
A classical Burger’s equation is studied by symmetry analysis. The Lie point symmetries con-
structed are applied in symmetry reductions and the resulting reduced systems investigated for
exact group-invariant solutions. We also construct solitons using symmetry span of space and
time translations. Finally, we prove that Burgers equation is a conservation law by the multiplier
technique.

Keywords: symmetry analysis; group-invariant solutions; stationary solutions; symmetry reduc-
tions; solitons.

1 Introduction

The Bateman-Burgers Equation(1.1), is one of the most imporant partial differential equations.
First studied by Johannes Burgers [7] , the model often appears in vast areas of mathematics
including; gas dynamic, fluid mechanics, traffic flow and nonlinear acoustics. In this manuscript
we study a special case of the general Burgers equation

∆0 ≡ αut + βuux + γuxx = 0, (α, β, γ) ∈ R3 \ (0, 0, 0), (1.1)

which shows up in th description of the movement of weak nonlinear waves in gases with suffi-
ciently small dissipative effects that can be considered in first order approximation only. As dis-
sipation vanishes, Equation (1.1) adequately describes waves traversing a non-viscous medium.
The dependent variable u is a function of independent variables t and x . We study a special case
of Equation (1.1), where

α = −β = −γ = 1,

that is ,

∆ ≡ ut − uux − γuxx = 0. (1.2)

2 Preliminaries

In this section, we outline preliminary concepts which are useful in the sequel.
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Local Lie groups

In the Euclidean spaces Rn of x = xi independent variables and Rm of u = uα dependent
variables, we consider the transformations [22]

Tε : x̄i = ϕi(xi, uα, ε), ūα = ψα(xi, uα, ε), (2.1)

involving the continuous parameter ε which ranges from a neighbourhood N ′ ⊂ N ⊂ R of
ε = 0 where the functions ϕi and ψα differentiable and analytic in the parameter ε.

Definition 2.1. The set G of transformations given by (2.1) is a local Lie group if it holds true that

1. (Closure) Given Tε1 , Tε2 ∈ G, for ε1, ε2 ∈ N ′ ⊂ N , then
Tε1Tε2 = Tε3 ∈ G, ε3 = φ(ε1, ε2) ∈ N .

2. (Identity) There exists a unique T0 ∈ G if and only if ε = 0 such that
TεT0 = T0Tε = Tε.

3. (Inverse) There exists a unique Tε−1 ∈ G for every transformation Tε ∈ G,
where ε ∈ N ′ ⊂ N and ε−1 ∈ N such that
TεTε−1 = Tε−1Tε = T0.

Remark 2.2. Associativity of the group G in (2.1) follows from (1).

Prolongations

In the system,
∆α

(
xi, uα, u(1), . . . , u(π)

)
= ∆α = 0, (2.2)

the variables uα are dependent. The partial derivatives u(1) = {uαi },
u(2) = {uαij}, . . . , u(π) = {uαi1...iπ}, are of the first, second, . . . , up to the πth-orders.

Denoting

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ . . . , (2.3)

the total differentiation operator with respect to the variables xi and δji , the Kronecker delta,
we have

Di(x
j) = δji ,

′, uαi = Di(u
α), uαij = Dj(Di(u

α)), . . . , (2.4)

where uαi defined in (2.4) are differential variables Ibragimov [12].

(i.) Prolonged groups Consider the local Lie group G given by the transformations

x̄i = ϕi(xi, uα, ε), ϕi
∣∣∣
ε=0

= xi, ūα = ψα(xi, uα, ε), ψα
∣∣∣
ε=0

= uα, (2.5)

where the symbol
∣∣∣
ε=0

means evaluated on ε = 0.

Definition 2.3. The construction of the group G given by (2.5) is an equivalence
of the computation of infinitesimal transformations

x̄i ≈ xi + ξi(xi, uα)ε, ϕi
∣∣∣
ε=0

= xi,

ūα ≈ uα + ηα(xi, uα)ε, ψα
∣∣∣
ε=0

= uα,
(2.6)

2895

“A Group Approach to Exact Solutions and Conservation laws of Burger’s Equation”



obtained from (2.1) by a Taylor series expansion of ϕi(xi, uα, ε) and ψi(xi, uα, ε) in
ε about ε = 0 and keeping only the terms linear in
ε, where

ξi(xi, uα) =
∂ϕi(xi, uα, ε)

∂ε

∣∣∣
ε=0

, ηα(xi, uα) =
∂ψα(xi, uα, ε)

∂ε

∣∣∣
ε=0

. (2.7)

Remark 2.4. The symbol of infinitesimal transformations, X , is used to write (2.6) as

x̄i ≈ (1 +X)xi, ūα ≈ (1 +X)uα, (2.8)

where
X = ξi(xi, uα)

∂

∂xi
+ ηα(xi, uα)

∂

∂uα
, (2.9)

is the generator of the group G given by (2.5).

