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Climatic characteristics involving weather conditions affect malaria transmission in most deltaic 

regions of the world. Here, we propose a simple mosquito-human interaction model 

incorporating features of seasonal malaria pathogenesis. We obtain the basic reproduction 

number and show in our analysis some conditions for local and global stability of the solution, 

suggesting that intervention strategies should be targeted at reducing seasonal contacts of 

mosquitoes and humans. The model simulations compare well with malaria infection data. 
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1. INTRODUCTION AND GENERAL BACKGROUND 

Malaria is one of the most important infectious disease that is 

very much common in tropical climatic regions and posing 

serious public health challenges in the poorest countries of the 

world. Thus it impacts on major socioeconomics decisions in 

the affected regions in particular and major world health 

policies in general.  Malaria is caused by a plasmodium 

parasite associated with the female anopheles mosquito 

through its struggle to have a blood meal from humans. The 

disease could lead to a lot of complications including 

blockage of   blood vessels in vital organs, enlargement of the 

spleen [3], brain damage, kidney and liver failure [4].  

        Mathematical models are very important tools in 

explicating the mode of transmission, which later direct and 

guide the proper implementation of intervention programmes. 

Malaria transmission could be seasonal or perennial. 

Knowing the duration, start and end of the malaria 

transmission season is important in terms of planning control 

strategies [2]. According to WHO’s 2021 World malaria 

report, there were an estimated 241 million malaria 

cases and 627 000 malaria deaths worldwide in 2020 [6]. 

This trend follows from about 14 million additional cases 

with 69 thousands more deaths in 2020 compared to 2019 

figure.  

        Despite the discovery of a malaria vaccine, people still fall 

sick after use and it is still only 30% effective against death. 

Hence, the recommendation of its use in combination with other 

therapeutic or preventive drugs [7]. There has been a rising 

debate in recent times as to whether or not global warming is 

associated with a rise in the number of malaria cases. 

According to WHO, malaria pathogenesis has the potential to 

significantly increase in response to climate change since 

temperature and rainfall have significant impact in the  

population dynamics of the mosquito vector [24,25]. Patterns 

of malaria transmission and disease vary markedly between 

regions and even within individual countries, which could be 

due to ecological differences and variations between malaria 

parasites and mosquito vectors [8].  

        Malaria is endemic throughout Nigeria which accounted 

for 25 percent of all estimated malaria cases in the WHO 

African region in 2006 with transmission occurring all year 

round in the south where the Niger delta region is situated 

with more seasonality in the north [9].                 Malaria 

accounts for nearly 110 million clinically diagnosed cases per 

year, 60 percent hospitalisations. An estimated 300,000 

children die of malaria each year. It is also believed to 

contribute up to 11 percent maternal mortality, 25 percent 

infant mortality, and 30 percent under-five mortality. In 

addition to the direct health impact of malaria, there are also 

severe social and economic burdens on communities and the 

country as a whole in form of treatment costs, prevention, loss 

of work time, etc. [12].  In the 2020 World Malaria Report,   

Nigeria had the highest number of global malaria cases 

estimated as 27% of global malaria cases in 2019 and 

accounting for the highest number of deaths being 23% of 

global malaria deaths [5]. Understanding the pattern of 
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malaria transmission is an important step in regional malaria 

control. This led to the recommendation of seasonal malaria 

chemoprevention by the   World Health Organisation in 2012 

[10], in which Nigeria, through its National Malaria 

Elimination Program strategy recommends seasonal malaria 

chemoprevention in nine states in the Sahel region where, 

malaria treatment is administered once a month for four 

months during the intense malaria transmission season[11] 

        The Niger Delta Region of Nigeria located at the 

southern part of the country covers a total of 70,000 km2 with 

its riverine area consisting of coastal belt of swamps and 

vegetated tidal flats formed by a reticulate pattern of 

interconnected meandering creeks and distributaries of the 

River Niger. About 70 percent of Nigerian’s crude oil and gas 

production is from the area [22], so a lot of oil prospecting 

companies operate in the region with foreign nationals 

including those from countries where malaria is said to have 

been eradicated. Therefore epidemiological researches 

including mathematical modelling aimed at eradicating or 

adequately controlling malaria in the region is more of a 

global interest than regional interest since it is possible for 

malaria to be exported alongside with oil and gas from the 

region. The disease is endemic in the region and it is the 

number one case of mortality and morbidity in the area [13].  

