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1. INTRODUCTION 

A differentiable curve α is said to be a magnetic curve for the magnetic field F if it is a solution of the Lorentz equation given 

by 

∇α0(t)α0(t) = Φ(α0(t)). (1.1) 

Where ∇ is the Riemannian connection on M. and Φ is the Lorentz force. These curves have constant speed and unit speed 

magnetic curves are called normal magnetic curves [2]. 

In [2], Druta-Romaniuc, Inoguchi, Munteanu and Nistor studied magnetic curves in a Sasakian manifold and the magnetic 

curves in Cosymplectic manifolds were studied in [3] by the same authors. Magnetic trajectories of an almost contact metric 

manifold were studied by Jleli, Munteanu and Nistor [5]. The classification of all uniform magnetic fields was obtained by 

Munteanu [6]. Guvenc and Ozgur studied slant magnetic curves in Smanifold [4]. 

On an arbitrary oriented Riemannian manifold (M2n+1,g) canonically define a cross product X of two vector fields X,Y ∈ 

χ(M) as follows: g(X ×Y,Z) = dvg(X,Y,Z) for any Z ∈ χ(M). Where dvg denotes the volume form defined by g, when M is an 

almost contact metric manifold. The cross product is given by the formula 

X × Y = g(φX,Y )ξ − η(Y )φX + η(X)φY . 

Note that the unitary vector field X orthogonal to ξ, the basis {X,φX,ξ} is considered to be positively oriented.  

Then we have ξ × Y = φY and ξ × α0 = φα0. 

 

A Slant curve in an almost contact geometry arises as a generalization of curve of constant slope (also called a cylindrical 

helix) in an Euclidean space R3. More precisely, a slant curve α0(E1) is defined by the condition that the scalar product 

g(α0(E1),ξ) of the tangent vector field α0(E1) and the Reeb vector field ξ to be constant. The Slant curves can also be viewed 

as a generalization of Legendre curves, in almost contact metric manifolds have been investigated intensively by many 

authors. 

These studies motivated us to investigate pseudo-Hermitian magnetic curves in (κ,µ) manifold endowed with the 

Zamkovoy connection. In Section 2, we summarize the fundamental properties of (κ,µ) manifolds and the unique connection, 

namely the Zamkovoy connection. We find expression for curvature and torsion of magnetic curves in (κ,µ)manifolds 

admitting Zamkovoy connection. Finally we give classification theorem for pseudo-Hermitian magnetic curves. 

 

2. PRELIMINARIES 

Almost contact manifolds have odd-dimension. Let us denote the manifold that we study on by M. It carries two fields φ 

and ξ and a 1-form η. The field φ represents the endomorphism of the tangent spaces, the field ξ is called characteristic vector 

field and η is an 1-form such that 
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φ2 = −I + η ⊗ ξ,g(X,ξ) = η(X), (2.1) 

η(ξ) = 1,φξ = 0,η · φ = 0, (2.2) 

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), (2.3) 

 

g(φX,Y ) = −g(X,φY ),g(X,φY ) = dη(X,Y ),              (2.4) 

for any vector fields X,Y ∈ χ(M). The (κ,µ)-nullity distribution of a Riemannian manifold (M,g) for a real number κ and µ is a 

distribution 

N(κ,µ) : p 7→ Np(κ,µ) = {Z ∈ χp(M) : R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y ) 

+ µ(g(Y,Z)hX − g(X,Z)hY )}                               (2.5) 

for any X,Y,Z ∈ χp(M) and κ and µ being constants, where R denotes the Riemannian curvature tensor and χp(M) denotes the tangent 

vector space of M at any point p ∈ M. 

If the characteristic vector field of a contact metric manifold belongs to the κ , µ nullity distribution, then the relation holds. 

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) (2.6) 

 

A contact metric manifold with ξ ∈ N(κ,µ) is called a (κ,µ)-contact metric manifold [1]. In a (κ,µ)-contact metric manifold M the 

following relations hold [1], [9]: 

h2 = (κ − 1)φ2, (2.7) 

∇Xξ = −φX − φhX, (2.8) 

(∇Xφ)Y = g(X + hX,Y )ξ − η(Y )(X + hX), (2.9) 

(∇Xη)Y = g(X + hX,φY ), (2.10) 

 

The relation between Zamkovoy connection ∇∗ and the Levi-Civita connection ∇ on M is given by [13], 

                    (2.11) 

∇∗Xξ = 0.                                                                                                                       (2.12) 

 

3. MAGNETIC CURVE OF (κ,µ)-MANIFOLD WITH RESPECT TO ZAMKOVOY CONNECTION 

Let M(φ,ξ,η,g) be an (2n + 1)-dimensional (κ,µ)-contact metric manifold endowed with Zamkovoy connection ∇∗ and  

α : I → M a curve parametrized by arc-length. If there exists a g-orthonormal vector fields E1, E2,..., Er along α such that 

E1 = α0, 

∇∗E1E1 = k1∗E2, 

∇∗E1E1 = −k1∗E1 + k2∗E3, (3.1) 

.................. 

