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1. INTRODUCTION 

Mathematical analysis in finance is very important not only 

to mathematicians or investors but the generality of the 

masses. So understanding its dynamics will help economist, 

Government, opinion leaders to adequately plan their 

investments effectively well for future purposes. Hence, the 

special area of interest in this study is Mathematics of finance 

which has to deal with the evolution of option pricing. In 

other words, an underlying asset of an option is a business 

between parties who come together for agreement on either 

buying or selling an underlying asset at a particular strike 

price in the future for a fixed price. More so, the cost of 

fundamental asset which governs the growth of the option 

price used no-arbitrage argument to elucidate a Partial 

Differential Equation (PDE) with respect to the expiration. In 

financial applications, the Black-Scholes (BS) equation has 

been used extensively. 

For instance, there are mammoth interest in financiers, 

mathematicians and statisticians over the partial differential 

equation derived by [1] to analyze the European option on a 

stock market that does not pay a dividend during the life of 

the option. Mathematically they restricted their analysis to 

conditions which made the problem simpler. In the dynamics 

of option pricing, describes the Black-Scholes PDE as a 

function of security index and of time to maturity of 

underlying assets. So due to the recent development in option 

pricing has resulted to many diverse mathematical and 

computational methods being in use, for example see [2-4] 

etc.  

Therefore [5] studied implied volatility and implied risk free 

rate of return in solving systems of Black- Scholes equations. 

In their research they established that options prices provides 

important information for market participants for future 

expectations and market policies. In the same vain [6] 

analyzed BS formula for the valuation of European options; 

Hermite polynomials were applied. They concluded that BS 

formula can easily be achieved devoid of the use of partial 

differential equation. In another study of BS [7] considered 

the BS terminal value problem and observed that their 

proposed method is better, simple than the previous methods. 

In the work of [8] time varying factor were incorporated in 

the explicit formula for different aspect of options with the 

aim of providing exact solution for dividend paying equity of 

option. In considering the stability of stock market price of 

stochastic model, [9] applied Crank-Nicolson numerical 

scheme to BS model. The results showed stock prices being 
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stable and its increasing rate of stock shares was obtained. 

Not quite long, [10] investigated the variation of stock market 

price using BS PDE. The convergence to equilibrium of 

growth rate and sufficient conditions for stability was 

achieved. However, [11] studied Black-Scholes model 

because of its biasness in mispricing options. They 

established a new technique of assessing pricing effects on 

the premise to reduce pricing bias. Details of more financial 

models can be seen in the works of  [12-14] etc. 

On the contrary, there are kin interests by mathematics 

scholars with research based on topological and analytical 

foundations; such solutions exist but are not trivial. Hence, 

there are so many algebraic families with the above concepts 

namely, Hilbert spaces, Banach spaces and Sobolev spaces 

etc. Here, we consider Sobolev spaces because of its 

redefinition of differentiability which starts with weak 

formulations to obtain weak solutions.  

Nevertheless, good numbers of scholars have used PDEs in 

Sobolev spaces for different reasons and results obtained in 

different ways such as [15] considered the existence, 

uniqueness and stability analysis for Ordinary Differential 

Equation (ODE) with coefficients in Sobolev spaces. In their 

results method of renormalization solutions were used in the 

analysis of linear transport equations. [16] viewed at solution 

to nonlinear BS equations and concluded that the bounded 

domain of weak solution were extended to entire domain via 

diagonal processes. [17] considered a nonlinear Black 

Scholes Equation for incorporating transaction cost and 

portfolio risk as one of the financial models. These problems 

were solved in Sobolev space and they obtained a weak 

solution that has properties of Fourier transformation. 

This study is aimed at solving Black-Scholes second order 

parabolic equation   in Sobolev spaces on the basis of 

obtaining weak solutions which can be used in financial 

applications. This paper extends the work of [16] by 

considering BS PDE in such spaces. To the best of our 

knowledge this is the first study that has solved fully 

stochastic parabolic PDE with detailed proves, definitions 

and assumptions in Sobolev spaces. 

