International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 10 Issue 08 August 2022, Page no. – 2837-2839

Index Copernicus ICV: 57.55, Impact Factor: 7.362

DOI: 10.47191/ijmcr/v10i8.02

An Important Conclusion for Fermat's Last Theorem

Alkis Mazaris

ARTICLE INFO	ABSTRACT
Published Online:	Fermat's Last Theorem is perhaps the only most famous mathematical problem of all times.
02 August 2022	Although finally proved, but the Theorem never stopped being a challenge mainly because the first
	proof didn't used mathematics known in Fermat's era.
Corresponding Author:	In the present work we arrive at a very important conclusion for the Theorem. If this conclusion is
Alkis Mazaris	taken into account, the formulation of the Theorem should be different.
VEVWODDS, Format's Last Thomas displanting's associans	

KEYWORDS: Fermat, Fermat's Last Theorem, diophantine's equations

INTRODUCTION

Studying the Theorem using only mathematics that was known at the time of Fermat, we reached a very important conclusion:

The wording of the theorem should be different. The work employs the wellknown technique of the proof by contradiction and is structured in 2 parts, leading to the final result.

We accept that $a^v + b^v = c^v$ holds and in first part we arrive in a conclusion using the idea of the definition of the zero-sequence of numbers. In the second part using the result of part 1 in $\left(\frac{a}{c}\right)^v + \left(\frac{b}{c}\right)^v = 1$ formula that is equivalent to $a^v + b^v = c^v$ if c is not zero, we arrive at a contradiction.

A NOVEL APPROACH USING CLASSIC METHOD

Fermat's last theorem states that:

If a, b, c is non-zero natural number, there is no natural number v > 2 such that $a^v + b^v = c^v$.

We will assume that there are a, b, c, non-zero natural numbers such that:

$$a^v + b^v = c^v \tag{1}$$

Also let's assume that

$$a \ge b$$
 (2)

It is very easy to prove that: $c > a \ge$ (Appendix A)

Dividing all members of the relation (1) by c^{v} we will have:

$$\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} = 1 \tag{3}$$

Part 1

Let us now consider the sequence of numbers $d_n = \left(\frac{a}{c}\right)^n$ like this:

a, c constant non-zero natural numbers c > a and n is any non-zero natural number. It is very easy to prove that; this sequence is a zero-sequence of numbers (Appendix B). By the definition of the zero-sequence (Appendix C) it holds that: for every $\varepsilon > 0$ there is $n_0 \in \mathbb{N}^*$:

For every
$$n > n_0$$
 holds: $\left(\frac{a}{c}\right)^n < \varepsilon$

So, for $\varepsilon = \frac{1}{2}$ there is $n_0 \in \mathbb{N}^*$ (we will calculate n_0):

For every $n > n_0$ holds:

$$\left(\frac{a}{c}\right)^{v} < \frac{1}{2} \tag{4}$$

Calculation of no

$$\frac{\left(\frac{a}{c}\right)^{v} < \frac{1}{2}}{\ln\left(\frac{a}{c}\right)^{v} < \ln\frac{1}{2}}$$

$$\ln\left(\frac{a}{c}\right)^{v} < \ln\frac{1}{2}$$

$$\ln\left(\frac{a}{c}\right)^{v} < \ln\frac{1}{2}$$

$$n > \frac{\ln\frac{1}{2}}{\ln\frac{a}{c}} \qquad \left(\frac{a}{c} < 1\right)$$
Finally:
$$n > \frac{\ln 2}{\ln^{c}}$$
(5)

So:
$$n_0 = \left[\frac{\ln 2}{\ln \frac{c}{a}}\right]$$
 (integral or integer part of $\frac{\ln 2}{\ln \frac{c}{a}}$)

We reached to the following:

CONCLUSION A: When
$$n > n_0 = \left[\frac{\ln 2}{\ln \frac{c}{a}}\right]$$
 then $\left(\frac{a}{c}\right)^n < \frac{1}{2}$, $c > a$

Part 2

Now let's get back to the relation (3)

$$\left(\frac{a}{c}\right)^{v} + \left(\frac{b}{c}\right)^{v} = 1$$

We study the quantity $\left(\frac{a}{c}\right)^{v}$, c > a, c, a, $v \in N^{*}$

According to CONCLUSION A:

When
$$v>v_0=\left[\frac{\ln 2}{\ln \frac{c}{a}}\right]$$
 then $\left(\frac{a}{c}\right)^v<\frac{1}{2}$, $c>a$

In this case, because $\left(\frac{a}{c}\right)^{\nu} > \left(\frac{b}{c}\right)^{\nu}$ (it holds $a \ge b$)

We will have:
$$\left(\frac{a}{c}\right)^{v} + \left(\frac{b}{c}\right)^{v} < \frac{1}{2} + \frac{1}{2} = 1$$

It means finally: $\left(\frac{a}{c}\right)^{v} + \left(\frac{b}{c}\right)^{v} < 1$ it is contradiction

Because we have accepted that

$$\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} = 1$$

Therefore the relation $\left(\frac{a}{c}\right)^v + \left(\frac{b}{c}\right)^v = 1$ to be valid, it must be $v \le n_0 = \left[\frac{\ln 2}{\ln \frac{c}{c}}\right]$

(integral or integer part of a number).