, 

 

where α is called a Frenet curve for ∇∗ of osculating order r, (1 ≤ r ≤ 2n + 1). Here ,....., kr
∗
−1 are called pseudo-Hermitian 

curvature functions of α and these functions are positive valued on I. A geodesic for ∇∗ (or pseudo-Hermitian geodesic) is a 

Frenet curve of osculating order 1 for ∇∗. If r = 2 and a  is a constant, then α is called a pseudo-Hermitian circle. A pseudo-

Hermitian helix of order r, r ≥ 3 is a Frenet curve for ∇∗ of osculating order r with non-zero positive constant pseudo-Hermitian 

helix, we mean its osculating order is 3. 

 

Let (M,φ,ξ,η,g) be a (κ,µ) manifold endowed with the Zamkovoy connection ∇∗. 

Let us denote the fundamental 2-form of M by Ω. Then, we have 

Ω(X,Y ) = g(X,φY ). (3.2) 

From the fact that M is a (κ,µ) manifold, we have Ω = dη. Hence dΩ = 0, i.e., it is closed. Thus we can define a magnetic field Fq 

on M by 

Fq(X,Y ) = qΩ(X,Y ), 

namely the contact magnetic field with strength q, where X, Y ∈ χ(M) and q ∈ R. The Lorentz force Φ associated to the contact 

magnetic field Fq can be written as Φ = −qφ, so the Lorentz equation (1.1) is 

∇E1E1 = −qφE1, (3.3) 
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where α : I ⇒ M is a curve with arc length parameter, E1 = α0 is a tangent vector field and ∇ is the Levi-civita connection. By using 

(2.11) and (3.2) we have 

.                     (3.4) 

Theorem 3.1. Let α be a magnetic curve in (2n + 1)-dimensional (κ,µ)-contact metric manifold admitting Zamkovoy 

connection with curvature and torsion k∗ = |q|sinθ and τ∗ = qcosθ respectively, Moreover, its ratio is constant. 

Proof: Take the frame field {E1,E2,E3} along α. By definition E1 = α0, then the magnetic equation is written as 

. (3.5) 

Cosequently we get 

k∗2 = q2[sin2θ]. (3.6) 

Thus α has constant curvature. 

k∗ = |q|sinθ. (3.7) 

Assume that α is a non-geodesic normal magnetic curve, then from (4.1) we have 

. (3.8) 

Next, the binormal vector field E3 is obtained from the formula 

. (3.9) 

The covariant derivative of the binormal with respect to Zamkovoy connection is computed as 

(3.10) 

Now by using Frenet frame and (3.2) we obtain  

τ∗ = qcosθ. (3.11) 

Hence the proof. 

Lemma 3.1. Let α be a unit speed curve on a (2n + 1)-dimensional (κ,µ)-manifold and E1, E2, E3 be the tangent, principal 

normal and binormal of the curve α respectively. Then 

.               (3.12) 

. (3.13) 

.                 (3.14) 

Proof: Let α be a unit speed curve on a (2n+1)- dimensional (κ,µ)-manifold admitting Zamkovoy connection. Differentiating 

η(E1), η(E2) and η(E3) along α with respect to Zamkovoy connection, we have 

η(E1)0 = g(∇∗E1E1,ξ) + g(E1,∇∗E1ξ), 

we get 

(3.15) 

.               (3.16) 

Similarly we get, 

, (3.17) 

and 

,                (3.18) 

Lemma 3.2. For slant curve in (κ,µ)-manifold admitting Zamkovoy connection, we have η(E1)0 = 0. 

Proof: If a curve α in a (κ,µ)- manifold of dimensional (2n+1) admitting Zamkovoy connection is a slant curve then we 

have η(E1) = cosθ = constant. Which implies that η(E1)0 = 0. 

Therefore from Lemma 3.1 and 3.2 we can state the following theorem: 

Theorem 3.2. A non Legendre Slant curve on a (2n + 1)- dimensional (κ,µ)- manifold with respect to Zamkovoy connection is a 

geodesic. 

Theorem 3.3. is a magnetic helix in (2n + 1)-dimensional (κ,µ) manifold then 

η(E2) = 0 and . 