The paper is arranged in the following ways: Section 2 

Mathematical preliminaries of Black-Scholes, Section 3 

presents Problem formulation of Black-Scholes equation in 

Sobolev Spaces, Main results of Black-Scholes equation in 

Sobolev spaces is seen in 4.This paper is concluded in Section 

5.  

 

2. MATHEMATICAL PRELIMINARIES OF BLACK-SCHOLES EQUATION 

Supposing that [ 1,1]    is a bounded correlation coefficient which tends to   within the processes 
1 2andt tW W   ; therefore  

the value   , ,u S v t   of  discounted asset price which is at the rate r   and are governed by the partial differential equations as 

follows, [18]. 

   
2 2 2

2 2

2 2

1 1
[ ] , , 0, 0

2 2

u u u u u u
vS vS v rs K v S v t ru t

t S v S vS v
   

     
         

     
 .(1.1) 

    , , ,u S v t f S v  . (1.2) 

In mathematical finance, a single asset for contingent claim of the generic PDE is of the form: 

      
2

2
, , , 0

u u u
a x t b x t c x t u

t xx

  
   

 
 . (1.3) 

Where t   denotes time to maturity, x   denotes the value of the underlying asset  or functions of monotonic type  (e.g log (S); log-

spot) and u   denotes  the value of the claim which is a  function of x    and t  the following terms a (.), b (.) and c(.) are diffusion, 

convection and reaction Coefficients.( 1.3)can as well be written in the following manners : 

           , , , , , 0
u u

a x t a x t b x t x t u c x t u
t x x x


    

    
    

 . (1.4) 

The above PDE describes the dynamics of the transition density of stochastic variables or quantities, for example, value of a stock 

which is seen in the Fokkper-Planoke (Kolmogrorov forward) equation of probability measures. However our interest in this paper 

is the parabolic financial PDE which is governed with the dynamics of option pricing; hence we have the following: 

 

2
2

2

1
[ ] 0. 0.

2
t

u u u
v K v ru t

t vv
 

  
     

 
  (1.5) 

The details of the above option model can be expressly be found in the following books: [19-21] etc. 

 

3. PROBLEM FORMULATION OF BLACK-SCHOLES EQUATION IN SOBOLEV SPACES 

Here, we investigate parabolic equations, which are Partial Differential Equations (PDEs). Let   to be an open, bounded subset of 

N
 ;setting (0, ]T T    in some certain fixed time, 0.T   Hence,  the initial/boundary value problem  are written as:  
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 

,

0 [0, ] ,

0 .

t Tu Lu f in

u on T

u g on t







 


  
   

  (1.6) 

Where : and : are given, and :T Tf g u      is the unknown, ( , ).u u v t L  is given  for each time t  

a second-order partial differential operator with the  divergence form as follows.    

              2

( , ) ( , ) .
1 1 1

1
, , , , ,

2

ij iN N N

v t i v t i t v t i
ij ij i

Lu v t u v t j v v t u v t j k V u r v t u 
  

  
          
    ,(1.7) 

Or also the non-divergence method. 

              2

( , ) ( , ) .
1 1 1

1
, , , , ,

2

ij iN N N

v t i v t i t v t i
ij ij i

Lu v t u v t j v v t u v t j k V u r v t u 
  

 
      

 
    . (1.8) 

With the coefficients    21
, , 1,...,

2

ij
i

tv k V r ij N 
 

  
 

 . 

Definition 1. 1: Partial differential operator L
t





 is said to exists with a   constant 0   and uniform parabolic properties such 

that, 

  2 2

1

1
, | |

2

ijN

i j

ij

v v t    


 
 

 
  . (1.9) 

For values of all  , , N

Tv t     . 

Here a is the usual example,   
1

21
0

2

j
i

tv k V r f 
 

     
 

 ,in which case L    and the PDE 
u

Lu
t





 being 

the heat equation.  