        The region experiences roughly about four months of 

dry season and eight months of rainy season. The dry season 

spreads from mid-November to the end of February and a two 

to three weeks break between July and August within the 

rainy season. The rainy season creates a favourable 

environment for mosquitoes to breed since they lay eggs on 

stagnant water that surrounds the swamps and creeks of the 

entire region. In order to have a good understanding of our 

problem and assess the intensity of malaria transmission in 

the region. The effect of seasonality and mosquito abundance 

in the pathogenesis of malaria has been emphasized by most 

mathematical models. Malaria transmission is both 

seasonal and heterogeneous, and mathematical models 

targeting appropriate intervention strategies that seek to 

predict the effects of possible intervention strategies should 

capture realistic seasonality of vector abundance [1]. 

        A seasonal malaria model describing the Brazilian 

Amazon region was proposed in [14]. The model included 

treatment of infected individuals while linking the latent 

period to the effect of environmental temperature influence. 

The model analysis shows temperature increase greatly 

affects the latent period, which drastically reduce the health 

care efficiency. Most existing models of malaria seasonality 

[15, 16, 18, 19, 20] use parameters of rainfall, temperature, 

and/or vegetation indices to describe suitable transmission 

patterns. However, the work of [17] proposes a statistical 

modelling framework that characterises seasonal patterns 

derived directly from monthly health facility data across 

various Islands in Madagascar. Thus modelling framework 

that accommodates location-specific seasonal characteristics 

will improve our understanding and planning of intervention 

strategies especially, with the aid of more available data. 

Here we propose a simple malaria model using seasonally 

induced or variable contact parameters to characterise the 

case of the Niger Delta using malaria infection data obtained 

from the region. In section 1 we present the introduction and 

the general background. We present the model formulation in 

section 2 and the analysis in section 3. The numerical solution 

is given in section 4 and the paper is rounded up with 

discussion and conclusion in section 5. 

 

2. THE PROPOSED MODEL 

In this section we present a four compartment malaria model 

with the following model variables representing the human 

population, 𝐻 and the mosquito population, 𝑀. 

𝑆ℎ Susceptible human population  

𝐼ℎ Infectious human population 

𝑆𝑚 Susceptible mosquito population  

𝐼𝑚 

 

