International Journal of Mathematics and Computer Research

ISSN: 2320-7167 Volume 10 Issue 08 August 2022, Page no. – 2847-2851

Index Copernicus ICV: 57.55, Impact Factor: 7.362

On Q-Derivations of BE-Algebras

Wahyu Anhari¹, Sri Gemawati², Ihda Hasbiyati³

^{1,2,3}Department of Mathematics, Faculty of Mathematics and Sciences, University of Riau, Pekanbaru, 28293

ARTICLE INFO	ABSTRACT
Published Online:	<i>BE</i> -algebra is an algebra $(X; *, 1)$ of type (2,0) that satisfies the following axioms: (<i>BE</i> 1) $x *$
12 August 2022	$x = 1$, (BE2) $x * 1 = 1$, (BE3) $1 * x = x$, and (BE4) $x * (y * z) = y * (x * z)$ for all $x, y, z \in X$. In this paper, the notion of <i>q</i> -derivation in <i>BE</i> -algebra is defined and its properties are
	discussed. Finally, the properties of the fixed set and kernel of a <i>q</i> -derivation in <i>BE</i> -algebra are identified based on their relation to subalgebra and its elements.
Corresponding Author:	
Sri Gemawati	

KEYWORDS: BE-algebra; derivation; q-derivation; fixed set; kernel.

I. INTRODUCTION

The study of algebraic structures is growing with the discovery of new algebraic structures. Iseki [1] introduced the concepts of *BCI*-algebra and *BCK*-algebra. Various forms of generalization of *BCK*-algebra have been discussed by researchers. Among them is *BE*-algebra that has been discussed by H. S. Kim and Y. H. Kim [2]. *BE*-algebra is an algebra (X; *, 1) of type (2, 0) that satisfies the following axioms: (*BE1*) (x * x = 1, (*BE2*) (x * 1 = 1, (*BE3*) 1 * x = x, and (*BE4*) x * (y * z) = y * (x * z) for all $x, y, z \in X$. Further studies of *BE*-algebra have been discussed by Kim [3]. Subsequently, Ahn and Han [4] introduced *BP*-algebra whose construction also deals with the concepts of *BCI*-algebra.

In the study of abstract algebra, derivation is a function that maps a set to itself based on a certain rule. The concept of derivation was first introduced in the study of ring and near ring [5], later, it has been applied to several other algebraic structures. Al-Shehrie [6] has discussed the concept of derivation in *B*-algebra. A mapping of *d* from *B*-algebra (X; *, 0) to itself is said to be a left-right derivation ((l, r)-derivation) in *X* if for every $x, y \in X$ meets

$$d(x * y) = (d(x) * y) \land (x * d(y))$$

and d is said to be right-left derivation ((r, l)-derivation) in X if

 $d(x*y)=(x*d(y))\wedge (d(x)*y),$

by define $x \land y = y * (y * x)$ for all $x, y \in X$. *d* is said to be derivation in *X* if it is (l, r)-derivation at once (r, l)-derivation in *X*.

The concept of derivation is also discussed in *BE*-algebra by Kim and Lee [7]. A self-map *d* of *BE*-algebra (X; *, 1) is called a derivation in *X* if for every $x, y \in X$ meets

$$d(x * y) = (x * d(y)) \lor (d(x) * y).$$

by defining $x \lor y = (y * x) * x$ for all $x, y \in X$. Kim and Davvaz [8] discuss the concept of *f*-derivation in *BE*algebra by involving an endomorphism. In addition, as a development of the concepts of derivation and *f*-derivation in *BE*-algebra, Kim in [9] and [10] also discusses the concepts generalized of derivation and generalized of *f*derivation in *BE*-algebra. The concepts involve two selfmaps in their definition.

The concept of *t*-derivation in *BE*-algebra has been discussed by Anhari et al. [11]. The construction of *t*-derivation in *BE*algebra refers to the concept of *t*-derivation in *BP*-algebra [12], which begins by define a mapping $d_t(x) = x * t$ of *BE*algebra (X; *, 1), then define the concept of *t*-derivation in *BE*-algebra and determined its properties. In the paper, that has not found an example that satisfies the concept of *t*derivation in *BE*-algebra,but the concept of *t*-derivation will satisfy the properties that have been given. Another type of derivation that has been discussed by researchers is the concept of f_q -derivation in *BM*-algebra [13]. As with the definition of *t*-derivation, the construction of f_q -derivation in *BM*-algebra, also involves mapping similar to, but included a mapping d_t that is an endomorphism in *BM*-algebra. Gemawati et al. [14] also discuss the concept of f_q - derivation in another algebraic structure, namely BN_1 -algebra.