But the relations:

$$\left(\frac{a}{c}\right)^{v} + \left(\frac{b}{c}\right)^{v} = 1$$
 and $a^{v} + b^{v} = c^{v}$ are equivalent

because $c \neq 0$, so we reached to CONCLUSION B.

CONCLUSION B:

The relation $a^v + b^v = c^v$ it could be right only if $v \le n_0 = \left[\frac{\ln 2}{\ln \frac{c}{a}}\right]$ (integral or integer part)

RESULTS

In Part 1 we reached the CONCLUSION A

In Part 2 we used CONCLUSION A in the relation $\left(\frac{a}{c}\right)^{\nu} + \left(\frac{b}{c}\right)^{\nu} = 1$ to reach

CONCLUSION B

DISCUSSION and CONCLUSION

1. According to CONCLUSION B the formulation of FLT should have been: if a, b, c are non-zero natural numbers, there is no natural

number
$$v>2$$
, $v\leq \left[\frac{\ln 2}{\ln \frac{c}{a}}\right]$ such that: $a^v+b^v=c^v$

It is a very important conclusion

Suppose looking for number v such that:

$$4^{v} + 5^{v} = 6^{v}$$
, $v > 2$ We can

looking for only v such that:

$$v \le \left[\frac{\ln 2}{\ln \frac{6}{5}}\right] = \left[\frac{\ln 2}{\ln 1, 2}\right] = [3,8017...] = 3$$

and not for any natural number v.

2. Pythagorean theorem:

Ex.
$$3^2 + 4^2 = 5^2$$

It must be
$$2 \le \left[\frac{\ln 2}{\ln \frac{5}{4}} \right] = \left[\frac{\ln 2}{\ln 1,25} \right] = [3,1062 \dots] = 3$$

whichever applies

3. Simple addition of natural numbers:

Ex.
$$4^1 + 2^1 = 6^1$$

It must be
$$1 \le \left[\frac{\ln 2}{\ln \frac{6}{4}}\right] = \left[\frac{\ln 2}{\ln 1.5}\right] = [1.7095 \dots] = 1$$

whichever applies

Acknowledgements

None

Conflict of interest

The author declares that there is no conflict of interest

APPENDIX A

If it holds v + bv = cv, $a, b, c, v \in N^*$ and $a \ge b$ then $c > a \ge b$ Proof:

The minimum price for b = 1 So: $a^{v} + 1^{v} = c^{v}$

$$a^v + 1 = c^v$$

It means that $c^v > a^v$

So: c > a

And $c > a \ge b$

APPENDIX B

Because of Appendix A, c > a. Consider ε to be an arbitrary small

number such that $\left(\frac{a}{c}\right)^{\nu} < \varepsilon$.

Then
$$\ln\left(\frac{a}{c}\right)^v<\ln\varepsilon$$
 and finally $v>\frac{\ln\varepsilon}{\ln\frac{a}{c}}$, $(c>a)$

If k_1 is the lower-value natural number that satisfy:

 $k_1 > \frac{\ln \varepsilon}{\ln \frac{a}{c}}$ then for every natural number $v > k_1$ it holds

$$\left(\frac{a}{c}\right)^{v} < \varepsilon$$

APPENDIX C

Definition: Let's assume a sequence of number like this:

$$d_n = \left(\frac{a}{c}\right)^n$$
 , $c > a$, $c, a \in N^*$

 $n \in N^*$ any non-zero natural number the d_n sequence is a zero-sequence of numbers when for every $\varepsilon > 0$ there is natural number n_0 non zero:

 $|d_n| < \varepsilon$ for every natural non-zero n: ($|d_n|$: absolute value of modulus)

 $n > n_0$

when the number of sequence are positive number $|d_n| = d_n$. This happened in case we study.

REFERENCES

1. Serbi L. Fermat's Last Theorem, A proof based to limit, OAJMTP 2018; 1(4):136-137,

"An Important Conclusion for Fermat's Last Theorem"

- DOI:https://doi.org/10.15406/oajmtp.2018.01.0002
- 2. Mazaris A. A new proof of Fermat's Last Theorem, OAJMTP 2018; 1(3): 107-113 DOI:https://doi.org/10.15406/oajmtp.2018.01.0001
- 3. Michael C.I.Nwogugu A second Dynamical-Systems Proof of Fermat's Last Conjecture (2020) Available at SSRN https://ssrn.com/abstract=3619559 or https://dx.doi.org/10.2139/ssrn.3619559
- 4. Alkis Mazaris A different formulation for the Fermat's last theorem INTERNATIONAL JOURNAL FOR INNOVATION EDUCATION AND RESEARCH Vol. 10 No.3 (2022) DOI: https://doi.org/10.31686/ijier.vol10.iss3.3681