Infectious mosquito population  

The nature of the data collected in the Niger Delta Region 

showing high infection in the rainy season and low infection 

in the dry season suggests either a seasonally varying contact 

rate or a variable birth rate or both. Seasonal variation in 

mosquito abundance in response to annual variation in 

temperature and rainfall can cause strong seasonal patterns of 

disease incidence in malaria epidemic regions[21]. The 

model explains the dynamics of both human and mosquito 

populations as they progress from susceptible noninfectious 

states to infectious states. Here we have assumed that all 

infected humans and mosquitos become infectious. Thus, 

malaria is transmitted when a susceptible human is bitten by 

an infected Anopheles mosquito or when a susceptible 

Anopheles mosquito bites an infectious human. We assume 

that susceptible humans and mosquitoes get infected at a 

rates, 𝛽𝑚𝐼𝑚
𝑆ℎ

𝑀
 and 𝛽ℎ𝐼ℎ

𝑆𝑚

𝑁
  respectively, where 𝛽𝑚 and 𝛽ℎ are 

rate constants. The fractions 
𝑆ℎ

𝑀
 and 

𝑆𝑚

𝑁
  further explain the 

probability of contacts with susceptible humans and 

mosquitoes. A study carried out showed 

that combinations of mean monthly temp range (28 − 320𝐶), 

maximum temperature (24 − 280𝐶),) and high rainfall 

provide suitable conditions for seasonal transmission [20], 

and since malaria shows strong seasonality we assume simple 

sinusoidal fluctuation in which        Susceptible mosquitoes 

are recruited into the mosquito population through a seasonal 

birth rate 𝜆𝑚𝑓(𝑡), where 

𝑓(𝑡) = 𝑐0(1 + 𝑐1 cos 2𝜋𝑡),                                                      (1) 

is a continuous, bounded, positive, periodic and nonzero 

function of time. The parameter, 𝑐0 

is the baseline biting rate and 0 < 𝑐1 < 1  measures the 

degree of seasonality. Mosquitoes die at a rate 𝛼𝑚𝐼𝑚 from the 

disease, and naturally at a rate 𝜇𝑚𝑀 whereas, infectious 

humans recover at a rate 𝛾ℎ𝐼ℎ  into the susceptible class. We 
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assume a natural recruitment and mortality rates of 𝜆ℎ𝑁  and 

𝜇ℎ𝑁 for the human population while 𝛼ℎ𝐼ℎ of them die as a 

result of the disease. The model consistent with the given 

assumptions is 

 
𝑑𝑆ℎ

𝑑𝑡
= 𝜆ℎ𝑁 + 𝛾ℎ𝐼ℎ − 𝛽𝑚𝐼𝑚

𝑆ℎ

𝑀
− 𝜇ℎ𝑆ℎ                                        (2) 

𝑑𝐼ℎ

𝑑𝑡
= 𝛽𝑚𝐼𝑚

𝑆ℎ

𝑀
− 𝛼ℎ𝐼ℎ − 𝛾ℎ 𝐼ℎ − 𝜇ℎ𝐼ℎ                                 (3) 

𝑑𝑆𝑚

𝑑𝑡
= 𝜆𝑚𝑓(𝑡)𝑀 − 𝛽ℎ𝐼ℎ

𝑆𝑚

𝑁
− 𝜇𝑚𝑆𝑚                       (4) 

𝑑𝐼𝑚

𝑑𝑡
= 𝛽ℎ𝐼ℎ

𝑆𝑚

𝑁
− 𝛼𝑚𝐼𝑚 − 𝜇𝑚𝐼𝑚                         (5) 

𝑑𝑁

𝑑𝑡
= 𝜆ℎ𝑁 − 𝛼ℎ𝐼ℎ − 𝜇ℎ𝑁                                                    (6) 

𝑑𝑀

𝑑𝑡
= 𝜆𝑚𝑓(𝑡)𝑀 − 𝛼𝑚𝐼𝑚 − 𝜇𝑚𝑀                                             (7) 

        Noting that (6) and (7) are obtained by adding (2) − (3) 

and (4) −  (5) respectively, we impose at 𝑡 = 0, 𝑁 = 𝑁0, 

𝑀 = 𝑀0 as initial conditions for the human and mosquito 

populations, and working with population fractions, we 

rescale the system by writing 

𝑆 =
𝑆ℎ

𝑁
,   𝐼 =

𝐼ℎ

𝑁
,  𝑋 =

𝑆𝑚

𝑀
,   𝑌 =

𝑆𝑚

𝑀
,  𝑁̂ =  

𝑁

𝑁0
,   𝑀̂ =  

𝑀

𝑀0
,   

𝑡̂ =  
𝑡

𝑡0
 ,                                         (8) 

where S, I, X, Y, 𝑁̂, 𝑀̂ and 𝑡̂ are nondimensional variables. 