Based on the concept of derivation in *BE*-algebra by Kim and Lee [7] and the concept of *t*-derivation in *BE*-algebra by Anhari et al. [11] discussed a new type of derivation as a form of development of the concept derivation in *BE*-algebra, which is called *q*-derivation. Then, based on the concept, the properties of *q*-derivation in *BE*-algebra are determined, as well as the properties of fixed set and kernel of *q*-derivation in *BE*-algebra.

II. PRELIMINARIES

In this section, several definitions are given that are needed to construct the main results of the study, namely the basic definitions and theories about *BE*-algebra, derivation in *BE*-algebra, and *t*-derivations in *BE*-algebra which all such concepts have been discussed in [2, 3, 7, 11].

Definition 2.1. [2] An algebra (X; *, 1) of type (2, 0) is said to be *BE*-algebra if it satisfies the following axioms:

(BE1) x * x = 1,(BE2) x * 1 = 1,(BE3) 1 * x = x,(BE4) x * (y * z) = y * (x * z) $for all x, y, z \in X.$

Suppose (*X*; *, 1) be a *BE*-algebra. Defined a relation \leq on *X* by $x \leq y$ if and only if x * y = 1 for all $x, y \in X$. **Example 1.** Let $R = \{1, a, b, c, d, 0\}$ be a set defined in Table 1.

 Table 1. Cayley Table for (R; *, 1)

$(\mathbf{R}, \mathbf{v}, \mathbf{I})$						
*	1	а	b	С	d	0
1	1	а	b	С	d	0
а	1	1	а	С	С	d
b	1	1	1	С	С	С
С	1	а	b	1	а	b
d	1	1	а	1	1	а
0	1	1	1	1	1	1

By Table 1 can be proven that (R; *, 1) is a *BE*-algebra. **Definition 2.2.** [2] Let (X; *, 1) be a *BE*-algebra and *F* be a non-empty subset of *X*. *F* is said to be filter of *X* if *(F1)* $1 \in F$.

(F2) $x \in F$ and $x * y \in F$ imply $y \in F$.

By Example 1, we obtain that $F_1 = \{1, a, b\}$ is a filter of *R*, whereas $F_2 = \{1, a\}$ is not a filter of *X*, because $a \in F_2$ and $a * b \in F_2$, but $b \notin F_2$.

Definition 2.3. [2] A *BE*-algebra (X; *, 1) is said to be selfdistributive if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Example 2. Let $X = \{1, a, b, c, d, \}$ be a set defined in Table 2.

Table 2. Cayley table for (X; *, 1)

*	1	а	b	С	d
1	1	а	b	С	d
а	1	1	b	С	d
b	1	а	1	С	С
С	1	1	b	1	b
d	1	1	1	1	1

By Table 2, it can be proven that (X; *, 1) is a *BE*-algebra satisfying self-distributive. Whereas, *BE*-algebra in Example 1 not self-distributive, due to x = d, y = a, and z = 0 obtained d * (a * 0) = d * d = 1, whereas (d * a) * (d * 0) = 1 * a = a.

Proposition 2.4. [7] Let (X; *, 1) be a *BE*-algebra, then the following identity applies for all *x*, *y*, *z* \in *X*.

(P1)
$$x * (y * x) = 1$$
,
(P2) $x * ((x * y) * y) = 1$,

(*P1*) Let (*X*; *, 1) be a self-distributive *BE*-algebra. If $x \le y$, then $z * x \le z * y$ and $y * z \le x * z$.

The concept of derivation in *BE*-algebra has been discussed in [7]. Let (X; *, 1) be a *BE*-algebra. We define $x \lor y = (y * x) * x$ for all $x, y \in X$.

Definition 2.5. [7] A self-map d of *BE*-algebra (X; *, 1) is called a derivation in X if $d(x * y) = (x * d(y)) \lor (d(x) * y)$ for all $x, y \in X$.

Definition 2.6. [8] Suppose (X; *, 1) is a *BE*-algebra. A self-map *d* of *X* is called regular if d(1) = 1.