Weak solutions: Here ,We  shall consider the case where L  has the divergence form (1.8) and try to figure out  an appropriate 

notion of weak solution for the initial /boundary –value problem (1.4).The assumptions of weak solution are: 

    21
,k , , 1,..., N

2

ij

t Tv V r L ij   
   

 
 . (1.10) 

  2

Tf L   . (1.11) 

  2g L   . (1.12) 

Assuming  
2 21 1

, 1,...,
2 2

ij ji

v v ij N 
   

    
   

 , introducing the concept of time dependent bilinear form as: 

 

               

         

2

, , , ,
1 1

s,
1

1
, ; : , ., .,

2

., ., , .

ijijN N

v t i v t j v t i v t j
ij ij

iN

t t i
i

B u v t v t t u v v t u v

k V t u v r t uvd v t

  



 



 
   

 

  

  



  (1.13) 

For  0, and almost everywhere ( . ). 0 .u v H a e t T     

 

4.  MAIN RESULTS OF BLACK-SCHOLES EQUATION IN SOBOLEV SPACES 

Definition 1. 2:  Weak solution; in defining weak solution, we temporarily assume that  , tu u v  to be the parabolic problem 

of (1.7). Our point of focus via relating with u  in a mapping such that: 
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  0: [0, ]u T H   , 

We define as follows      : , , ,0u t v u v t v t T       .In the forgoing, we shall consider u  not as a function of v  and t  

together, but as a mapping u  of t  in the space  0H   of function of v .  Therefore, we make some clarifications in (1.4), and then 

we also define as well: 

  2: [0, ]f T L   , 

      [ ] : , , ,0f t v f v t v t T     . 

Now fixing a function  0v H   and multiplying the PDE 
u

Lu f by v
t


 


 and integrating by parts to obtain as follows: 

    , [u, v; t] ,u v B f v    . (1.14) 

In each 0 t T   , the pairing (,) denotes inner product in  2L   ,We notice that   

  0

1

,
N

j

t T

j

u g g v t j in 


   . (1.15) 

For      
0 2

, ,
1 1

1
: : 1,...,

2

ijiN N
j

t s t i v t
i i

g f k V u ru and g v u j N 
 

 
      

 
   . 

 

As a result the of Right hand side of (1.16) lies in the Sobolev space  1H 
 ,with 

         
1

2

1 2 2 2

0

0

|| || || || || || || f || L
N

j

t

j

u H g L C u H   



 
   

 
  . 

The estimate above is suggestive to find a weak solution with  1u H   for a.e. ,  time 0 t T   ;in any case the first term in 

(1.15) is represented as , , ,u v  being the paring of    1

0H and H    . 

Definition 1. 3: It suffices to say that a function  2

00, ; ( )u L T H   with  2 10, ; ( )u L T H   is a weak solution of the 

parabolic initial/boundary-value problem (1.4) only if. 

  0( ) , [u, v; t] , , ( ) . . 0 .i u v B f v for each v H and a e time t T     
 

 (ii) u 0 g  . 

Definition 1.4:  Existence of weak solutions, building a weak solution of the parabolic problem 

 

 

,

0 [0, ],

0 .

t Tu Lu f in

u on T

u g on t







 


   
   

  (1.16) 

At first, we construct solutions of certain finite dimensional approximations to (1.17) and then taking the limits. This is known as 

Galerkin’s method. 

Setting a function w  ,k kw w v t  , k=1,…,as  smooth such that, 

    01
s an orthogonal basis ofk k

w i H 



  . (1.17) 

   2

1
is an orthonormal basis of ( )k k

w L 



 . (1.18) 

 Taking  
1k k

w



to be the normalized Eigen-functions which are appropriately complete, set for  0L in H    . In 

considering a function  0: [ ,T] Hmu o   we fix a positive integer m . 
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1

( ) : ( )
m

k

m m k

k

u t d t w


  , (1.19) 

Which is where we pick the coefficients ( ),0 , 1,..., ,k

md t t T k m    such that we have the following: 

 

  (0) , , 1,...,k

m kd g w k m 
 
 . (1.20) 

    , [ , ; ] , , 0 , 1,...,m k m k ku w B u w t f w t T k m       . (1.21) 

where  ,  is the inner product in  2L   .Seeking a function 
mu  of the form(1.20) that satisfies the projection((1.22) of 

problem(1.17) on to the finite dimensional subspace spanned through  
1

m

k k
w


 . 