We note that for the susceptible human equation, 
𝑁

𝑡0

𝑑𝑆

𝑑𝑡̂
=

𝑑𝑆ℎ

𝑑𝑡
− 𝑆

𝑑𝑁

𝑑𝑡
.                                                                       (9) 

By expressing other state variables in this form including the 

human and mosquito populations and substituting these in 

(2) − (7) we have, 
𝑑𝑆

𝑑𝑡̂
= 𝑡0𝜆ℎ(1 − 𝑆) − 𝑡0𝛽𝑚𝑓(𝑡)𝑆𝑌 + 𝑡0𝛾ℎ 𝐼ℎ + 𝑡0𝛼ℎ𝑆𝐼,    (10) 

𝑑𝐼

𝑑𝑡̂
= 𝑡0𝛽𝑚𝑓(𝑡)𝑆𝐼 − 𝑡0𝜆ℎ𝐼 − 𝛼ℎ𝐼 − 𝑡0𝛾ℎ𝐼 + 𝑡0𝛼ℎ𝐼2,        (11) 

𝑑𝑋

𝑑𝑡̂
= 𝑡0𝜆𝑚𝑓(𝑡)(1 − 𝑋) − 𝑡0𝛽ℎ𝑓(𝑡)𝑋𝐼 + 𝑡0𝛼𝑚𝑋𝑌,          (12) 

𝑑𝑌

𝑑𝑡̂
= 𝑡0𝛽ℎ𝑓(𝑡)𝑋𝐼 − 𝑡0𝛼𝑚𝑌 − 𝑡0𝜆𝑚𝑓(𝑡)𝑌 + 𝑡0𝛼𝑚𝑌2,      (13) 

𝑑𝑁

𝑑𝑡̂
= 𝑡0𝜆ℎ𝑁 − 𝑡0𝛼ℎ𝑁𝐼 − 𝑡0𝜇ℎ𝑁,                                              (14) 

𝑑𝑁

𝑑𝑡̂
= 𝑡0𝜆𝑚𝑓(𝑡)𝑀 − 𝑡0𝛼𝑚𝑌𝑀 − 𝑡0𝜇𝑚𝑀.                              (15) 

Due to the significance of seasonality in the recruitment of 

mosquitoes into the mosquito population, we rescale time 

with the recruitment rate of mosquito. Thus, by defining the 

following dimensionless parameters  

𝑡0 =
1

𝜆𝑚
,   𝑎 =

𝜆ℎ

𝜆𝑚
,  𝑏 =

𝛽𝑚

𝜆𝑚
,   𝑑 =

𝛾ℎ

𝜆𝑚
,  𝑒 =  

𝛼ℎ

𝜆𝑚
,   𝑞 =  

𝛽ℎ

𝜆𝑚
,   

𝑔 =  
𝛼𝑚

𝜆𝑚
 , ℎ =  

𝜇ℎ

𝜆𝑚
, 𝑟 =  

𝜇𝑚

𝜆𝑚
 ,       (16) 

and substituting these into (10) − (15), we obtain the 

following nondimensional system; 
𝑑𝑆

𝑑𝑡̂
= 𝑎(1 − 𝑆) + 𝑑𝐼 − 𝑏𝑓(𝑡)𝑆𝑌 + 𝑒𝑆𝐼,                               (17) 

𝑑𝐼

𝑑𝑡̂
= 𝑏𝑓(𝑡)𝑆𝑌 − (𝑎 + 𝑑 + 𝑒)𝐼 + 𝑒𝐼2,                                 (18) 

𝑑𝑋

𝑑𝑡̂
= 𝑓(𝑡)(1 − 𝑋) − 𝑞𝑋𝐼 + 𝑔𝑋𝑌,                                     (19) 

𝑑𝑌

𝑑𝑡̂
= 𝑞𝑋𝐼 − 𝑓(𝑡)𝑌 − 𝑔𝑌 + 𝑔𝑌2,                                                (20) 

𝑑𝑁

𝑑𝑡̂
= (𝑎 − ℎ)𝑁 − 𝑒𝑁𝐼 ,                                                                  (21) 