The concept of a fixed set and kernel of derivation in *BE*-algebra has been discussed in [7]. Suppose(X; *, 1) it is *BE*-algebra and d is a derivation in X. Defined a fixed set of d by

$$Fix_d(X) = \{x \in X \mid d(x) = x\}$$
, for each $x \in X$,

and kernel of d as

 $Kerd(X) = \{x \in X \mid d(x) = 1\}$, for each $x \in X$.

Definition 2.7. [3] Suppose (X; *, 1) and (Y; *, 1) are two *BE*-algebra. A mapping $f: X \to Y$ is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$.

A homomorphism f is called an endomorphism if $f: X \to X$.

Definition 2.8. [11] Let (X; *, 1) be a *BE*-algebra. A mapping d_t of X to itself is defined by $d_t(x) = x * t$ for all $t, x \in X$.

Definition 2.9. [11] Let (X; *, 1) *BE*-algebra. A mapping d_t of *X* to itself is called *t*-derivation in *X* if

 $d_t(x * y) = (x * d_t(y)) \lor (d_t(x) * y),$ for all $x, y \in X$.

III. MAIN RESULT

In this section is defined the concept of q-derivation in BE-algebra based on the concept of derivation in BE-algebra [7] and t-derivation in BE-algebra [11]. Later, the properties of q-derivation in BE-algebra are investigated. At the end, a fixed set and kernel of q-derivation in BE-algebra are defined, as well as their properties.

Definition 3.1. Suppose (X; *, 1) is a *BE*-algebra. A mapping d_q of *X* to itself is defined by $d_q(x) = q * x$ for all $q, x \in X$. **Theorem 3.2.** Suppose (X; *, 1) is a *BE*-algebra and d_q is a mapping of *X* to itself.

- (i) d_1 is an identity function,
 - (ii) $x \le d_q(x)$ for all $x \in X$,
 - (iii) $d_q(x * y) = x * d_q(y)$ for all $x, y \in X$.

Proof. Suppose (*X*; *, 1) is a *BE*-algebra.

- (i) For q = 1, from the axiom BE3 obtained d₁(x) = 1 * x = x for all x ∈ X. Hence, it is evident that d₁ is an identity function.
- (ii) By axioms *BE4*, *BE1*, and *BE3* for all $x \in X$ obtained $x * d_a(x) = x * (q * x)$

$$= q * (x * x)$$
$$= q * 1$$
$$x * d_q(x) = 1.$$
$$= 1 \text{ then } x \le d_q(x) \text{ for all } x$$

Since $x * d_q(x) = 1$, then $x \le d_q(x)$ for all $x \in X$. (iii) From axiom *BE4*, for all $x, y \in X$ obtained

$$d_q(x * y) = q * (x * y)$$
$$= x * (q * y)$$
$$d_q(x * y) = x * d_q(y).$$

Thus, $d_q(x * y) = x * d_q(y)$ for all $x, y \in X$.

Theorem 3. 3. Suppose (X; *, 1) be a *BE*-algebra self-distributive and d_q is a mapping of X to itself.

- **Proof.** Let (X; *, 1) is a *BE*-algebra self-distributive.
- (i) From Proposition 2.4 (P3) and Theorem 3.2 (ii) obtained $d_q(x) * y \le x * y \le x * d_q(y)$ for all $x, y \in X$.
- (ii) Since (X; *, 1) is a *BE*-algebra self-distributive, then for all $x, y \in X$ obtained

 $d_q(x * y) = q * (x * y)$ = (q * x) * (q * y) $d_q(x * y) = d_q(x) * d_q(y).$

Since $d_q: X \to X$ and it satisfy $d_q(x * y) = d_q(x) * d_q(y)$ for all $x, y \in X$, then d_q is an endomorphism of X.

Furthermore, based on the definition d_q and definition of derivation in *BE*-algebra, the concept of *q*-derivation in *BE*-algebra is defined.

Definition 3.4. Let (X; *, 1) be a *BE*-algebra. A mapping d_q of *X* to itself is called *q*-derivation in *X* if

$$d_q(x * y) = (x * d_q(y)) \lor (d_q(x) * y),$$

for all $x, y \in X$.

Example 3. Suppose $H = \{1, 2, 3\}$ is a set defined in Table 3.

Table 3: Cayley's table for (*H*; *, 1)

*	1	2	3
1	1	а	b
2	1	1	b
3	1	а	1

Then, (H; *, 1) is a *BE*-algebra and d_q is a *q*-derivation in *H*.

The following is given the nature of the existence of q-derivation in *BE*-algebra which states that there is one d_q in *BE*-algebra, that is, which is always a d_1 is 1-derivation in *BE*-algebra.