Theorem 1.1: (Constructing of approximate solutions).  There exist a unique function
mu  of the form (1.20) which satisfies (1.21) 

and (1.22) for each integer 1,2,...m   . 

Proof: let 
mu  be the mathematical structure (1.20), we remark first from (1.22) that, 

  ( ), ( )k

m k mu t w d t   . (1.22) 

 
1

[ , ; ] ( ) ( )
m

kl l

m k m

l

B u w t e t d t


  . (1.23) 

For ( ) : [wl,w ; ] ,k, l 1,...,mkl

ke t B t   . 

We write also, 

  ( ) : ( ), , 1,...,k

kf t f t w k m   . (1.24) 

Then (1.22) yields a linear system of ODE. 

 

1

( ) ( ) ( ) ( ), 1,...,
m

k kl l k

m m

l

d t e t d t f t k m




    . (1.25) 

With the following initial conditions of (1.21). According to the standard existence theory for ordinary differential equations, there 

exists a unique conditions of (1.17). Hence, we want certain uniform estimates. 

Theorem 1. 2.  (Energy estimates). There is a constant C  , which depends  only on ,T  and  its coefficients is of L  ,such that 

 

   

 

2 2 2 1

0
0

2 2 2

max || u ( ) || ( ) || u || L 0, ; ( ) || || 0, , ( )

|| || (0, ; ( ) || || ( )),

m m m
t T

t L T H u L T H

C f L T L g L

  

 



 
  

 
  (1.26) 

For 1,2,...,.m    

Proof: 

Multiplying (1.19) by ( ) andsum for 1,...,k

md t k m  and then note (1.21) to obtain the quantities: 

    , [ , ; ] ,m m m m mu u B u u t f u    . (1.27) 

For a.e . , 0 t T   .  Thus we move to more to prove the existence of constants 0, 0    such that the following condition 

holds: 

 
2 2 2

0|| || ( ) [ , ; ] || || ( )m m m mu H B u u t u L     
 
 . (1.28) 

for all,

   2 2 2 2

2 2

1 1
0 , 1,...more so | , | || || ( ) || u || ( ), and ,

2 2

1
|| || ( ) . . 0 .

2

m m m m

m

t T m f u f L L u u

d
u L for a e t T

dt

 



    

 
   

 

  

Therefore (1.25) gives the inequality. 

 
2 2 2 2 2 2

0 1 2

1
|| || ( ) 2 || || ( ) || u || ( ) || f || ( )

2
m m m

d
u L u H C L C L

dt
    

 
   

 
 . (1.29) 
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For a.e. 0 t T   .where 
1 2andC C  are constants. The following constants are defined: 

   2 2: || ( ) || ( )mt u t L   , (1.30) 

   2 2: || f( ) || ( )t t L   . (1.31) 

So (1.30) means
1 2( ) ( ) (t) for a .e. ,0 t T.t C t C        hence, the differential form of Gronwall’s inequality gives the 

estimate as. 

    1

2
0

(0) C ( ) ,0
t

C tt e s ds t T       . (1.32) 

Since   2 2 2 20 || (0) || ( ) || g || ( )mu L L      by (1.18) gives (1.28)- (1.30) the estimates as. 

 2 2 2 2 2 2 2

0
max || u ( ) || ( ) C || g || L ( ) || || (0, ;L ( ) .m

t T
t L f L T  

 
 

 From (1.30) and integrating from 0 to T  and invoking the inequality above to obtain: 

   2 2 2 2 2 2 2 2

0 0
0

|| || 0, ; ( ) || || ( ) || || ( ) || f || (0, ; ( ))
T

m mu L T H u H dt C g L L T L        . 

For any 
0 0( ), || || ( ) 1v H with v H     and write

2v v v   where  
1

m

k k
v span w


  and  2 , 0. 1,..., .kv w k m   

since the function 
0k k

w



 are orthogonal in 

0 0 0( ),|| v || H ( ) || v || H ( ) 1.H         Applying (1.22) we reason for a.e.