𝑑𝑀

𝑑𝑡̂
= (𝑓(𝑡) − 𝑟)𝑀 − 𝑔𝑌𝑀 ,                                                        (22) 

subject to the initial conditions, 

𝑁(0) = 1, 𝑀(0) = 1,  𝑆(0) = 𝑆0,  𝐼(0) = 1 − 𝑆0, 𝑋(0) =

𝑋0,  𝑌(0) = 1 − 𝑋0 .              (23) 

 

3. MODEL ANALYSIS 

3.1 Determining the Disease Threshold (𝑹𝟎) 

        The disease threshold, in other words known as the basic 

reproduction number is the number of secondary infection 

that may possibly be generated by introducing one infectious 

agent into an infection free environment and in this case, an 

infectious human or mosquito. We consider the vector 

equation  

ῐ′ = (𝜃𝑎 − 𝜃𝑏)𝜋𝑐 , 

describing the emergence of new infections and their 

systemic transition among compartments wherein 𝜃𝑎𝜋𝑐   

represents emergence of new infection, 𝜃𝑎𝜋𝑐 the infection 

distribution vector and 𝜋𝑐 is the reservoir of infection vector. 

    

𝜃𝑎 = ⌊
0 𝑏𝑓(𝑡)
𝑞 0

⌋ ,    𝜃𝑏 = ⌊
(𝑎 + 𝑑 + 𝑒) 0

0 (𝑔 + 𝑓(𝑡))
⌋ ,   

𝜋𝑐  = [
𝐼
𝑌

] 

     

The largest eigenvalue of 𝐺0 =  𝜃𝑎𝜃𝑏
−1

 is the basic 

reproduction number. 

      𝐺0 =
1

(𝑎+𝑑+𝑒)(𝑔+𝑓(𝑡))
[
(𝑔 + 𝑓(𝑡)) 0

0 (𝑎 + 𝑑 + 𝑒)
],     

   

  =
1

(𝑎+𝑑+𝑒)(𝑔+𝑓(𝑡))
[

0 𝑏𝑓(𝑡)(𝑔 + 𝑓(𝑡))

𝑞(𝑎 + 𝑑 + 𝑒) 0
] 

 

The highest eigenvalue of 𝐺0 in terms of 𝜎∗ gives: 

 

𝜎∗2 = 𝑅0 =
𝑞𝑏𝑓(𝑡)

(𝑔+𝑓(𝑡))(𝑎+𝑑+𝑒)
                                           (24) 

 

3.2       Positivity, Existence and Uniqueness of Solution 

 

The model is described in the domain 

𝛺 ∈ ℝ6 = {𝑆, 𝐼, 𝑋, 𝑌 , 𝑁, 𝑀: 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑋 ≥ 0, 𝑌 ≥

0, 𝑁 > 0, 𝑀 > 0, 𝑆 + 𝐼 = 1, 𝑋 + 𝑌 = 1}   (25) 

Suppose 𝑎𝑡 𝑡 = 0 all variables are non-negative, it implies 

that 𝑆(0) + 𝐼(0) = 1 and 𝑋(0) + 𝑌(0) = 1. If  𝑆 = 0 , and 

all other variables are in 𝛺, then, 
𝑑𝑆

𝑑𝑡
≥ 0, this is also the case 

for variables in (18) - (20). If 𝑁 = 0  and  𝑀 = 0, then  
𝑑𝑁

𝑑𝑡
=

0 and 
𝑑𝑀

𝑑𝑡
= 0. But if  𝑁 > 0 and 𝑀 > 0, assuming 𝑎 > ℎ , 

and 𝑓(𝑡) > 𝑟,  then with  suitable initial conditions,  
𝑑𝑁

𝑑𝑡
> 0 

and 
𝑑𝑀

𝑑𝑡
> 0 for all values of 𝑡 > 0. We note that the right-

hand side of (17) - (22) is continuous with continuous partial 

derivatives. Thus, solutions exist and are unique. 

