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I. INTRODUCTION 

In this paper, we consider only finite, simple, connected 

graphs. Let G be such a graph with vertex set V(G) and edge 

set E(G). The degree dG(u) of a vertex u is the number of 

vertices adjacent to u. For basic notations and terminologies, 

we refer [1]. 

In [2], the temperature of a vertex u of a graph G is defined 

as  

               
( )

( )
( )

G

G

d u
T u

n d u



  

where n is the number of vertices of G.                   

  

In [3], the first temperature index of a graph G is defined as  

             

   
 

1( )
uv E G

T G T u T v


    . 

 

The second temperature index [4] of a graph G is defined as  

            

   
 

2 ( ) .
uv E G

T G T u T v


   

Recently, some temperature indices were studied, for 

example, in [5, 6, 7, 8]. 

 

We propose the temperature Sombor index of a graph G and 

it is defined as  

 

              
 

2 2
( ) .

uv E G

TSO G T u T v


   

Considering the temperature Sombor index, we define the 

temperature Sombor exponential of a graph G as  

                   

 

2 2

, .T u T v

uv E G

TSO G x x 



   

We propose the modified temperature Sombor index of a 

graph G and it is defined as  

             

    
2 2

1
.m

uv E G

TSO G

T u T v




  

Considering the modified temperature Sombor index, we 

define the modified temperature Sombor exponential of a 

graph G as  

                

 

2 2

1

, .m T u T v

uv E G

TSO G x x 



   

Recently, some Sombor indices were studied, for example, 

in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

24, 25, 26, 27, 28, 29, 30, 31, 32]. 

 

We define the temperature Nirmala index of a graph G as  

                
 

( ) .
uv E G

TN G T u T v


        

Considering the temperature Nirmala index, we define the 

temperature Nirmala exponential of a graph G as  

                 

 

, .T u T v

uv E G

TN G x x 



   

 

          Recently, some Nirmala indices were studied, for 

example, in [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 

45].                       

           

         In [46], the F- temperature index of a graph G is 

defined as  
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2 2
( ) .

uv E G

FT G T u T v


  
   

       We define the temperature misbalance prodeg index of 

a graph G as  

   
 

( )
uv E G

TMPI G T u T v


  
  . 

 

      We put forward the temperature inverse sum indeg index 

of a graph G and defined it as 

 
             

   

    

.T

uv E G

T u T v
ISI G

T u T v




        

 In this paper, we compute the temperature-Sombor 

index, modified temperature-Sombor index and 

temperature-Nirmala index for some standard graphs and 

tetrameric 1,3-adamantane. Also we establish some 

properties of newly defined temperature-Sombor index and 

temperature-Nirmala index. 

 

II. RESULTS FOR SOME STANDARD GRAPHS 

Proposition 1. If G is r-regular with n vertices and r ≥ 2, 

then   
 

2

 

.
2

nr
TSO G

n r



 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then  ( )

r
T u

n r
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2

2 2

nr r r nr r
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n r n r n r
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Corollary 1.1.  Let Cn    be a cycle with   n≥ 3 vertices. Then  

  
2 2

.
2

n

n
TSO

n
C 


 

Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

               
2( 1)

.
2

n

n n
O KTS




 

 

Proposition 2. If G is r-regular with n vertices and r ≥ 2, 

then   
( )

.
2 2

m n n r
TSO G


  

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then  ( )

r
T u

n r
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2
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2 2 2
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.
2 2

n n r
  

Corollary 2.1.  Let Cn    be a cycle with   n≥ 3 vertices. Then  

 
 

 

2
.

2 2

m
nC

n n
TSO


  

Corollary 2.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

                .
2 2

m
n

n
TS KO 

 

 

Proposition 3. If G is r-regular with n vertices and r ≥ 2, 

then    .
2

nr r
TN G

n r



 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then  ( )

r
T u

n r



 

    
   

2

nr r r
TN G

n r n r
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2
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Corollary 3.1.  Let Cn    be a cycle with   n≥ 3 vertices. Then  

  
2

.
2

n

n
T CN

n



 

Corollary 3.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

              
3/2

 

( 1)
.

2
n

n n
KTN


  

 

III. RESULTS FOR TETRAMERIC 1,3-ADAMNTANE 

In Chemistry, diamondoids are variants of the carbon cage 

known as adamantane (C10, H16), the smallest unit cage 

structure of the diamond crystal lattice. We focus on the 

molecular structure of the family of tetrameric 1,3-

adamantane and it is denoted by TA[n]. Let G be the graph 

of tetrameric 1,3-adamantane TA[n]. The graph of tetrameric 

1,3-adamantane TA[4] is depicted in Figure 1. 

 

 
Figure 1. The graph of tetrameric 1,3-adamantane TA[4] 

 

           By calculation, G has 10n vertices and 13n – 1edges. 