Remark 2.5. To obtain transformed derivatives from (2.1), we use a change of variable
formulae

Di = Di(ϕ
j)D̄j , (2.10)

where D̄j is the total differentiation in the variables x̄i. This means that

ūαi = D̄i(ū
α), ūαij = D̄j(ū

α
i ) = D̄i(ū

α
j ). (2.11)

If we apply the change of variable formula given in (2.10) on G given by (2.5), we get

Di(ψ
α) = Di(ϕ

j), D̄j(ū
α) = ūαjDi(ϕ

j). (2.12)

Expansion of (2.12) yields(
∂ϕj

∂xi
+ uβi

∂ϕj

∂uβ

)
ūβj =

∂ψα

∂xi
+ uβi

∂ψα

∂uβ
. (2.13)

The variables ūαi can be written as functions of xi, uα, u(1), that is

ūαi = Φα(xi, uα, u(1), ε), Φα
∣∣∣
ε=0

= uαi . (2.14)

Definition 2.6. The transformations in the space of the variables xi, uα, u(1) given in (2.5)
and (2.14) form the first prolongation group G[1].

Definition 2.7. Infinitesimal transformation of the first derivatives is

ūαi ≈ uαi + ζαi ε, where ζαi = ζαi (xi, uα, u(1), ε). (2.15)

Remark 2.8. In terms of infinitesimal transformations, the first prolongation
group G[1] is given by (2.6) and (2.15).

(ii.) Prolonged generators

Definition 2.9. By using the relation given in (2.12) on the first prolongation group
G[1] given by Definition 2.6, we obtain [8]

Di(x
j + ξjε)(uαj + ζαj ε) = Di(u

α + ηαε), which gives (2.16)

uαi + ζαj ε+ uαj εDiξ
j = uαi +Diη

αε, (2.17)

and thus

ζαi =Di(η
α)− uαjDi(ξ

j), (2.18)

is the first prolongation formula.
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Remark 2.10. Similarly, we get higher order prolongations [12],

ζαij = Dj(ζ
α
i )− uαiκDj(ξ

κ), . . . , ζαi1,...,iκ = Diκ(ζαi1,...,iκ−1
)− uαi1,i2,...,iκ−1jDiκ(ξj).

(2.19)

Remark 2.11. The prolonged generators of the prolongations G[1], . . . ,G[κ] of the group G
are

X [1] = X + ζαi
∂

∂uαi
, . . . , X [κ] = X [κ−1] + ζαi1,...,iκ

∂

∂ζαi1,...,iκ
, κ ≥ 1, (2.20)

where X is the group generator given by (2.9).

Group invariants

Definition 2.12. A function Γ(xi, uα) is called an invariant of the group G of transformations
given by (2.1) if

Γ(x̄i, ūα) = Γ(xi, uα). (2.21)

Theorem 2.13. A function Γ(xi, uα) is an invariant of the group G given by (2.1) if and only if it
solves the following first-order linear PDE: [8]

XΓ = ξi(xi, uα)
∂Γ

∂xi
+ ηα(xi, uα)

∂Γ

∂uα
= 0. (2.22)

From Theorem (2.13), we have the following result.

Theorem 2.14. The local Lie group G of transformations in Rn given by (2.1) [12] has precisely
n − 1 functionally independent invariants. One can take, as the basic invariants, the left-hand
sides of the first integrals

ψ1(xi, uα) = c1, . . . , ψn−1(xi, uα) = cn−1, (2.23)

of the characteristic equations for (2.22):

dxi

ξi(xi, uα)
=

duα

ηα(xi, uα)
. (2.24)

Symmetry groups

Definition 2.15. The vector field X (2.9) is a Lie point symmetry of the PDE system (2.2) if the
determining equations

X [π]∆α

∣∣∣
∆α=0

= 0, α = 1, . . . ,m, π ≥ 1, (2.25)

are satisfied, where
∣∣∣
∆α=0

means evaluated on ∆α = 0 and X [π] is the π-th prolongation of X .