Theorem 3. 5. If (X; *, 1) is a *BE*-algebra, then d_1 is 1-derivation in *X*.

Proof. Suppose (X; *, 1) be a *BE*-algebra. By axiom *BE3* obtained $d_1(x * y) = 1 * (x * y) = x * y$ for all $x, y \in X$. Then, from axioms *BE3* and *BE1* obtained

$$(x * d_1(y)) \lor (d_1(x) * y) = (x * (1 * y)) \lor ((1 * x) * y)$$

= (x * y) \vee (x * y)
= ((x * y) * (x * y)) * (x * y)
= 1 * (x * y)
(x * d_1(y)) \lor (d_1(x) * y) = x * y.

Thus, $d_1(x * y) = (x * d_1(y)) \lor (d_1(x) * y)$ for all $x, y \in X$. Hence, d_1 is 1-derivation in X.

Furthermore, the properties of q-derivation in BE-algebra are given.

Theorem 3.6. Let (X; *, 1) is a *BE*-algebra. If d_q is a *q*-derivation in *X*, then

(i)
$$d_q(x) = d_q(x) \lor x$$
 for all $x \in X$.

(ii) $d_q(x * d_q(x)) = d_q(d_q(x) * x)$ for all $x \in X$.

Proof. Let (X; *, 1) *BE*-aljabar and d_q is *q*-derivation in *X*. (i) By axioms *BE2* and *BE3*, for all $x \in X$ obtained

$$d_q(x) = d_q(1 * x)$$

= (1 * d_q(x)) \vee (d_q(1) * x)
= d_q(x) \vee ((q * 1) * x)
= d_q(x) \vee (1 * x)
d_q(x) = d_q(x) \vee x.

(ii) From axioms *BE1* and *BE3*, for all $x \in X$ we have

$$d_q \left(x * d_q(x) \right)$$

$$= \left(x * d_q \left(d_q(x) \right) \right) \lor \left(d_q(x) * d_q(x) \right)$$

$$= \left(x * d_q \left(d_q(x) \right) \right) \lor 1$$

$$= \left(1 * \left(x * d_q(d_q(x)) \right) \right) * \left(x * d_q(d_q(x)) \right)$$

$$= \left(x * d_q \left(d_q(x)\right)\right) * \left(x * d_q \left(d_q(x)\right)\right)$$
$$d_q \left(x * d_q(x)\right) = 1.$$

On the other hand, from the axioms BE1 and BE2 obtained

$$\begin{aligned} d_q(d_q(x) * x) &= (d_q(x) * d_q(x)) \lor (d_q(d_q(x)) * x) \\ &= 1 \lor (d_q(d_q(x)) * x) \\ &= \left(\left(d_q(d_q(x)) * x \right) * 1 \right) * 1 \\ d_q(d_q(x) * x) &= 1. \end{aligned}$$

Therefore, $d_q(x * d_q(x)) = d_q(d_q(x) * x)$ for all $x \in X$.

Furthermore, definition of regular of d_q is given.

Definition 3.7. Let (X; *, 1) is a *BE*-algebra. A mapping d_q of X to itself is called regular if $d_q(1) = 1$.

Example 4. In *BE*-algebra $H = \{1, 2, 3\}$ given in Example 3, it is obtained that $d_1(1) = 1 * 1 = 1$, $d_2(1) = 2 * 1 = 1$, $d_3(1) = 3 * 1 = 1$ which states that $d_q(1) = 1$ for all $q \in H$. Hence, d_q is a regular in *H*.

In the following Theorem 3.8, it is stated that every q-derivation in *BE*-algebra is a regular.

Theorem 3.8. Let (X; *, 1) be a *BE*-algebra. If d_q is a *q*-derivation in *X*, then d_q is regular.

Proof. Let (X; *, 1) *BE*-aljabar. Since d_q is a *q*-derivation in *X*, by axioms *BE1*, *BE4*, and *BE2* for all $x, y \in X$ obtained

$$d_q(1) = d_q(x * x)$$

= $(x * d_q(x)) \lor (d_q(x) * x)$
= $(x * (q * x)) \lor ((q * x) * x)$
= $(q * (x * x)) \lor ((q * x) * x)$
= $(q * 1) \lor ((q * x) * x)$
= $1 \lor ((q * x) * x)$
= $[((q * x) * x) * 1] * 1$
 $d_q(1) = 1.$

Thus, d_q is regular in X.