Also by calculation, we obtain three edge partitions of G 
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based on the degrees of the end vertices of each edge as 

follows:  

E1={uv E(G) | dG(u)=2, dG(v)=3}, |E1| = 6n + 6. 

E2={uv E(G) | dG(u)=2, dG(v)=4}, |E2| = 6n – 6. 

E3={uv E(G) | dG(u)=dG(v) = 4}, |E3| = n – 1. 

 

Therefore, in TA[n], there are three types of edges based on 

the temperature of end vertices of each edge as follows: 

TE1={uv E(G) | T(u)=
2

10 2n 
, T(v)=

3

10 3n 
}, |E1| = 6n 

+ 6. 

TE2={uv E(G) | T(u)=
2

10 2n 
, T(v)=

4

10 4n 
}, |E2| = 6n 

– 6. 

TE3={uv E(G) | T(u)=T(v) = 
4

10 4n 
}, |E3| = n – 1. 

 

Theorem 1. The temperature Sombor index of a tetrameric 

1,3-adamantane TA [n] is 
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Proof: To compute TSO(TA [n]), we see that  
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Theorem 2. The modified temperature Sombor index of a 

tetrameric 1,3-adamantane TA [n] is 
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Proof: To compute   mTSO TA n , we see that  
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Theorem 3. The temperature Nirmala index of a tetrameric 

1,3-adamantane TA [n] is 

      
  

 

1

2
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n
TN TA n n
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Proof: To compute TN(TA [n]), we see that  

       
 

1

2
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TN TA n T u T v
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      Similarly, we can find the values of   , ,TSO TA n x  

  ,mTSO TA n x  and   , .TN TA n x  

 

IV. MATHEMATICAL PROPERTIES  

 

Theorem 4. Let G be a connected graph with m edges. Then 

         2 ( ).TSO G mFT G  

 Proof:  Using the Cauchy-Schwarz inequality, we obtain  

     
 

2
2 2

uv E G

T u T v


 
 

 


 

                             
 

   
 

2 2
1

uv E G uv E G

T u T v
 

      

                             2 ( ).mFT G  

Thus                2 ( ).TSO G mFT G                                                                                    

Theorem 5. Let G be a connected graph. Then 

                     
1 1

1
.

2
T G TSO G T G   

Proof:  For any two positive numbers a and b, 

                 
2 21

( ) .
2

a b a b a b     

For a=T(u) and b=T(v) , the above inequality becomes              

     2 21
( ) ( ) ( ) ( ) ( ) (   ) .

2
 T u T v T u T v T u T v     

By the definitions, we have 

      
 

   
 

2 21

2 uv E G uv E G

T u T v T u T v
 

    

                                          
 

.
uv E G

T u T v


         

Thus we get the desired result. 

Theorem 6. Let G be connected graph of order n and size 

m. Then 

     
1

.
2

TMPI G TN G TMPI G   

Proof: Let a and b be any two non-negative real numbers. 

Then 

 
1

( )
2

a b a b      

  

with equality if and only if a = b. 

If a =  T u and b =  T v , then the above inequality 

becomes 

        1
.

2
T u T v T u T v  

 
By the definition of Nirmala index, we have 

 

     
 uv E G

TN G T u T v


   

                  
1 1

T( ) T( ) .
2 2

u v TMPI G    

 

 Also, by the definition of Nirmala index, we have 

 

     
 

        
 

    
 

1/2
2

2
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uv E G
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T u T u T u T v

T u T u TMPI G







 

 
   

 

  







 

Theorem 7. Let G be a connected graph. Then 

         
1 2 TT G ISI G O GTS   

          
12 2 2 .TT G ISI G 

     Proof: For any two numbers a, b>0, we have 

       22 2 2 2      .2a b a b a b    

Thus   
2 2 2 2  2a b a b a b     

and 

      
2

 T u T v  

               2 2 2 2
T u T v T u T v    

            2 .T u T v  

  Thus      
2

 T u T v  

                2 2
 T u T v T u T v    
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            2 .T u T v  

Hence        T u T v  

              
   

   

2 2 2
.
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 By the definitions, we have 

       
1 2 .TT G SO G ISI GT   

Also we have 

          2 2
 

1

2
T u T v T u T v   

                 
2

 2 .T u T v T u T v   

Thus    

         
   

   

2 2 2 2T u T v
T u T v

T u T v
 


 

                          2 .T u T v  

By the definitions, we have 

       
12 2 2 .TTSO G ISI G T G  

This completes the proof. 

 

V. CONCLUSION                              

In this paper, we have introduced the temperature Sombor 

index, the modified temperature Sombor index and 

temperature Nirmala index of a graph. We have computed 

these indices for some standard graphs  and tetrameric 1,3-

adamantane TA [n].  Also we have obtained some properties 

of the temperature Sombor index and the temperature 

Nirmala index. 
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