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This study adopts a nonparametric approach in the estimation of a finite population error 

variance in the setting where the variance is a constant (homoscedastic) using a model-based 

technique under simple random sampling without replacement (SRSWOR). A mean square 

analysis of the 𝜎̂𝑉
2 estimator has been conducted, including the asymptotic behaviour of the 𝜎̂𝑉

2 

estimator and the results show that the asymptotic distribution in a homoscedastic setting is 

asymptotically unbiased and consistent. The performance of the developed estimator is 

compared to that of other existing estimators using real data. R statistical software was utilized 

to analyze data and numerical results presented graphically for selected models.  
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1 INTRODUCTION 

In sample survey, researchers are always interested in coming 

up with methods which improves on the asymptotic 

properties of population parameter estimates. This has 

resulted in the development of nonparametric regression 

models. One form of regression model is the ratio and 

regression estimators where sample units are chosen on the 

basis of an auxiliary variate with probability proportionate to 

some measure of scale.  

A homoscedastic setting is where all data have the same error 

variance i.e. the variance is a constant. The homoscedastic 

nonparametric model is defined as 

𝑌𝑖 = 𝜓(𝑥𝑖) + 𝑒𝑖 , 𝑖 = 1,2,3, . . . . . . . . . . . . 𝑛 

In which 𝑌𝑖 is the ith response, 𝑥𝑖 is a univariate variable with 

0 ≤ 𝑥𝑖 ≤ 1, 𝜓 is an unknown mean function and 𝑒𝑖 are 

independent and identically distributed random errors with 

zero mean and variance , 𝜎2.  

In this context, assume that 𝑥𝑖 = 𝑖/𝑛 for 1 ≤ 𝑖 ≤ 𝑛 without 

loss of generality. 

Estimation methods for error variance that have been 

proposed in the past include: kernel-based estimators, spline 

estimators, difference-based estimators, non-negative 

estimators that are unbiased in the case of a linear function, 

design adaptive regression and orthogonal series methods.  

For difference-based estimators 𝜎2 = 𝐸
(𝑌𝑖−𝑌𝑖−1)

2

2
 where 𝑌𝑖 

and 𝑌𝑖−1 are independent with same means and variances. 

This was later developed by (Rice, 1986), to a first order 

difference based estimator. (Rice, 1986) later developed it 

further to the lag-Rice estimator 𝜎̂𝑅
2(𝑘) and expectation of 

lag-k estimator. 

The results obtained by use of Rice estimator showed that, as 

opposed to other estimators, it obtained high uniform 

consistency. However, 𝜎̂𝑅
2 estimator underestimates bias as 

the sample size increases and at an Exponential model. 

(Gasser et. al, 1986) also developed the 𝜎̂𝐺𝑆𝐽
2 estimator for 

design points which are equidistant and is the sum of squares 

of second order differences. The simulation study concluded 

that the 𝜎̂𝐺𝑆𝐽
2  estimator was sufficient in terms of Relative 

Efficiency. However, in terms of conditional and 

unconditional bias, Relative Root Mean Error (RRME), and 

Standard Error (SE), the 𝜎̂𝐺𝑆𝐽
2  estimator has a low 

performance. 

(Hall et. al, 1990) proved that 
1

𝑛
∑𝑖=1
𝑛 (𝑌𝑖 − 𝑟

ˆ
(𝑥𝑖))

2

with 𝑟̑ 

being a kernel estimator which has asymptotic variance 

as𝑇2 = ∫ 𝑥4𝑑𝐹(𝑥) − 𝜎4. They estimated the 𝜓(𝑥𝑖) using a 

weighted average ∑𝑗=1
𝑛 𝑤𝑖𝑗𝑌𝑗 where 𝑤𝑖𝑗𝑠 are such that 

∑𝑗=1
𝑛 𝑤𝑖𝑗 = 1 for each𝑖.  

They defined their 𝑖𝑡ℎ residual as  

𝑒̂𝑖 = 𝑌𝑖 − ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 𝑌𝑗 , 1 ≤ 𝑖 ≤ 𝑛                                      (1) 

(Hall et. al, 1990) then used the above 𝑖𝑡ℎresidual to propose 

the residual-based error variance estimator for the 
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homoscedastic setting .Using the 𝑟𝑡ℎorder kernel in 

estimating the mean function, (Hall et. al, 1990) obtained the 

mean squared error ( MSE ) of their proposed estimator. 