Let (X; *, 1) is a *BE*-aljabar and d_q is a *q*-derivation in *X*. Defined a fixed set by $Fix_{d_q}(X) = \{x \in X \mid d_q(x) = x\}$. Then, defined kernel of d_q by $Kerd_q = \{x \in X \mid d_q(x) = 1\}$.

Example 5. Let (H;*,1) is a *BE*-algebra given in Example 3. In the example, it has been obtained that d_q is *q*-derivation in *H*. Therefore, the fixed set of d_q is $Fix_{d_1}(H) = \{1,2,3\}$, $Fix_{d_2}(H) = \{1\}$, $Fix_{d_3}(H) = \{1\}$, and $Kerd_1 = \{1\}$, $Kerd_2 = \{1,2\}$, $Kerd_3 = \{1,2,3\}$.

Some properties of *q*-derivation in *BE*-algebra given in Theorem 3.9.

Theorem 3. 9. Let (X; *, 1) is a *BE*-algebra and d_q is a *q*-derivation in *X*.

(i) If $x, y \in Fix_{d_q}(X)$, then $x \lor y \in Fix_{d_q}(X)$ for all $x, y \in X$.

- (ii) If x ∈ Fix_{dq}(X), then (d_q ∘ d_q)(x) = x for all x ∈ X.
 Proof. Let (X; *, 1) be a BE-aljabar and d_q is a q-derivation in X.
- (i) Since $x \in Fix_{d_q}(X)$, then $d_q(x) = x$ for every $x \in X$. Then, from the axioms *BE1* and *BE3* obtained

$$\begin{aligned} d_q(x \lor y) &= d_q((y \ast x) \ast x) \\ &= [(y \ast x) \ast d_q(x)] \lor [d_q(y \ast x) \ast x] \\ &= [(y \ast x) \ast x] \lor [((y \ast x) \lor (y \ast x)) \ast x] \\ &= [(y \ast x) \ast x] \lor [((y \ast x) \ast x)] \\ &= (y \ast x) \ast x \\ d_q(x \lor y) &= x \lor y. \end{aligned}$$

So, it is evident that $x \lor y \in Fix_{d_a}(X)$.

(ii) Suppose $x \in Fix_{d_q}(X)$, then $d_q(x) = x$. So that

$$(d_q \circ d_q)(x) = d_q (d_q(x)) = d_q(x) = x.$$

Hence, $(d_q \circ d_q)(x) = x$ for all $x \in X$.

The following property states that the fixed set and kernel of *q*-derivation in *BE*-algebra are subalgebras.

Theorem 3. 10. Suppose (X; *, 1) is a *BE*-algebra and d_q is a *q*-derivation in *X*.

- (i) $Fix_{d_q}(X)$ is a subalgebra.
- (ii) $Kerd_a$ is a subalgebra.

Proof. Suppose (*X*; *, 1) is a *BE*-aljabar.

(i) From the axiom BE2 obtained d_q(1) = q * 1 = 1, then 1 ∈ Fix_{dq}(X). So, Fix_{dq}(X) is a non-empty set. Let x, y ∈ Fix_{dq}(X), then d_q(x) = x and d_q(y) = y. Since d_q is a q-derivation in X and by axioms BE1 and BE3 we get

$$d_q(x * y) = (x * d_q(y)) \lor (d_q(x) * y)$$
$$= (x * y) \lor (x * y)$$
$$d_q(x * y) = x * y.$$

Then, $x * y \in Fix_{d_q}(X)$. Therefore, $Fix_{d_q}(X)$ is a subalgebra of *X*.

(ii) From the axiom *BE2* obtained $d_q(1) = q * 1 = 1$, then $1 \in Kerd_q$. So, $Kerd_q$ is a non-empty set. Let $x, y \in Kerd_q$, then $d_q(x) = 1$ and $d_q(y) = 1$. Since d_q is a *q*-derivation in *X*, and by axioms *BE1*, *BE2*, and *BE3* we have

$$d_q(x * y) = (x * d_q(y)) \lor (d_q(x) * y)$$

= (x * 1) \vee (1 * y)
= 1 \vee y
= (y * 1) * 1

 $d_q(x * y) = 1.$

Then, $x * y \in Kerd_q$. Therefore, $Kerd_q$ is a subalgebra of X.

Furthermore, given the kernel properties of q-derivation in *BE*-algebra.

