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I. INTRODUCTION 

Let G be a finite, simple connected graph with a vertex set 

V(G) and an edge set E(G). The degree dG(u) of a vertex u is 

the number of vertices adjacent to u. Let (G)( (G)) 

denote the maximum (minimum) degree among the vertices 

of G. The Revan vertex degree of a vertex u in G is defined 

as rG(u) = (G) + (G) – dG(u). The Revan edge connecting 

the Revan vertices u and v will be denoted by uv. For 

additional definitions and notations, the reader may refer to 

[1]. 

         A topological index is a numerical parameter 

mathematically derived from the graph structure. In organic 

chemistry, topological indices have been found to be useful 

in chemical documentation, isomer discrimination, structure 

property relationships, structure activity relationships and 

pharmaceutical drug design. There has been considerable 

interest in the general problem of determining topological 

indices. 

 

         The first and second Revan indices of a graph G were 

introduced by Kulli in [2], and they are defined as 

      
 

1 ,G G

uv E G

R G r u r v


      

      
 

2 .G G

uv E G

R G r u r v


   

         Recently, some Revan indices were studied in [3, 4, 5]. 

The Revan Sombor index was proposed by Kulli et 

al. in [6] and defined it as 

                                 

     
 

2 2
.G G

uv E G

G r u r vRSO


 
 

 

 Recently, some Sombor indices were studied in [7, 

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 

26, 27, 28, 29, 30]. 

 

The modified Revan Sombor index was introduced 

by Kulli in [31] and defined it as 

            

 

    
2 2

1
.m

uv E G
G G

RSO G
r u r v




    

           In [32], the multiplicative Revan Sombor index of a 

graph G is defined as  

              
 

2 2
.G G

uv E G

RSOII G r u r v


   

          We can express the multiplicative Revan Sombor 

index as  

      
 

2 2
( ) ( ) .G G

uv E G

RSOII G d u d v 


         

              Inspired by work on Revan and Sombor indices, we 

propose the multiplicative modified Revan Sombor index of 

a graph as follows: 

           The multiplicative modified Revan Sombor index of 

a graph G is defined as  

         

    
2 2

1
.m

uv E G
G G

RSOII G

r u r v




  
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We can express the multiplicative modified Revan 

Sombor index as 

            

           

 

    
2 2

1
.

( ) ( )

m

uv E G
G G

KGII G

d u d v 



      
  

 Recently, some multiplicative indices were studied 

in [ 33, 34, 35, 36]. 

In this paper, we compute the multiplicative Revan 

Sombor index, multiplicative modified Revan Sombor index 

of triangular benzenoids. benzenoid rhombus, benzenoid 

hourglass and benzenoid systems. For more information 

about these benzenoids  see [37]. 

 

II. RESULTS FOR TRIANGULAR   BENZENOID Tp 

In this section, we consider the graph of triangular 

benzenoid Tp in which p is the number of hexagons in the 

base graph. Clearly Tp has  
1

1
2

p p  hexagons. The graph 

of T4 is shown in Figure 1.  

 
Figure 1. The graph of T4 

  

 Let G be the graph of a triangular benzenoid Tp. By 

calculation, we find that G has  p2 + 4p + 1 vertices and 

 
3

3
2

p p  edges. From Figure 1, we see that (G) = 3 and 

(G) = 2. Also by calculation, we find that the edge set 

E(G) can be divided into three partitions:   

E1 = {uv  E(G) | dG(u) = dG(v) = 2}, |E1| = 6. 

E2 = {uv  E(G) | dG(u) = 2, dG(v) = 3}, |E2| = 6p – 6. 

E3 = {uv  E(G) | dG(u) = dG(u) = 3},|E3| =  
3

1
2

p p  . 

 

 In the following theorem, we compute the 

multiplicative Revan Sombor index of Tp. 

 

Theorem 1. The multiplicative Revan Sombor index of Tp is 

given by 

              
 

3
6 6 6 1

23 2 13 2 2 .
p p p

pRSOII T
 

     

 

Proof. By definition, we have  

            

     
 

2 2
( ) ( )

p

p G G

uv E T

RSOII T d u d v 


       

                   
6

2 2
3 2 2 3 2 2

 
     
  

 

                   
6 6

2 2
3 2 2 3 2 3

p
 

     
  

 

                   

 
3

1
2

2 2
3 2 3 3 2 3 .

p p

 
     
  

                          

After simplification, we obtain the desired result.  

 In the following theorem, we compute the 

multiplicative modified Revan Sombor index of Tp. 