0 t T    that 

   , [ , ; ] , ,m mu v B u v t f v    
 
    

Then (1.20) implies 

     , , , , [ , ; ],m m m mu v u v u v f v B u v t        
   

 

So 

 2

0| , | || f || L ( ) || u || ( ) ,m mu v C H      

Since
0|| || ( ) 1,v H     

 1 2

0|| || ( ) || || ( ) || u || ( ) ,m mu H C f L H       

Hence, 

  2 1 2 2 2 2 2 2 2 2

0
0 0

|| || ( ) || || ( ) || || ( ) || || ( ) || f || 0, ; ( )
T T

m mu H dt C f L u H dt C g L L T L           . 

 

Existence and Uniqueness, we the take limits as m   in order to build a weak solution of the initial/boundary-value problem 

(1.17). 

Theorem 1.3.  (Existence of weak solution). Following (1.17) there exists a weak solution. 

Proof: 

We want prove the existence and uniqueness of the energy estimates (1.27), following the sequence  
1m m

u



 is bounded in 

 2

00,T;H ( )L   and  
1m m

u



  is bounded in  2 10, ; ( )L T H 

 . Thus there exists a subsequence   
1 1ml ml m

u C u
 

 
  a 

function,    2 2 1

0 00, ; ( ) , with 0, ; ( )u L T H u L T H    such that we have (1.33). 

 

 
 

 

2

0

2 1

weakly in 0, ; ( ) ,

weakly in 0, ; ( ) .

ml

ml

u u L T H

u u L T H





 

 

  (1.33) 

 Fixing  an integer N  and choosing a function  0[0, ]; ( )v C T H    which gives the form: 

 
1

( ) ( )
N

k

k

k

v t d t w


  . (1.34) 



“A Solution to Linear Black-Scholes Second-order Parabolic Equation in Sobolev Spaces” 

2944                                                                                   Amadi, I.U.1, IJMCR Volume 10 Issue 10 October 2022 

 

Where 
1

N
k

k
d


 are given smooth functions. We choosing m N  , and multiplying (1.22) by ( )kd t  , sum 1,...,k N  , and 

then by integration with respect to t   obtain: 

  
0 0

, [ , ; ] ,
T T

m mu v B u v t dt f v dt     . (1.35) 

Setting m ml  and recall (1.31), to determine taking to weak limits such that, 

  
0 0

, [ , ; ] ,
T T

u v B u v t dt f v dt     . (1.36) 

This type of equality holds for only functions  2

00, ; ( )v L T H   as functions of the form (1.32) are dense in the in the space 

for functions of the form (1.32), in all we have: 

  , [ , ; ] ,u v B u v t f v    . (1.37) 

For each 
0 ( )v H 

 
 and a.e.  , 0 t T   . According to theorem 1.3 we also observe that  2[0, ], ( ) .u C T L    

For the purpose of   proving  0u g  , we first note that from (1.34) that, 

    
0 0

v ,u [ , ; ] , (0), ( ) .
T T

B u v t dt f v dt u v o       (1.38) 

For each  0[0, ]; ( )v C T H    with   0v T   .Similarly, from (1.33) we deduce, 

    
0 0

v ,u [ , ; ] , (0), ( ) .
T T

m m mB u v t dt f v dt u v o       (1.39) 

Setting m ml  and once all over again we invoke (1.34) to obtain, 

    
0 0

v ,u [ , ; ] , g, ( )
T T

m mB u v t dt f v dt v o      . (1.40) 

Since 
2

(0) ( )mlu g in L   . As (0)v  is arbitrary, comparing (1.39) and (1.41) we can now say that  0 .u g   

Theorem 1. 4. (Uniqueness of weak solutions).  There exists a weak solution of (1.17) using 0f g   is 

 0u   . (1.41) 

Proof: 

In order to prove this point, we set v u  in the identity of (1.38)  for 0  we absorb, using theorem 3 such that, 

 
2 21

|| || ( ) [u,u; t] , [ , ; ] 0
2

d
u L B u u B u u t

dt


 
    

 
 . (1.42) 

Since
2 2 2 2 2

0[ , ; ] || || ( ) || u || ( ) || u || ( )B u u t u H L L          . 