Definition 2.16. The Lie group G is a symmetry group of the PDE system given in (2.2) if the
PDE system (2.2) is form-invariant, that is

∆α

(
x̄i, ūα, ū(1), . . . , ū(π)

)
= 0. (2.26)

Theorem 2.17. Given the infinitesimal transformations in (2.5), the Lie group G in (2.1) is found
by integrating the Lie equations

dx̄i

dε
= ξi(x̄i, ūα), x̄i

∣∣∣
ε=0

= xi,
dūα

dε
= ηα(x̄i, ūα), ūα

∣∣∣
ε=0

= uα. (2.27)
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Lie algebras

Definition 2.18. A vector space Vr of operators [22] X (2.9) is a Lie algebra if for any two
operators, Xi, Xj ∈ Vr , their commutator

[Xi, Xj ] = XiXj −XjXi, (2.28)

is in Vr for all i, j = 1, . . . , r.

Remark 2.19. The commutator satisfies the properties of bilinearity, skew symmetry and the
Jacobi identity [23].

Theorem 2.20. The set of solutions of the determining equation given by (2.25) forms a Lie
algebra[8].

Conservation laws

Let a system of πth-order PDEs be given by (2.2).

Definition 2.21. The Euler-Lagrange operator δ/δuα is

δ

δuα
=

∂

∂uα
+
∑
κ≥1

(−1)κDi1 , . . . , Diκ

∂

∂uαi1i2...iκ
, (2.29)

and the Lie- Bäcklund operator in abbreviated form [8] is

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+ . . . . (2.30)

Remark 2.22. The Lie- Bäcklund operator (2.30) in its prolonged form is

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
κ≥1

ζi1...iκ
∂

∂uαi1i2...iκ
, (2.31)

where

ζαi = Di(W
α) + ξjuαij , . . . , ζαi1...iκ = Di1...iκ(Wα) + ξjuαji1...iκ , j = 1, . . . , n. (2.32)

and the Lie characteristic function is

Wα = ηα − ξjuαj . (2.33)

Remark 2.23. The characteristic form of Lie- Bäcklund operator (2.31) is

X = ξiDi +Wα ∂

∂uα
+Di1...iκ(Wα)

∂

∂uαi1i2...iκ
. (2.34)

The method of multipliers

Definition 2.24. A function Λα
(
xi, uα, u(1), . . .

)
= Λα, is a multiplier of the PDE system given

by (2.2) if it satisfies the condition that [19]

Λα∆α = DiT
i, (2.35)

where DiT
i is a divergence expression.

Definition 2.25. To find the multipliers Λα, one solves the determining equations (2.36) [4],

δ

δuα
(Λα∆α) = 0. (2.36)

Notation 2.26. We will use Ci, i ∈ N as constants of integration and Ci(x1, x2, . . .), i ∈ N as
arbitrary function of x1, x2, . . . .
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3 Main results

3.1 Lie point symmetries of (1.2)

We start first by computing Lie point symmetries of the Burgers Equation (1.2)which admits the
continuous Lie group of transformations infinitesimally generated by

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(3.1)

if and only if

X [2]∆

∣∣∣∣
∆=0

= 0. (3.2)

Using the definition of X [2] in (2.20), we have

(
T
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζ1

∂

∂ut
+ ζ2

∂

∂ux
+ ζ22

∂

∂uxx

)(
ut − uux − uxx

)∣∣∣∣
ut−uux−uxx=0

= 0

(3.3)

which gives

−ηux + ζ1 +−ζ2u+−ζ22

∣∣
uxx=ut−uux = 0, (3.4)

where ζ1, ζ2 and ζ22 are

ζ1 = ηt + utηu − utτt − u2
t τu − uxξt − utuxξu, (3.5)

ζ2 = ηx + uxηu − utτx − utuxτu − uxξx − u2
xξu, (3.6)

ζ22 = ηxx + 2uxηxu + uxxηu + u2
xηuu − 2uxxξx − uxξxx − 2u2

xξxu − 3uxuxxξu (3.7)

−u3
xξuu − 2utxτx − utτxx − 2utuxτxu − (utuxx + 2uxutx)τu − utu2

xτuu, (3.8)

Substituting the values of ζ1, ζ2 and ζ22 in ( 3.4) we obtain the following determining equation:

−ηux +
(
ηt + utηu − utτt − u2

t τu − uxξt − utuxξu
)
+

−
(
ηx + uxηu − utτx − utuxτu − uxξx − u2

xξu
)
u+

−
(
ηxx + 2uxηxu + uxxηu + u2

xηuu − 2uxxξx − uxξxx − 2u2
xξxu

−3uxuxxξu − u3
xξuu − 2utxτx − utτxx

−2utuxτxu − (utuxx + 2uxutx)τu − utu2
xτuu

)∣∣
uxx=ut−uux = 0

(3.9)

Now replacing uxx by uxx = ut − uux in the above equation we obtain
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−ηux +
(
ηt + utηu − utτt − u2

t τu − uxξt − utuxξu
)
+

−
(
ηx + uxηu − utτx − utuxτu − uxξx − u2

xξu
)
u+

−
(
ηxx + 2uxηxu + uxxηu + u2

xηuu − 2{ut − uux}ξx − uxξxx − 2u2
xξxu

−3ux{−ut − uux}ξu − u3
xξuu − 2utxτx − utτxx

−2utuxτxu − (ut{ut − uux}+ 2uxutx)τu − utu2
xτuu

)
= 0

(3.10)

or

−ηux +
(
ηt + utηu − utτt − u2

t τu − uxξt − utuxξu
)
+

−
(
ηx + uxηu − utτx − utuxτu − uxξx − u2

xξu
)
u+

−
(
ηxx + 2uxηxu + uxxηu + u2

xηuu + 2{−utξx + 2uux}ξx − uxξxx − 2u2
xξxu

+3ux{−utξu + uux}ξu − u3
xξuu − 2utxτx − utτxx

−2utuxτxu +
(
{u2

t + uutux} − 2uxutx
)
τu − utu2

xτuu
)

= 0

(3.11)

By definition, τ, ξ and η are functions of t, x and u only. For that reason, we can then split Equation
(3.11) on the derivatives of u (without losing any information) and obtain

ξxx − 2ηxu − ξxu− ξt − η =0 (3.12)

ηt − ηxu− ηxx =0 (3.13)

2ξx − τt =0, (3.14)

ξu = τu = τx = ηuu =0 (3.15)

The observations from Equations in (3.15) imply that

τ = τ(t), ξ = ξ(t, x), and η = A(t, x)u+B(t, x). (3.16)

By using the expressions in (3.16) in Equation (3.12), we obtain

ξxx(t, x)− 2Ax(t, x)− ξx(t, x)u− ξt −A(t, x)u−B(t, x) = 0 (3.17)

By splitting the terms in (3.17) on powers of u ( this does no harm since none of the terms is a
function of u), we obtain

u :ξx(t, x) +A(t, x) = 0 (3.18)

u0 :ξxx(t, x)− 2Ax(t, x)− ξt −B(t, x) = 0. (3.19)

Now using the expression for η in Equation (3.13), one gets that

At(t, x)u+Bt(t, x)− u(Ax(t, x)u+Bx(t, x))− (Axx(t, x)u+Bxx(t, x)) = 0 (3.20)

which splits on powers of u to yield

u2 :Ax(t, x) = 0 (3.21)

u :At(t, x)−Bx(t, x)−Axx(t, x) = 0 (3.22)

u0 :Bt(t, x)−Bxx(t, x) = 0 (3.23)
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Equation is sufficient for

A(t, x) = A(t), Axx(t, x) = 0 thus At(t, x) = Bx(t, x)=⇒Bxx(t, x) = 0. (3.24)

The last conclusion is informed by the condition that A(t, x) = A(t). Furthermore, Equation
(3.23) forces B(t, x) = B(x). The integration of Bxx(t, x) = 0 with respect to x twice yields

B(t, x) = C1x+ C2. (3.25)

By the value for B(t, x) in (3.25), and the relation in (3.24), we have

At(t, x) = C1=⇒A(t, x) = C1t+ C3. (3.26)

By Equation (3.18),

ξx(t, x) = −C1t− C3=⇒ξ(t, x) = −C1tx− C3x+D(t). (3.27)

From Equation (3.19), we have that

−C1x+Dt(t) = −C1x− C2=⇒D(t) = −C2t+ C4. (3.28)

Finally, using the value of ξ(t, x) = −C1tx− C2t− C3x+ C4 in Equation (3.14), we have that

τt(t, x) = −2C1t− 2C3=⇒τ(t, x) = −C1t
2 − 2tC3 + C5. (3.29)

Thus our desired functions are

τ =− C1t
2 − 2tC3 + C5 (3.30)