Though having a large bias, RRME, and SE; Simulation 

experiments showed that the 𝜎̂𝐻𝑀
2 estimator is robust and is of 

an acceptable accuracy. (Muller et. al, 2003) asserted that 

there exist an estimator for nonparametric regression models 

with random covariates for error variance that has a 

relationship with difference-based estimators.  

Most of the estimators for error variance, 𝜎2, are in quadratic 

form and they are usually grouped into two classes. The first 

class of estimators are based on error sum of squares from 

some nonparametric fit to 𝑟 and the estimation of 𝑟is done by 

either kernel smoothing or spline smoothing. Wahba [11] 

therefore proposed a residual -based estimator. (Dorfman, 

1992), came up with a nonparametric regression estimator for 

a finite population variance which uses a sample drawn from 

the population and for a model based estimator, (Dorfman, 

1992) developed conditional variance estimator. As observed 

by (Dette et.al, 1998) none of the above difference-based 

estimators achieve the asymptotic optimal rate for the mean 

squared error (MSE). 

(Zheng et al, 2003), introduced the spline estimator of the 

population error variance. (Tong et. al, 2005) estimated error 

variance using a least square approach where they considered 

the error variance as the intercept in a simple linear regression 

which was obtained from the expectation of the lag-k Rice 

estimator. (Miya et.al, 2016) noted that the drawback with 

these estimators is that they fail to balance between bias and 

variance in that when the bandwidth,ℎ is large the bias is also 

large and if ℎ is small the variance also increases. Another 

drawback to these estimators is that they are generally biased 

due to the problem of boundary and therefore require 

modification at the boundary points. The proposed estimator 

in this work therefore seeks to address the shortcomings of 

the existing estimators. An error variance 𝜎̂𝑉
2 estimator which 

is robust in a homoscedastic setting under simple random 

sampling without replacement was developed. In addition to 

the asymptotic behaviour of the model, the 𝜎̂𝑉
2 estimator is 

unbiased by the fact that its asymptotic bias converges to 

zero, simple, robust, has a smaller asymptotic error variance 

and minimizes cost effectively. 

Outline of the paper: In section 2, the proposed estimator for 

a finite population error variance is developed. Asymptotic 

properties of the developed 𝜎̂𝑉
2estimator are derived in section 

3. In section 4, Emperical study of the results are presented 

and the conclusion and recommendations for future study and 

practitioners are given in section 5. 

 

2 PROPOSED ESTIMATOR 

Define a statistical model of the form 

𝑌𝑖 = 𝜓(𝑥𝑖) + 𝑒𝑖 for 𝑖 = 1,2,3. . . . . . . . . . , 𝑛   

with  

𝐸(𝑦) = 𝜓(𝑦)(𝑥𝑖) 

𝑐𝑜𝑣(𝑌𝑖 , 𝑌𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Where 𝜓(𝑥𝑖) is the mean function 𝐸(𝑌𝑖/𝑥𝑖), 𝑌𝑖 represents the 

survey variable, 𝑥𝑖 s represents the design points and 𝑒𝑖 =

𝑌𝑖 − 𝜓(𝑋𝑖) are independent and identically distributed 

random variable with mean zero and variance, 𝜎2, and the 

fourth moment is bounded such that (𝐸(𝑒4)) < ∞.  

In order to estimate the mean function, define 

𝜓̄(𝑥) = ∑ 𝑤𝑖𝑗
𝑛
𝑖=1 𝑌𝑖 , 𝑓𝑜𝑟1 ≤ 𝑖 ≤ 𝑛                                               (2) 

but 𝑤𝑖𝑗 =
1

ℎ
𝑘 (

𝑥𝑖−𝑥𝑗

ℎ
) are kernel weights and 𝑘(. ) is a kernel 

density function that is symmetric about zero, with bounded 

support 

Putting 𝑤𝑖𝑗into (2) we obtain 

𝜓̄(𝑥) = ∑
1

ℎ

𝑛
𝑖=1 𝑘 (

𝑥𝑖−𝑥𝑗

ℎ
) 𝑌𝑖                                                                               

(3) 

which is a rough estimator of mean function in (2)  