Theorem 3.11. Let (X; *, 1) is a *BE*-algebra and d_q is q-derivation in X.

(i) If $x \in Kerd_q$, then $x \lor y \in Kerd_q$ for all $y \in X$.

- (ii) If y ∈ Kerd_q, then x * y ∈ Kerd_q for all x ∈ X.
 Proof. Let (X; *, 1) be a BE-aljabar and d_q is a q-derivation in X.
- (i) Since $x \in Kerd_q$, then $d_q(x) = 1$. By axiom *BE2* we obtain

$$d_q(x \lor y) = d_q((y \ast x) \ast x)$$

= $[(y \ast x) \ast d_q(x)] \lor [d_q(y \ast x) \ast x]$
= $[(y \ast x) \ast 1] \lor [d_q(y \ast x) \ast x]$
= $1 \lor [d_q(y \ast x) \ast x]$
= $[(d_q(y \ast x) \ast x) \ast 1] \ast 1$
 $d_q(x \lor y) = 1.$

Hence, if $x \in Kerd_q$, then $x \lor y \in Kerd_q$ for all $y \in X$.

(ii) Let $y \in Kerd_q$, then $d_q(y) = 1$. By axiom *BE2* obtained

$$d_q(x * y) = (x * d_q(y)) \lor (d_q(x) * y)$$

= (x * 1) \vee (d_q(x) * y)
= 1 \vee (d_q(x) * y)
= ((d_q(x) * y) * 1) * 1
$$d_q(x * y) = 1.$$

Thus, if $y \in Kerd_q$, then $x * y \in Kerd_q$ for all $x \in X$.

IV. CONCLUSION

In this paper, the concept of q-derivation in *BE*-algebra is defined as a development of the concept of derivation in *BE*algebra. The definition of q-derivation in *BE*-algebra begins with defining a mapping d_q that is a self-map in *BE*-algebra. Later, it was proved that d_1 it is a 1-derivation in *BE*-algebra, as well as in obtaining other properties of q-derivation. Finally, the properties of the fixed set and kernel of qderivation in *BE*-algebra are obtained based on its elements, and it is obtained that the fixed set and the kernel of qderivation in *BE*-algebra is a subalgebra.

REFERENCES

- K. Iseki, "An algebra related with a propositional calculus", Proceedings of the Japan Academy, 42(1966), 26-29.
- H. S. Kim and Y. H. Kim, "On *BE*-algebras", Scientiae Mathematicae Japonicae Online, (2006), 1299-1302.
- 3. K. H. Kim, "A note on *BE*-algebras", Scientiae Mathematicae Japonicae Online, (2010), 369–374.
- S. S. Ahn and J. S. Han, "On *BP*-algebras", Hacettepe Journal of Mathematics and Statistics, 42 (2013), 551-557.
- M. Ashraf, S. Ali, and C. Haetinger, "On derivations in rings and their applications", The Aligarh Bulletin of Mathematics, 25 (2006), 79–107.
- N. O. Al-shehrie, "Derivation of *B*-algebras", Journal of King Abdulaziz University: Science, 22 (2010), 71–82.
- K. H. Kim and S.M. Lee, "On derivations of *BE*algebras", Honam Mathematical Journal, 1(2014), 167-178.

- K. H. Kim and B. Davvaz, "On *f*-derivations of *BE*algebras", Journal of the Chungcheong Mathematical Society, 28(2015), 127-138.
- K. H. Kim, "On generalized derivations of *BE*-algebras", Journal of th Chungcheong Mathematical Society, 27(2014), 227-236.
- K. H. Kim, "On generalized *f*-derivations of *BE*algebras", International Mathematical Forum, 9(2014), 523-531.
- W. Anhari, S. Gemawati, and I. Hasbiyati,"On *t*derivations of *BE*-algebras", International Journal of Mathematics and Computer Research, 10(2022), 2722-2725.
- 12. T. F. Siswanti, S. Gemawati, and Shamsudhuha," *t*-Derivations in *BP*-algebras", Science, Technology, and Communication Journal, 1(2021), 97-103.
- E. Yattaqi, S. Gemawati, and I. Hasbiyati, "*fq*-Derivation in *BM*-algebra", Jambura Journal of Mathematics, 3(2021), 155-166.
- 14. S. Gemawati, A. Sirait, Musraini M, and E. Fitria, " f_q -Derivations of BN_1 -algebras", International Journal of Mathematics Trends and Technology, 67(2021), 1-13.