ξ =− C1tx− C2t− C3x+ C4 (3.31)

η =C1(tu+ x) + C2 + C3u. (3.32)

A Lie algebra spanned by the following symmetries is thus obtained:

X1 =− t2 ∂
∂t
− tx ∂

∂x
+ (x+ tu)

∂

∂u
(3.33)

X2 =− t ∂
∂x

+
∂

∂u
(3.34)

X3 =− 2t
∂

∂t
− x ∂

∂x
+ u

∂

∂u
, (3.35)

X4 =
∂

∂x
(3.36)

X5 =
∂

∂t
. (3.37)

3.2 Commutator Table for Symmetries

We evaluate the commutation relations for the symmetry generators. By definition of Lie bracket
[23], for example, we have that

[X4, X5] = X4X5 −X5X4 =

(
∂

∂x

∂

∂t

)
−
(
∂

∂t

∂

∂x

)
= 0. (3.38)

Remark 3.1. The remaining commutation relations are obtained analogously. We present all
commutation relations in table (1) below.
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[Xi, Xj ] X1 X2 X3 X4 X5

X1 0 0 2X1 −X2 −X3

X2 0 0 X2 0 X4

X3 -2X1 -X2 0 X4 2X5

X4 X2 0 -X4 0 0
X5 X3 -X4 -2X5 0 0

Table 1: A commutator table for the Lie algebra spanned by the symmetries of Burger’s equation.

3.3 Group Transformations

The corresponding one-parameter group of transformations can be determined by solving the Lie
equations [24]. Let Tεi be the group of transformations for each Xi, i = 1, 2, 3, 4. We display how
to obtain Tεi from Xi by finding one-parameter group for the infinitesimal generator X1, namely,

X4 =
∂

∂x
. (3.39)

In particular, we have the Lie equations

dt̄

dε
=0, t̄

∣∣∣
ε=0

= t,

dx̄

dε
=1, x̄

∣∣∣
ε=0

= x,

dū

dε
=0, ū

∣∣∣
ε=0

= u.

(3.40)

Solving the system (3.40) one obtains,

t̄ = t, x̄ = x+ ε, ū = u, (3.41)

and hence the one-parameter group Tε4 corresponding to the operator X4 is

Tε4 : t̄ = t, x̄ = x+ ε4, ū = u. (3.42)

All the five one-parameter groups are presented below :

Tε1 : t̄ =
t

1 + ε1t
, x̄ =

x

eε1t
, ū =

(tu+ x)eε1t − x
t

,

Tε2 : t̄ = t, x̄ = x− tε2, ū = u+ ε2,

Tε3 : t̄ = te−2ε3 , x̄ = xe−ε3 , ū = ueε3 ,

Tε4 : t̄ = t, x̄ = x+ ε4, ū = u,

Tε5 : t̄ = t+ ε5, x̄ = x, ū = u.

(3.43)

3.4 Construction of Group-Invariant Solutions

Now we compute the group invariant solutions of Burger’s equation.

(i) The Case for X1 .
We consider the operator

X1 = −t2 ∂
∂t
− tx ∂

∂x
+ (x+ tu)

∂

∂u
(3.44)
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J1 = x
t and J2 = x+ut.

Thus, the group-invariant solution is u(t, x) = 1
tϕ(xt ) −

x
t . Substitution reduces Equation

(1.2) into

ϕ” + ϕϕ′ = 0 (3.45)

which is admitted by

ϕ(
x

t
) = C3 coth

{
C3x

2t
+ C4

}
(3.46)

where C3 and C4are arbitrary constants. Hence the group-invariant solutions for 1.2 under
the X1 take the form

u(t, x) =
C3

t
coth

{
C3x

2t
+ C4

}
− x

t
. (3.47)

(ii) Galilean-invariant solutions.
Consider the Galilean boost operator

X2 = −t ∂
∂x

+
∂

∂u
. (3.48)

Characteristic equations associated to the operator (3.48) yieldsJ1 = t and
J2 = x

t +u. As a result, the group-invariant solution of (1.2) for this case is J2 = φ(J1), for
φ an arbitrary function. That is,

u(t, x) = φ(t)− x

t
. (3.49)

Substitution of the value of u from equation (3.49) into equation (1.2) yields a first order
ordinary differential equation φ′(t) + φ(t)

t = 0, whose general solution is φ(t) = δ
t with δ

an arbitrary constant of integration. Hence, the group-invariant solution under X2 is

u(t, x) =
δ − x
t

, t 6= 0. (3.50)

(iii) Scale-invariant solutions.
We consider the scaling operator

X3 = −2t
∂

∂t
− x ∂

∂x
+ u

∂

∂u
(3.51)

The associated Lagrangian equations to (3.51) yield two invariants, J1 = x√
t

and

J2 = u
√
t. Thus, the group-invariant solution is u(t, x) = 1√

t
f(λ), λ = x√

t
.