For 𝜓̄(𝑥) − 𝜓(𝑥), we obtain 

𝜓̄(𝑥) − 𝜓(𝑥) = [∑ 𝑤𝑥𝑗
𝑛
𝑖=1 . 𝜓(𝑋𝑖) − 𝜓(𝑥)] + ∑ 𝑤𝑥𝑗

𝑛
𝑖=1 𝑒𝑖    

(4) 

Making 𝜓̄(𝑥) the subject of the formular in equation (5), we 

get 

𝜓̄(𝑥) = [∑𝑊𝑥𝑗 𝜓(𝑥𝑖) − 𝜓(𝑥)] + ∑ 𝑊𝑥𝑗
𝑛
𝑖=1 𝑒𝑖 + 𝜓(𝑥)                                           

(5)                   

The estimator for the mean function is therefore 

𝜓̂(𝑥) = 𝜓̄(𝑥)𝜁(𝑥) = {[∑ 𝑊𝑥𝑗
𝑛
𝑖=1 𝜓(𝑥𝑖)] +

∑ 𝑊𝑥𝑗
𝑛
𝑖=1 𝑒𝑖} ∑ 𝑊𝑥𝑗

𝑛
𝑖=1

𝑌𝑖

𝜓(𝑋𝑖)
                 (6) 

Where 𝜁(𝑥) = ∑𝑖=1
𝑛 𝑤𝑥𝑗

𝑌𝑖

𝜓(𝑋𝑖)
 and 𝑒̂𝑖 = 𝑌𝑖 −∑𝑖=1

𝑛 𝑊𝑥𝑗𝑌𝑖 for 

1 ≤ 𝑗 ≤ 𝑛 

Motivated by Alharbi (2011), we propose a new class of error 

variance such that 𝑒𝑖 = 𝑌𝑖 −𝜓(𝑥𝑖) where 𝑥𝑖𝑠 equidistant 

design points. 

2.1 Assumptions of the study 

1. The mean and variance is considered under a finite 

Fourth moment. 

2. The kernel function is smooth, bounded and twice 

differentiable. 

3. For a bandwidth ℎ → 0: 𝑛ℎ → ∞ as 𝑛 → ∞ 

Using assumptions 1-3 above, the error variance can be 

estimated as 

𝜎̂2 =
1

𝑛
∑ (𝑌𝑖 − 𝜓̂−𝑖(𝑥𝑖))
𝑛
𝑖=1 𝑌𝑖                       (7) 

Where 𝜓
ˆ

−𝑖(𝑥𝑖) is the estimate of 𝜓(𝑥𝑖) without considering 

the 𝑖 − 𝑡ℎ observations 

In order to estimate𝜓(𝑥𝑖), we define the weighted average, 

𝑤𝑖𝑗  as 𝑤𝑖𝑗 =
𝐾(

𝑥𝑖−𝑥𝑗

ℎ
)

(𝑛−1)𝑔ℎ(𝑥𝑖)
 where𝑖 ≥ 1,𝑗 ≤ 𝑛. 

Since the weight function satisfies the constraint ∑𝑗≠𝑖
𝑛 𝑤𝑖𝑗 =

1 for each 𝑖, then the 𝜓(𝑥) is estimated by 𝜓̂−1(𝑥𝑖) =

∑𝑗≠𝑖𝑤𝑖𝑗𝑌𝑖 which does not consider the 𝑖𝑡ℎ observation of 

𝜓(𝑥𝑖) at point 𝑥𝑖 
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From (9), (11) and equation for 𝑤𝑖𝑗 , the new 𝜎̂𝑉
2 estimator of 

error variance in a homoscedastic setting is: 

𝜎̂𝑉
2 =

1

𝑛
∑𝑌𝑖

2 −
1

𝑔ℎ
∑ ∑ 𝑘𝑗≠𝑖
𝑛
𝑖=1 (

𝑥𝑖−𝑥𝑗

ℎ
) 𝑌𝑖𝑌𝑗                                                                     

(8) 

Where 𝑔 = 𝑛(𝑛 − 1) and ℎ is the bandwidth 

3 Properties of the estimator 

3.1 Bias of the estimator 

Define the bias of the developed estimator as  

𝐸[𝜎̂2
𝑉 − 𝜎]= 𝐸[𝜎𝑉

2] − 𝐸[𝜎]  

with  

𝐸(𝜎𝑉 ) =
1

𝑛
∑𝑖=1
𝑛 ∑𝑖=1

𝑛 {(𝜓(𝑥𝑖))
2
+ 𝜎2} −

1

𝑔ℎ
∑𝑖=1∑𝑗≠𝑖𝑘 (

𝑥𝑖−𝑥𝑗

ℎ
)𝜓(𝑥𝑖)𝜓(𝑥𝑗)                    