 

Theorem 2. The multiplicative modified Revan Sombor 

index of Tp is given by 

 

 
 

3
6 66 1

21 1 1
.

3 2 13 2 2

p p p

m
pRSOII T

 
    

      
    

 

 

Proof. By definition, we have  

         

 
    

2 2

1

( ) ( )p

m
p

uv E T
G G

KGII T

d u d v 



      
  

       

                  

   

6

2 2

1

3 2 2 3 2 2

 
 
       

  

                 

   

6 6

2 2

1

3 2 2 3 2 3

p
 
 
       

 

                 

   

 
3

1
2

2 2

1

3 2 3 3 2 3

p p
 
 
       

 

                                 

gives the desired result after simplification. 

 

 

III. RESULTS FOR BENZENOID RHOMBUS  Rp 

In this section, we consider the graph of benzenoid rhombus 

Rp which is obtained from two copies of a triangular 

benzenoid Tp by identifying hexagons in one of their base 

rows. The graph of benzenoid rhombus R4 is presented in 

Figure 2. 
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Figure 2. The graph of R4 

  

 Let G be the graph of a benzenoid rhombus Rp. By 

calculation, we obtain Rp has 2p2 + 4p vertices and 

23 4 1p p   edges. From Figure 2, we see that (G)=3 

and (G)=2. By calculation, we obtain that the edge set 

E(Rp) can be divided into three partitions:   

E1 = {uv  E(G) | dG(u) = dG(v) = 2}, |E1| = 6. 

E2 = {uv  E(G) | dG(u) = 2, dG(v) = 3} , |E2| = 8(p – 1). 

E3 = {uv  E(G) | dG(u) = dG(u) = 3}, |E3| = 3p2 – 4p 

+ 1. 

 

         In the following theorem, we compute the 

multiplicative Revan Sombor index of Rp. 

 

Theorem 3. The multiplicative Revan Sombor index of Rp 

is given by 

     
 

 
26 8 1 3 4 1

3 2 13 2 2 .
p p p

pRSOII R
  

     

 

Proof. By definition, we have  

               

     
 

2 2
( ) ( )

p

p G G

uv E R

RSOII R d u d v 


       

                   
6

2 2
3 2 2 3 2 2

 
     
  

 

                   
 8 1

2 2
3 2 2 3 2 3

p
 

     
  

    

                   

23 4 1

2 2
3 2 3 3 2 3 .

p p 

 
     
  

                                                         

After simplification, we obtain the desired result.  

 In the following theorem, we compute the 

multiplicative modified Revan Sombor index of Rp. 

 

Theorem 4. The multiplicative modified Revan Sombor 

index of Rp is given by 

 

 
  28 16 3 4 1

1 1 1
.

3 2 13 2 2

p p p

m
pRSOII R

  
    

      
    

 

Proof. By definition, we have  

            

 
    

2 2

1

( ) ( )p

m
p

uv E R
G G

KGII R

d u d v 



      
  

       

                 

   

3

2 2

1

3 2 2 3 2 2

 
 
       

     

                 

                

   

 3 1

2 2

1

3 2 2 3 2 3

p
 
 
       

 

                

   

 
3

1
2

2 2

1

3 2 3 3 2 3

p p
 
 
       

 

                                                            

gives the desired result after simplification.  

  

IV. RESULTS FOR BENZENOID HOURGLASS  Xp 

In this section, we consider the graph of benzenoid 

hourglass Xp which is obtained from two copies of a 

triangular benzenoid Tp by overlapping hexagons. The graph 

of benzenoid hourglass is shown in Figure 3.  

 
 

Figure 3. The graph of Xp 

  

 Let G be the graph of Xp. By calculation, we find that 

Xp has 2(p2+4p –2) vertices and 
23 9 4p p  edges. From 

Figure 3, we see that (G)=3 and (G)=2. By calculation, 

we obtain that the edge set E(Xp) can be divided into three 

partitions:   

E1 = {uv  E(G) | dG(u) = dG(v) = 2}, |E1| = 8 

E2 = {uv  E(G) | dG(u) = 2, dG(v) = 3}, |E2| = 12p – 16. 

E3 = {uv  E(G) | dG(u) = dG(u) = 3}, |E3| = 3p2 – 3p 

+ 4. 
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        In the following theorem, we compute the 

multiplicative Revan Sombor index of Xp. 