Substitute this solution in (1.2) to obtain

q′′ + qq′ +
λq′ + q

2
= 0 (3.52)

which is expressible in the form

(q′)′ +
1

2
(q2)′ +

(λq)′

2
= 0 (3.53)

and integrating once yields

The associated Lagrangian equations to (3.44) yield two invariants,
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q′ +
1

2
q2 +

λq

2
= C1, (3.54)

where C1 is an arbitrary constant. By letting C1 = 0, the Equation ( 3.54)
reduces to a Bernoulli’s differential equation for q , whose solution is

q(λ) =
2√
π

[
e−

λ2

4

C2 + erf(λ2 )

]
(3.55)

for some arbitrary constant C2 and

erf(ω) =
2√
π

∫ ω

0
e−j

2
dj (3.56)

is the error function. So the scale-invariant solutions for 1.2 take the form

u(t, x) =
2√
πt

{
e−

x2

4t

C2 + erf
(
x

2
√
t

)} (3.57)

(iv) Translationally-invariant solutions
We consider the space translation operator

X4 =
∂

∂x
. (3.58)

Characteristic equations associated with the operator (3.58) are

dt

0
=

dx

1
=

du

0
, (3.59)

which give two invariants J1 = t and J2 = u. Therefore, u = ψ(t) is the
group-invariant solution for some arbitrary function ψ. Substitution of u = ψ(t) into
(1.2) yields

ψ′(t) = 0, (3.60)

whose solution is
ψ(t) = C1, (3.61)

for C1 an arbitrary constant. Hence the group-invariant solution of (1.2) under the space
translation operator (3.58) is

u(t, x) = C1. (3.62)

(v) Stationary solutions
Consider the time translation operator

X5 =
∂

∂t
. (3.63)

The Lagrangian system associated with the operator (3.63) is

dt

1
=

dx

0
=

du

0
, (3.64)

whose invariants are J1 = x and J2 = u. So, u = ψ(x) is the group-invariant solution.
Substituting of u = ψ(x) into (1.2) yields

ψ′(x)ψ(x)− ψ′′(x) = 0. (3.65)

which is satisfied by the function

ψ(x) = C1 coth

(
C4

2
x+ C5

)
. (3.66)
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3.5 Soliton solutions

We obtain traveling wave solutions of Burgers equation by considering a linear combination of the
symmetries X4 and X5, namely, [22]

X = cX4 +X5 = c
∂

∂x
+
∂

∂t
, for some constant c. (3.67)

The characteristic equations are
dt

1
=

dx

c
=

du

0
(3.68)

We get two invariants, J1 = x− ct and J2 = u. So the group-invariant solution is

u(t, x) = φ(x− ct), (3.69)

for some arbitrary function φ and c the velocity of the wave.

Substitution of u into (1.2) yields a second order ordinary differential equation

cϕ′ + ϕϕ′ + ϕ′′ = 0. (3.70)

Integration of equation (3.70) with respect to ϕ yields

2cϕ+ ϕ2 + 2ϕ′ = 0, (3.71)

where we take 0 as a constant of integration.
Now we have

ϕ′ = −cϕ− ϕ2

2
(3.72)

or
dϕ

2cϕ+ ϕ2
= −dξ

2
, (3.73)

where ξ = x− ct.
By resolving the left hand side into partial fractions, we obtain a one-soliton solution,

ϕ(x, t) =
2cAe−c(x−ct)

1−Ae−c(x−ct)
, A is an arbitrary constant. (3.74)

4 Conservation laws of the Burgers equation

We now construct conserved vectors for Equation (1.2) via the technique of multipliers.