This yields  

𝐸(𝜎̂𝑉
2) = 𝜎̂𝑉

2 +
1

𝑛
∑ (𝜓(𝑥𝑖))

2𝑛
𝑖=1 −

1

𝑔ℎ
∑ ∑ 𝑘𝑗≠𝑖
𝑛
𝑖=1 (

𝑥𝑖−𝑥𝑗

ℎ
)𝜓(𝑥𝑖)𝜓(𝑥𝑗)                            (9) 

Mathematical analysis of equation (9) yields  

𝐸(𝜎̂𝑉
2) = 𝜎̂𝑉

2 + ∫ 𝜓21

0
(𝑠)𝑑𝑠 − ∫ 𝜓21

0
(𝑠)𝑑𝑠 +

𝑡𝑟(−1)𝑟

𝑟!
∫ 𝑘
1

0
(𝑦)𝑦𝑟𝑑𝑦 ∫ 𝜓

1

0
(𝑠)𝜓𝑟(𝑠)𝑑𝑠 + 𝑜(𝑡𝑟) + 𝑂 (

1

𝑛
)       

                                                                                               

(10) 

Since the kernel function is bounded, then equation (10) 

converges such that 𝐸(𝜎̂𝑉
2) = 𝜎̂𝑉

2 

This confirms that the 𝜎̂𝑉
2 estimator is a true parameter and is 

unbiased. 

3.2 Consistency of the estimator 

Define the mean square error of the estimator as 𝑀𝑆𝐸 (𝜎
ˆ

𝑉
2) =

𝐸 (𝜎
ˆ

𝑉
2 − 𝜎2)

2

  then  

𝑀𝑆𝐸(𝜎̂𝑉
2) = 𝐵𝑖𝑎𝑠(𝜎̂𝑉

2) + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎̂𝑉
2)                          (11) 

 

3.0.1 Theorems 

1. 𝐸 (𝜎
ˆ

𝑉
2) = 𝜎2 +

ℎ𝑟
(−1)𝑟

𝑟!
∫
0

1
𝑘(𝑦)𝑦𝑟𝑑𝑦∫

0

1
𝜓(𝑠)𝜓(𝑟)(𝑠)𝑑𝑠 + 𝑜(ℎ𝑟) +

𝑂 (
1

𝑛
). 

2. 𝑉𝑎𝑟 (𝜎
ˆ

𝑉
2) =

1

𝑛

(−1)𝑟

𝑟!
∫
0

1
𝑘(𝑦)𝑦𝑟𝑑𝑦∫

0

1
𝜓(𝑠)𝜓(𝑟)(𝑠)𝑑𝑠 +

1

𝑛2ℎ
2𝜎4∫

0

1
𝑘2(𝑦)𝑑𝑦 + 4𝜓2∫

0

1
𝑘2(𝑦)𝑑𝑦∫

0

1
𝜓(𝑥)𝑑𝑥 +

𝑜 (
1

𝑛2ℎ
)  

For proof of theorem, see (Alharbi, 2011) 

Using theorem 1 and theorem 2, this yields  

𝑀𝑆𝐸(𝜎̂𝑉
2) = ℎ2𝑟

(−1)𝑟

𝑟!
∫ 𝑘
1

0
(𝑦)𝑦𝑟𝑑𝑦 ∫ 𝜓

1

0
(𝑠)𝜓(𝑟)(𝑠)𝑑𝑠 +

1

𝑛2ℎ
2𝜎4 ∫ 𝑘2

1

0
(𝑦)𝑑𝑦 + 4𝜓2 ∫ 𝑘2

1

0
(𝑦)𝑑𝑦 ∫ 𝜓

1

0
(𝑥)𝑑 +

𝑜 (
1

𝑛2ℎ
) + 𝑜(ℎ2𝑟)                                                                                    

                                                                                                       

(12) 