The model has mathematically and biologically relevant 

solutions in the domain 𝛺 ∀ 𝑡 ∈ [0, ∞) 
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3.3      Steady State Solution  

        The equilibrium point is 𝐸0 = (𝑆, 𝐼, 𝑋, 𝑌) = (1,0,1,0).  

At the disease free state, there are neither infected mosquitoes 

nor infected humans, wherein I = 0 and Y = 0. Substituting 

these into the right hand side of (17), and (19) gives S = 1, 

and X = 1.  We note that the populations of humans and 

mosquitoes are gradually increasing provided > ℎ , and 

𝑓(𝑡) > 𝑟 with the population of mosquitoes expected to 

exhibit some oscillatory behaviour due to the choice of the 

function, f(t) describing seasonal mosquito birth rate. 

 

3.4 Local Stability Analysis of the Disease Free 

Equilibrium (𝑬𝟎) 

Lemma 3.1: The disease free equilibrium is locally 

asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof: We assume that 0 < 𝑐1 < 1 so that f(t) is positive 

including all other parameters of system (17) − (22) and the 

linearization of the system about the disease free state yields 

the following characteristic equation with eigenvalue, 𝜆. 

(𝜆 + 𝑎)(𝜆 + 𝑓(𝑡)){𝜆2 + (𝑎 + 𝑏 + 𝑒 + 𝑓(𝑡) + 𝑔)𝜆 +

(𝑓(𝑡) + 𝑔)(𝑎 + 𝑏 + 𝑒) − 𝑔𝑏𝑓(𝑡)} = 0                 (26) 

If 𝑅0 < 1, then using (24) in (26), we observe that all the 

coefficients of the quadratic polynomial are positive and 

nonzero, so by the Decartes’ rule of signs there are no positive 

real eigenvalues, This means there are two negative 

eigenvalues or a pair of complex conjugate roots with 

negative real parts. Thus the disease free equilibrium is 

locally asymptotically stable if 𝑅0 < 1. We note that if 𝑅0 >

1, then there will be one sign change and by using the 

Descartes’ rule of sign we conclude that the disease free state 

is unstable for 𝑅0 > 1. 

 

3.5 Global Stability Analysis of the Disease Free 

Equilibrium (𝑬𝟎) 

Lemma 3.2: The disease free equilibrium is globally 

asymptotically stable in 𝛺 if 𝑅0 < 1. 

Proof: We consider the function, Ψ: {(S, I, X, Y) ∈  𝛺 ∶ 𝑆, 𝑋 >

0} → Ɽ, where 

  Ψ =
1

𝑓
(1 − 𝑆) +

1

𝑓
𝐼+(1 − 𝑋) + 𝑌.                                  (27) 

We note that Ψ ≥ 0 and is continuously differentiable on the 

interior of 𝛺. We show that the disease free state is a global 

minimum of Ψ on 𝛺 when 𝑅0 < 1. The derivative of Ψ 

computed along solutions of the system is 

𝑑Ψ

𝑑𝑡
=

−𝑎

𝑓
(1 − 𝑆) −

𝑑

𝑓
𝐼 + 𝑏𝑆𝑌 −

𝑒

𝑓
𝑆𝐼 + 𝑏𝑆𝑌 −

1

𝑓
(𝑎 + 𝑑 +

𝑒)𝐼 +
𝑒

𝑓
𝐼2 − 𝑓(1 − 𝑋) − 𝑞𝑋𝐼 −          𝑔𝑋𝑌 + 𝑞𝑋𝐼 −

(𝑓 + 𝑔)𝑌 + 𝑔𝑌2, 

and after some simplifications gives, 
𝑑Ψ

𝑑𝑡
= −2 {[(

𝑎+𝑑

𝑞
) − 𝑓] (1 − 𝑆) + 𝑞𝑆(1 − 𝑆) +

(𝑓 − 𝑏)(1 − 𝑋) +
𝑒

𝑓
𝑆𝐼 + 𝑔𝑋𝑌 +            𝑏𝐼(1 − 𝑋}                                                                                                           

(28) 

We observe from (28) that 
𝑑Ψ

𝑑𝑡
≤ 0 whenever 𝑏 < 𝑓 <

𝑎+𝑑

𝑞
. 

