-zero n: $(|d_n|$: absolute value of modulus)

 $n > n_0$

when the number of sequence are positive number $|d_n| = d_n$. This happened in case we study.

REFERENCES

1. Serbi L. Fermat's Last Theorem, A proof based to limit, OAJMTP 2018; 1(4):136-137, DOI:https://doi.org/10.15406/oajmtp.2018.01.0002 1

- 2. Mazaris A. A new proof of Fermat's Last Theorem, OAJMTP 2018; 1(3): 107-113 DOI:https://doi.org/10.15406/oajmtp.2018.01.0001 6
- 3. Michael C.I.Nwogugu A second Dynamical-Systems Proof of Fermat's Last Conjecture (2020) Available at SSRN <https://ssrn.com/abstract=3619559> [o](https://ssrn.com/abstract=3619559)r <https://dx.doi.org/10.2139/ssrn.3619559>
- 4. Alkis Mazaris A different formulation for the Fermat's last theorem INTERNATIONAL JOURNAL FOR INNOVATION EDUCATION AND RESEARCH Vol. 10 No.3 (2022) DOI: https://doi.org/10.31686/ijier.vol10.iss3.3681