Further analysis results in 

𝑀𝑆𝐸(𝜎̂𝑉
2) =

1

𝑁2 {
1

𝑛
(𝜇4 − 𝜎4) +

1

𝑛2ℎ
[2𝜎4 ∫ 𝑘2

1

0
(𝑦)𝑑𝑦 +

2𝜎2 ∫ 𝑘2
1

0
(𝑦)𝑑𝑦 ∫ 𝜓21

0
(𝑥)𝑑𝑥] + 𝑜 (

1

𝑛2ℎ
)
2

}    

                                                                                                      

(13) 

where 𝜇4 = 𝐸 [(𝑌𝑖 − 𝜓(𝑥𝑖))
4
] 

As 𝑛 → ∞ implying also that 𝑛2 → ∞ and h → 0, the mean 

squared error in equation (13) reduces to zero. 

𝑀𝑆𝐸[𝜎̂𝑉
2] =

1

𝑛𝑁2
(𝜇4 − 𝜎4)                                (14) 

 This implies that 𝑛 → ∞ and considering also that 𝑁 → ∞, 

the RHS in equation (14) converges and reduces to zero.  

Therefore, the Mean Square Error of the 𝜎̂𝑉
2 estimator reduce 

to zero asymptotically implying that the estimator is 

consistent in the mean square error. 

 

4 Data analysis 

A simulation study was conducted based on daily data 

obtained from the Kenyan Capital markets Authority for the 

years 2020 and 2021. Data on daily shares on banking and 

investments for the years 2020 and 2021 to assess the 

performance of our proposed 𝜎̂𝑉
2 estimator. The survey 

variable Y was simulated using a cosine mean function 

𝜑5(𝑥) =
3

4
𝑐𝑜𝑠(10𝜋𝑥). 

Samples of different sizes were drawn via simple random 

sampling without replacement and various properties of the 

estimator were evaluated. These properties include bias, 

Relative Efficiency (RE), Relative Root Mean Error 

(RRME), Standard Error (SE) and Confidence intervals. The 

performance of the developed estimator was then compared 

with that of other existing estimators such as  

1. The Rice ( 1984 ) estimator 𝜎
ˆ

𝑅
2 =

1

2(𝑛−1)
∑𝑖=2
𝑛 (𝑌𝑖 −

𝑌𝑖−1)
2  

2. The GSJ estimator 𝜎
ˆ

𝐺𝑆𝐽
2 =

2

3(𝑛−2)
∑𝑖=2
𝑛−1 (

1

2
𝑌𝑖−1 − 𝑌𝑖 +

1

2
𝑌𝑖+1)

2

  

3. The H&M ( 1990 ) estimator 𝜎
ˆ

𝐻𝑀
2 =

∑𝑖=1
𝑛 (𝑌𝑖−∑𝑗=1

𝑛 𝑤𝑖𝑗𝑌𝑗)
2

(𝑛−2∑𝑖=1
𝑛 𝑤𝑖𝑖+∑𝑖=1

𝑛 ∑𝑗=1
𝑛 𝑤𝑖𝑗

2 )
  

Results of the simulation experiment are illustrated in tables 

1 and 2 below
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Table 1: Unconditional properties of the estimator using a cosine model 

            

Sample Estimator Estimate Bias   RRME SE   RE   C.I   (90%) 

 C.I (95%) 

Size (n)           Lower Upper Lower Upper 

 

 

 VO 1.0347 0.0347 0.1863 0.0643 12.0965 1.0258 1.0436

 1.0241 1.0453 

n=250 RICE 1.0272 0.0272 0.1650 0.1621 1.9048 1.0009 1.0535

 0.9959 1.0585 

 HM 1.0865 0.0865 0.2941 0.0942 5.6415 1.0804 1.0927

 1.0792 1.0938 

 GSJ 1.1394 0.1394 0.3734 0.2129 1.1044 1.1129 1.1659

 1.1079 1.1710 

 

 VO 1.2526 0.2526 0.5026 0.2538 0.0508 1.2486 1.2567

 1.2478 1.2574 

n=500 RICE 1.1275 0.1275 0.3571 0.1648 0.1205 1.1103 1.1447

 1.1070 1.1480 

 HM 1.3428 0.3428 0.5855 0.3431 0.0278 1.3407 1.3449

 1.3403 1.3453 

 GSJ 1.2817 0.2817 0.5308 0.2957 0.0374 1.2669 1.2965

 1.2641 1.2994 

 