For (𝐼, 𝑌) = (0, 0),
𝑑Ψ

𝑑𝑡
≤ 0  and (𝐼, 𝑌) is the positively 

invariant subset in the interior of 𝛺 and by LaSalle’s invariant 

principle [26], (𝐼, 𝑌) → (0, 0),  while (𝑆, 𝑋) → (1, 1) on the 

boundary of 𝛺. We show that 

𝑅0 =
𝑞𝑏𝑓

(𝑔+𝑓)(𝑎+𝑑+𝑒)
 = 

𝑞𝑏𝑓

𝑔(𝑎+𝑑+𝑒)+𝑓(𝑎+𝑑+𝑒)
=

 
𝑞𝑏𝑓

𝑔(𝑎+𝑑+𝑒)+𝑓(𝑎+𝑑)+𝑓𝑒
=  

𝑏

(
𝑎+𝑑

𝑞
)+𝜃

, where 𝜃 =  
𝑔(𝑎+𝑑+𝑒)+𝑓𝑒

𝑞𝑓
 >

0 due to the positivity condition of the model parameters. 

Since 𝑏 <
𝑎+𝑑

𝑞
, it follows that 𝑅0 < 1. Thus the disease free 

state is globally asymptotically stable if it is less than unity. 

 

4. NUMERICAL SOLUTION 

The numerical solution is obtained by using MATLAB’s 

ODE45, variable order Runge-Kutta method with relative and 

absolute tolerance of 10−9. The dimensionless parameters 

used for the simulations are defined in (16) with numerical 

values  𝑎 = 0.0047, 𝑏 = 0.0592, 𝑑 = 0.01063, 𝑒 =

0.000765, 𝑞 = 0.921, 𝑔 = 0.00052, ℎ = 0.00446, 𝑟 =

0.0385,   𝑐0 = 0.0635, 𝑐1 = 0.132, 𝜎 = 0.088, with initial 

conditions S = 1, I = 0, X = 0.8, Y = 0.2, N = 1, M = 1. The 

original parameter values are estimates obtained from [20] 

with little adjustments through our model fitting to malaria 

infection data. In order to compare the model with data we 

write 𝑆 = 1 − 𝐼 and 𝑋 = 1 − 𝑌. Substituting these into 

system (17) − (22), we have a reduced system involving 

infectious humans and mosquitoes as follows: 
𝑑𝐼

𝑑𝑡̂
= 𝑏𝑓(𝑡)(1 − 𝐼)𝑌 − (𝑎 + 𝑑 + 𝑒)𝐼 + 𝑒𝐼2,                  (29)          

(18) 
𝑑𝑌

𝑑𝑡̂
= 𝑞(1 − 𝑌)𝐼 − 𝑓(𝑡)𝑌 − 𝑔(1 − 𝑌)𝑌,                             (30)            

We seek the numerical solution of these together with (21) 

and (22). 
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Fig.1. Results showing the endemic state of Susceptible and Infectious humans where t = 1, represents approximately 30 

days in real time. The initial conditions used are S = 1, I = 0, X = 0.8, Y = 0.2, N = 1, M = 1. and the parameter values are 