Using Gronwall’s inequality and (1.43) implies (1.42). Hence, the details of Gronwall’s inequality is seen in the following: [22-24] 

etc. 

Regularity: Here describes the regularity of our weak solutions u  to the Black-Scholes second-order parabolic equations.  The 

primary objective is to prove that u  is a smooth function as far as the coefficient of the PDE, the domain of the boundary is smooth. 

The interesting thing in the derivation of estimate is to increase some perceptions as to extend of regularity assertions could possibly 

be effective, temporarily let  ,u u v t  is a smooth solution of this initial- value problem for the heat equation: 

 
 

(0,T],

0 .

N

t

N

u u f in

u g on t

    


  
  (1.43) 

Assume also u  tends to zero as | |v   satisfactorily to explain the computations as follows: we calculate 0 t T   . 

      
2 2 22 2 22 2 .

N N N Nt t t t tf dv u u dv u uu u u Du Du u dv               . (1.44) 

 

 

2 2

0
0

2
2 2

2 . | Du | and consequently 2 . | Du | |

| D u | .

N N

N N

t
s t

t t s

d
Du Du Du Du dvds dv

dt

u dv dv



 

  

  

 
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Appling the above two equalities in (1.44) and integrating time to obtain, 

  2 2 2 2 2 2

0 00

| | | | | Dg | .
N N N N

T T

t
t T

Sup Du dv u D u dvdt C f dvdt dv
 

           (1.45) 

We therefore estimate the  2 2and within 0,N

tL norms of u D u T   in terms of the 

 2 2norms of on 0, and norms ofN NL f T the L Dg on    .we can now differentiate the PDE with respect 

to t  and setting : tu u   

 

 
 

(0,T],

0 .

N

t

N

u u f in

u g on t

    


  

  (1.46) 

for    : , : .,0 .,0t tf f g u f g      . Multiplying by u  ,integrating by parts and invoking Gronwall’s inequality, we infer 

that,          

   22 2 2 2 2

0 00

| | | | | D g | .,0 .
N N N N

T T

t t
t T

Sup u dv Du dvdt C f dvdt f dv
 

           (1.47) 

But then ,    

            2 2 2

0
max || ., || || || 0, || || 0,N N N

t
t T

f t L C f L T f L T
 

     . (1.48) 

Following  to theorem 1.2 and writing 
iu u     gives: 

 
2 2 2 2| |

N N tD u dv C f u dv    . (1.49) 

The Combinations of  (1.48)-(1.50) leads us to the  estimate of the following below: 

  2 2 2 2 2 2 2

0 00

| | | | | | | D g |
N N N N

T T

t t
t T

Sup u dv D u dv Du dvdt C f dvdt dv
 

          . (1.50) 

For some constant C  . 

Therefore, our earlier previous computations is suggestive to have estimates corresponding to (1.43) and (1.48) respectively for 

weak solution to Black-Scholes second order parabolic equation. 

 

5. CONCLUSION  

The analysis of Black-Scholes PDE in Sobolev spaces has 

been effortlessly established; hence derivatives are well 

understood in suitable weak sense to make the space 

complete. From the analysis, a set of functions were 

constructed that transforms Black-Scholes partial differential 

equation into weak formulations; which shows: existence, 

uniqueness and other estimates in weak form with the use of 

boundary conditions to establish the effects of its financial 

effects in Sobolev spaces. The regularity conditions of the 

problem were considered which the coefficients, the 

boundary of the domain are all smooth functions.  

Generally, the analytical methods of solving PDEs are non-

trivial; it becomes complex when solved in Sobolev spaces or 

any other algebraic spaces. This difficulty worsens when the 

analysis of the problem is being sought. This is the thrust of 

this paper; to solve these Black-Scholes second order 

parabolic equation in Sobolev spaces. The great challenge in 

analyzing this stochastic PDE is due to the definitions, 

assumptions, theorems and proofs which are not easy to 

understand as to apply appropriately. 

However, in the next study, we shall be looking at the 

applications of these weak solutions and its implication in 

stock market price variations for capital investments. 
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