 VO 1.0699 0.0699 0.2644 0.0832 1.9896 1.0624 1.0773

 1.0610 1.0787 

n=700 RICE 0.9349 -0.0651 0.25517 0.1028 1.3039 0.9218 0.9480

 0.9193 0.9505 

 HM 1.0924 0.0924 0.3040 0.0996 1.3887 1.0863 1.0985

 1.0851 1.0997 

 GSJ 1.0598 0.0598 0.2445 0.0951 1.5241 1.0476 1.0719

 1.0453 1.0743 

 

 VO 1.2145 0.2145 0.4632 0.2148 0.0480 1.2129 1.2162

 1.2126 1.2165 

n=900 RICE 1.0872 0.0872 0.2953 0.1108 0.1803 1.0759 1.0985

 1.0738 1.1006 

 HM 1.3846 0.3846 0.6202 0.3848 0.015 1.3830 1.3863

 1.3827 1.3866 

 GSJ 1.2601 0.2601 0.5100 0.2662 0.0313 1.2507 1.2694

 1.2490 1.2712 

 

Table 2: Conditional properties of the estimator using a cosine model  

Sample size (n) Estimator Bias   RRME SE   RE   

                   

 VO 0.0347 0.0422 0.0474 3.7471 

n=250 RICE 0.0272 0.1302 0.1307 2.4902 

 HM 0.0865 0.0897 0.0914 1.7692 

 GSJ 0.1394 0.1736 0.1742 2.0568 

 

 VO 0.2526 0.2532 0.2537 1.1359 

n=500 RICE 0.1275 0.1373 0.1378 4.9155 

 HM 0.3428 0.3428 0.3430 0.8405 
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 GSJ 0.2817 0.2817 0.2819 1.1554 

 

 VO 0.0699 0.0751 0.0773 0.9936 

n=700 RICE -0.0651 0.0839 0.0842 1.9644 

 HM 0.0924 0.0951 0.0961 0.9407 

 GSJ 0.0598 0.0779 0.0782 2.0133 

 

 VO 0.2145 0.2145 0.2147 1.5752 

n=900 RICE 0.0872 0.0941 0.0943 7.8572 

 HM 0.3846 0.3846 0.3848 0.8793 

 GSJ 0.2601 0.2601 0.2602 1.3640 

Figures 1-4 show the performance of the estimator for the various sample sizes  

 

 
Figure 1: Conditional biases, RE, RRME, SE and Means for the estimators using a cosine model 

at n=250 
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Figure 2: Conditional biases, RE, RRME, SE and Means for the estimators using a cosine model 

at n=500 
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Figure 3: Conditional biases, RE, RRME, SE and Means for the estimators using a cosine model 

at n=700 
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Figure 4: Conditional biases, RE, RRME, SE and Means for the estimators using a cosine model 

at n=900 

 

From the tables and figures, the developed 𝜎̂𝑉
2 estimator 

performed comparatively well in all simulation sets.  

From the above analysis, our developed 𝜎̂𝑉
2 estimator 

competes well with these known estimators and from the real 

data plots the purple curve for the 𝜎̂𝑉
2 estimator is closer to the 

x-axis indicating a smaller conditional bias, RRME, SE, RE, 

and Means. 

 

5 CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE STUDY 

The main objective of this work was to develop a robust 

estimator of error variance for a finite population. To achieve 

this, a weighted average and kernel smoothers were utilized 

as tools for developing a 𝜎̂𝑉
2 estimator that solved the bias-

variance trade off at the boundary points. The methodology 

employed possesses some kind of robustness since the 

asymptotic properties of the proposed 𝜎̂𝑉
2 estimators were 

derived. From the numerical and graphical comparison, 

though our developed 𝜎̂𝑉
2 estimator underestimates at some 

points due to the fact that we did not take care of the distance 

between observations, it is observed that our estimator has a 

relatively smaller bias, smaller variance, smaller Relative 

Root Mean Error, smaller standard error and smaller relative 

efficiency than the estimators of Rice ( R ) ; Gasser, Stroka 

and Jennen-steinmetz ( GSJ ) ; Hall&Marron ( HM ) . For 

future study one can take care of the distance between 

observations and develop an error variance estimator for 

finite population in a heteroscedastic setting using another 

real data set.  
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