4.1 The multipliers

We make use of the Euler-Lagrange operator defined as defined in [24] to look for a zeroth order
multiplier Λ = Λ(t, x, u). The resulting determining equation for computing Λ is

δ

δu
[Λ{ut − uux − uxx}] = 0. (4.1)

where
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δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

x

∂

∂uxx
+ . . . (4.2)

Expansion of equation (4.1) yields

Λu(ut − uux − uxx)− uxΛ−Dt(Λ) +Dx(Λu)−D2
x(Λ) = 0. (4.3)

Invoking the total derivatives

Dt =
∂

∂t
+ ut

∂

∂u
+ utx

∂

∂ux
+ utt

∂

∂ut
+ · · · , (4.4)

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ . . . . (4.5)

on equation (4.3) produces

Λt − uΛx + Λxx + (2Λxu)ux + (2Λu)uxx + Λuuu
2
x = 0 (4.6)

Splitting equation (4.6) on derivatives of u produces an overdetermined system of four partial
differential
equations, namely,

ux : Λxu = 0, (4.7)

u2
x : Λuu = 0, (4.8)

uxx : Λu = 0, (4.9)

rest : Λt − uΛx + Λxx = 0. (4.10)

Note that equations (4.7) and (4.8) are trivially satisfied by equation (4.9).

Again from Equation (4.9) we deduce that Λ = Λ(t, x) and upon substitution in Equation (4.10)
gives

Λt − uΛx + Λxx = 0. (4.11)

Split Equation (4.11) on powers on u ( no harm since Λ is not a function of u) to obtain

u : Λx = 0, (4.12)

rest : Λt + Λxx = 0. (4.13)

Now Equation (4.12) forces

Λ = Λ(t) and Λxx = 0=⇒Λt = 0. (4.14)

Hence we have

Λ = C1, (4.15)

which gives the nontrivial multiplier

Λ(t, x, u) = 1. (4.16)
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Remark 4.1. Recall that a multiplier Λ for equation(1.2) has the property that for the density
T t = T t(t, x, u, ux) and flux T x = T x(t, x, u, ux, uxx),

Λ (ut − uux − uxx) = DtT
t +DxT

x. (4.17)

We derive conservation law corresponding to each of the multipliers.
Conservation law for the multiplier Λ(t, x, u) = 1.

Expansion of equation (4.17) gives

ut − uux − uxx = T tt + utT
t
u + utxT

t
ux + T xx + uxT

x
u + uxxT

x
ux . (4.18)

Splitting equation (4.18) on second derivatives of u yields

utx : T tux = 0, (4.19)

uxx : T xux = −1, (4.20)

Rest : ut − uux = T tt + T tuut + T xx + T xu ux. (4.21)

Equation (4.19) implies that

T t=T
t(t, x, u) (4.22)

and integrating equation (4.20) with respect to ux gives

T x = −ux +A(t, x, u), (4.23)

for A an arbitrary function of its arguments.

Substituting the expression of T x from (4.23) into equation (4.21) we get

ut − uux = T tt + T tuut +Ax +Auux. (4.24)

which splits on first derivatives of u, to give

ux : Au = −u, (4.25)

ut : T tu = 1, (4.26)

Rest : 0 = T tt +Ax. (4.27)

Integrating equations (4.25) and (4.26) with respect to u manifests that

T t = u+ P (t, x), (4.28)

A = −u
2

2
+Q(t, x). (4.29)

By substituting the obtained functions into Equation (4.27), we have

Pt(t, x) +Qx(t, x) = 0. (4.30)

Since C and D contribute to the trivial part of the conservation law, we take P = Q = 0 and
obtain the conserved quantities

T t =u, (4.31)

T x =− u2

2
− ux (4.32)

from which the conservation law corresponding to the multiplier Λ1 = 1 is given by

Dt (u)−Dx

(
u2

2
+ ux

)
= 0. (4.33)

Remark 4.2. The fact that Λ = 1 is multiplier is proof that Burgers Equation (1.2) is itself a
conservation law.
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5 Conclusion

In this paper, a five-dimesional Lie algebra of symmetries has been applied to study a simple
variant of Burger’s equation. Some of the basis vectors of the determined Lie algebra include;
Galilean boost, scaling, space and time translations. Each symmetry has further been used in re-
ductions and construction of invariant solutions. These describe the different states of the Burger’s
equation model. Such exact solutions are applicable as a benchmark against numerical computer
simulations. More conservation laws need to be constructed using Ibragimov’s theorem ( or by
taking higher order multiplies ) and further give more exact solutions.

Acknowledgement

The author thanks referees for their detailed reading and comments. The editor’s input is greatly
appreciated.

Author’s contribution

The author wrote the article as a scholarly duty and passion to disseminate mathematical research
and hereby declares no conflict of interest.