Proof: Let α be a magnetic helix curve in a (2n+1)-dimensional (κ,µ)- manifold with respect to ∇∗. Then 

, (3.19) 

where α0 = E1(tangent vector). Using Frenet formula we have 

. (3.20) 
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Taking innerproduct of (3.20) with respect to ξ, we get 

. 

This implies that  

η(E2) = 0. (3.21) 

 

Differentiating (3.21) with respect to E1, we have 

.                                      (3.22) 

It follows that 

,              (3.23) 

which gives 

. (3.24) 

Taking innerproduct with ξ, we obtain 

.                                       (3.25) 

Therefore we have 

                                                                    (3.26) 

Hence the proof. 

 

4. PSEUDO-HERMITIAN MAGNETIC CURVE IN (κ,µ)-MANIFOLD ADMITTING ZAMKOVOY CONNECTION 

Definition 4.1. Let α : I ⇒ M be a unit speed curve in (κ,µ) manifold (M,φ,ξ,η,g) endowed with the Zamkovoy connection ∇∗. 

Then it is called a normal magnetic curve with respect to Zamkovoy connection ∇∗ (or shortly pseudo-Hermitian magnetic) 

if it satisfies (3.4). 

Lemma 4.1. If α is a pseudo-Hermitian magnetic curve in (κ,µ) manifold admitting Zamkovoy connection then α is a slant curve. 

Proof: Let α : I ⇒ M be pseudo-Hermitian magnetic curve. Then we find 

, (4.1) 

which implies that  

η(E1) = cosθ = constant. 

As a result , we can rewrite (3.4) as 

(4.2) 

, (4.3) 

 

where θ is the contact angle of α. 

Now, we are in the possition to prove our Main theorem: 

Theorem 4.1. Let (M,φ,ξ,η,g) be a (κ,µ) manifold admitting Zamkovoy connection ∇∗. Then a curve α in M is pseudo-Hermitian 

magnetic curve then it belongs to the following: 

a) Pseudo-Hermitian non-Legendre slant geodesics (including pseudo-Hermitian geodesics as integral curves of ξ) 

b) Pseudo-Hermitian Legendre circles with  and having the Frenet frame field (for ∇∗) {E1,−sgn(q)φE1} 

c) Pseudo-Hermitian slant helices with , 

  and having the Frenet frame field 

, 

  

 
  

Proof: Let us assume that α be a normal magnetic curve with respect to ∇∗. Consequently, (4.3) must be validated. Let us assume 

that . Here, we have cosθ = . 

If
 

, then α is a pseudo-Hermitian non-Legendre slant geodesic. 

Otherwise φE1 = 0 which implies that E1 = ξ. 

So we have proved that α is pseudo-Hermitian non Legendre slant geodesic. (including Pseudo-Hermitian geodesics as integral 

curves of ξ). 
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Now let . From (4.1) and (4.3) , we find 

.     (4.4) 

Since E1 is unit, , from (2.1), (2.2) and (2.3) gives 

g(φE1,φE1) = sin2θ.                                                         (4.5) 

By use of (4.3) and (4.4) we obtain 

                                            (4.6) 

 

 
φE1 = δsinθE2.                                                       (4.7) 

 

Let us assume , i.e., r = 2 from the fact that  is a constant. Then α is pseudoHermitian circle. (4.7) gives us η(φE1) =0 

which implies that η(E2) = 0 differentiating above equation with respect to ∇∗, we obtain ∇∗E1η(E2) = 0 

Since r = 2 and (2.12). we have η(E1) = 0. Hence α is Legendre and cosθ = 0, from 

(4.6) we have . 

In this case, we also obtain δ = −sgn(q), and E2 = −sgn(q)φE1, we have proved that  and having Frenet frame field 

{E1,−sgn(q)φE1}. 

Now let us assume . If we have φE1 = 0 we obtain 

.                                                (4.8) 

From (2.1), (2.2) and (4.7), we find  

φ2E1 = δsinθφE2. (4.9) 

This gives us  and so (4.8) becomes 

. (4.10) 

If we differentiate (4.7) with respect to ∇∗, we also have 

∇∗E1φE1 = δsinθ∇∗E1E2. From (4.1) we obtain 

. (4.11) 

By the use of (4.10) and (4.11), we obtain 

,           (4.12) 

also g(ξ − cosθE1,ξ − cosθE1) = sin2θ. From (4.12) we calculate 

     (4.13) 

As a result we get 

                                (4.14) 

Differentiating (4.14) with respect to ∇∗, since φE1||E2 we find that . Hence proof is completed. 
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