 

Theorem 5. The multiplicative Revan Sombor index of Xp 

is given by 

       
8 12 16

3 2 13
p

pRSOII X


    

                              
23 3 4

2 2 .
p p 

  

Proof. By definition, we have  

          

     
 

2 2
( ) ( )

p

p G G

uv E X

RSOII X d u d v 


       

                    
8

2 2
3 2 2 3 2 2

 
     
  

 

                    
12 16

2 2
3 2 2 3 2 3

p
 

     
  

 

                    

23 3 4

2 2
3 2 3 3 2 3 .

p p 

 
     
  

                                                   

After simplification, we obtain the desired result.  

 In the following theorem, we compute the 

multiplicative modified Revan Sombor index of Xp. 

 

Theorem 6. The multiplicative modified Revan Sombor 

index of Xp is given by 

             
12 168

1 1

3 2 13

p

m
pRSOII X


  

   
   

       

                                     

23 3 4
1

.
2 2

p p 
 

 
 

 

Proof. By definition, we have  

         

 
    

2 2

1

( ) ( )p

m
p

uv E X
G G

KGII X

d u d v 



      


 

                 

   

8

2 2

1

3 2 2 3 2 2

 
 
       

 

                  

                  

   

12 16

2 2

1

3 2 2 3 2 3

p
 
 
       

    

                          

                 

   

23 3 4

2 2

1

3 2 3 3 2 3

p p 
 
 
       

    

                            

gives the desired result after simplification.  

 

V. RESULTS FOR BENZENOID SYSTEMS 

We focus on the chemical graph structure of a jagged 

rectangle benzenoid system, denoted by Bm, n for all m, n, in 

N. Three chemical graphs of a jagged rectangle benzenoid 

system are depicted in Figure 4. 

 

                                         Figure 4        

         Let G = Bm, n. Clearly the vertices of G are either of 

degree 2 or 3, see Figure 4. By calculation, we obtain that G 

has 4mn + 4m + m – 2 vertices and 6mn + 5m + n – 4 edges. 

From Figure 4, we see that (G)=3 and (G)=2. By 

calculation, we obtain that the edge set E( ,m nB ) can be 

divided into three partitions:   

E1 = {uv  E(G) | dG(u) = dG(v) = 2}, |E1| = 2n+4. 

E2 = {uv  E(G) | dG(u) = 2, dG(v) = 3} , |E2| = 4m+4n 

– 4. 

E3 = {uv  E(G) | dG(u) = dG(u) = 3}, |E3| = 6mn + m 

– 5n – 4. 

 

          In the following theorem, we compute the 

multiplicative Revan Sombor index of  Bm, n. 

 

Theorem 7. The multiplicative Revan Sombor index of Bm, n 

is given by 

           
2 4 4 4 4

, 3 2 13
n m n

m nRSOII B
  

        

                               
6 5 4

2 2 .
mn m n  

  

  

Proof. By definition, we have  

  

     
 ,

2 2

, ( ) ( )

m n

m n G G

uv E B

RSOII B d u d v 


     

 

                   
2 4

2 2
3 2 2 3 2 2

n
 

     
  

 

                   
4 4 4

2 2
3 2 2 3 2 3

m n 
 

     
  
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                   

6 5 4

2 2
3 2 3 3 2 3 .

mn m n  

 
     
  

                          

After simplification, we obtain the desired result.  

 In the following theorem, we compute the 

multiplicative modified Revan Sombor index of ,m nB . 

 

Theorem 8. The multiplicative modified Revan Sombor 

index of ,m nB  is given by 

  
4 4 42 4

,

1 1

3 2 13

m nn

m
m nRSOII B

 
  

   
   

     

                                      

6 5 4
1

.
2 2

mn m n  
 

 
 

 

 

Proof. By definition, we have  

         

 
    ,

,
2 2

1

( ) ( )m n

m
m n

uv E B
G G

KGII B

d u d v 



      


 

       

                   

   

2 4

2 2

1

3 2 2 3 2 2

n
 
 
       

  

                  

   

4 4 4

2 2

1

3 2 2 3 2 3

m n 
 
 
       

 

             

           

   

6 5 4

2 2

1

3 2 3 3 2 3

mn m n  
 
 
       

 

        

                          

gives the desired result after simplification. 

             

VI. CONCLUSION                              

In this paper, we have introduced the multiplicative 

modified Revan Sombor index of a graph. We have 

computed the multiplicative Revan Sombor index and the 

multiplicative modified Revan Sombor index for triangular 

benzenoids, benzenoid rhombus, benzenoid hourglass and 

benzenoid systems. 
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