References

[1] Almeida, M., Magalhaes, M., and Moreira, I. Lie symmetries and invariants of the lotka–
volterra system. Journal of Mathematical Physics, 36(4):1854–1867, 1995.

[2] Arrigo, D. J. Symmetry analysis of differential equations: an introduction. John Wiley &
Sons, 2015.

[3] Bluman, G. and Anco, S. Symmetry and integration methods for differential equations,
volume 154. Springer Science & Business Media, 2008.

[4] Bluman, G. W. and Kumei, S. Symmetries and differential equations, volume 81. Springer
Science & Business Media, 1989.

[5] Bluman, G. W., Cheviakov, A. F., and Anco, S. C. Applications of symmetry methods to
partial differential equations, volume 168. Springer, 2010.

[6] Brauer, F., Castillo-Chavez, C., and Castillo-Chavez, C. Mathematical models in population
biology and epidemiology, volume 2. Springer, 2012.

[7] Burgers, J. M. A mathematical model illustrating the theory of turbulence. Advances in
applied mechanics, 1:171–199, 1948.

[8] Ibragimov, N. Elementary Lie group analysis and ordinary differential equations. Wiley,
1999.

[9] Ibragimov, N. H. CRC handbook of Lie group analysis of differential equations, volume 1-3.
CRC press, 1994.

2908

“A Group Approach to Exact Solutions and Conservation laws of Burger’s Equation”



[10] Ibragimov, N. H. Selected works. Volume 1-4. ALGA publications, Blekinge Institute of
Technology, 2006-2009.

[11] Ibragimov, N. H. A new conservation theorem. Journal of Mathematical Analysis and
Applications, 333(1):311–328, 2007.

[12] Ibragimov, N. H. A Practical Course in Differential Equations and Mathematical Modelling:
Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance
Principles. World Scientific Publishing Company, 2009.

[13] Khalique, C. M. and Abdallah, S. A. Coupled Burgers equations governing polydispersive
sedimentation; a lie symmetry approach. Results in Physics, 16, 2020.

[14] LeVeque, R. J. Numerical methods for conservation laws, volume 3. Springer, 1992.

[15] Lie, S. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transforma-
tionen. BG Teubner, 1891.

[16] Mhlanga, I. and Khalique, C. Travelling wave solutions and conservation laws of the
Korteweg-de Vries-Burgers Equation with Power Law Nonlinearity. Malaysian Journal of
Mathematical Sciences, 11:1–8, 2017.

[17] Murray, J. D. An introduction. Springer, 2002.

[18] Noether, E. Invariant variations problem. Nachr. Konig. Gissel. Wissen, Gottingen. Math.
Phys. Kl, pages 235–257, 1918.

[19] Olver, P. J. Applications of Lie groups to differential equations, volume 107. Springer
Science & Business Media, 1993.

[20] Ovsyannikov, L. Lectures on the theory of group properties of differential equations. World
Scientific Publishing Company, 2013.

[21] Owino, J. O. Exact symmetry reduction solutions of a nonlinear coupled system of korteweg-
de vries equations. nternational Journal of Advanced Multidisciplinary Research and Stud-
ies, 2:76–87, 2022.

[22] Owino, J. O. and Okelo, B. Lie group analysis of a nonlinear coupled system of korteweg-de
vries equations. European Journal of Mathematical Analysis, 1:133–150, 2021.

[23] Owuor, J. Conserved quantities of a nonlinear coupled system of korteweg-de vries equa-
tions. International Journal of Mathematics And Computer Research, 10(5):2673–2681,
2022.

[24] Owuor, J. Exact symmetry reduction solutions of a nonlinear coupled system of korteweg-de
vries equations. International Journal of Advanced Multidisciplinary Research and Studies,
2(3):76–87, 2022.

[25] P.E, H. Symmetry methods for differential equations: a beginner’s guide, volume 22. Cam-
bridge University Press, 2000.

[26] Wazwaz, A.-M. Partial differential equations and solitary waves theory. Springer Science
& Business Media, 2010.

2909

“A Group Approach to Exact Solutions and Conservation laws of Burger’s Equation”


	Introduction
	Preliminaries
	Main results
	Lie point symmetries of (1.2)
	Commutator Table for Symmetries
	Group Transformations
	 Construction of Group-Invariant Solutions
	Soliton solutions

	 Conservation laws of the Burgers equation
	The multipliers

	Conclusion