𝐚 = 𝟎. 𝟎𝟎𝟒𝟕, 𝐛 = 𝟎. 𝟎𝟓𝟗𝟐, 𝐝 = 𝟎. 𝟎𝟏𝟎𝟔𝟑, 𝐞 = 𝟎. 𝟎𝟎𝟎𝟕𝟔𝟓, 𝐪 = 𝟎. 𝟗𝟐𝟏, 𝐠 = 𝟎. 𝟎𝟎𝟎𝟓𝟐, 𝐡 = 𝟎. 𝟎𝟎𝟒𝟒𝟔, 𝐫 = 𝟎. 𝟎𝟑𝟖𝟓,   𝐜𝟎 =

𝟎. 𝟎𝟔𝟑𝟓, 𝐜𝟏 = 𝟎. 𝟏𝟑𝟐, 𝛔 = 𝟎. 𝟎𝟖𝟖. 

0 100 200 300 400 500 600
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

S
us

ce
pt

ib
le

 H
um

an
s

a

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

In
fe

ct
io

us
 H

um
an

s

b



“Mathematical Analysis of Seasonal Malaria Transmission in Swampy and Deltaic Regions” 

2980 A. B. Okrinya1, IJMCR Volume 10 Issue 11 November 2022 

 

 

 
Fig.2. Results showing the Susceptible and Infectious mosquitoes. The initial conditions used are S = 1, I = 0, X = 0.8, Y = 

0.2, N = 1, M = 1, and the parameter values are given above. 

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

S
u
s
c
e
p
ti
b
le

 M
o
s
q
u
it
o
e
s

a

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

In
fe

c
ti
o
u
s
 M

o
s
q
u
it
o
e
s

b



“Mathematical Analysis of Seasonal Malaria Transmission in Swampy and Deltaic Regions” 

2981 A. B. Okrinya1, IJMCR Volume 10 Issue 11 November 2022 

 

 

 
Fig.3. Results showing the Human and Mosquito populations where. The initial conditions used are S = 1, I = 0, X = 0.8, Y 

= 0.2, N = 1, M = 1, and the parameter values are given above. 
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Fig.4. Results showing malaria infection cases from 2000 to 2021 obtained from the University of Port Harcourt Teaching 

Hospital, where t = 1, represents approximately 30 days in real time. Fig.4a is a line plot of the data while Fig.4b is model 

fitting of the line plot. The initial conditions used are I = 0.015, Y = 0.03, N = 1, M = 1. and the parameter values are the 

same as those in Fig.1 except that .we have used the value 𝐜𝟏 = 𝟎. 𝟐𝟑𝟐. 
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Fig.5. Results showing Infectious humans and mosquito fractions when 𝐑𝟎 < 𝟏. The initial conditions used are S = 1, I = 0, 

X = 0.8, Y = 0.2, N = 1, M = 1, and the parameter values are the same as those in Fig.1 except that .we have used the value 

𝐛 = 𝟎. 𝟎𝟏𝟗𝟐 and 𝐪 = 𝟎. 𝟓𝟐𝟏. 

 

5 DISCUSSION AND CONCLUSION 

5.1 Discussion 

In this model, we describe malaria transmission in a simple 

form accommodating the dynamics of location-specific 

seasonal characteristics, which we believe will create an 

enabling environment for various stakeholders to improve 

their understanding and planning of intervention strategies 

especially, with the aid of more available data. Due to 

temperature and rainfall induced seasonal patterns of disease 

incidence in malaria epidemic regions [21], we assume a 

seasonal birth rate of mosquitoes, 𝜆𝑚𝑓(𝑡), where 𝑓(𝑡) =

𝑐0(1 + 𝑐1 cos 2𝜋𝑡). The numerical simulations show 

oscillatory behaviour in the mosquito population and its 

compartments as shown in figures 2a,b and 3a. There are 

fluctuations in disease transmission in terms of infectivity and 

susceptibility as shown in figures 1a and 1b.                                                                                                

        In figure 2a, the number of susceptible mosquitoes 

decreases with increasing amplitude as more mosquitoes get 

infected in figure 2b describing a situation of endemic malaria 

as the number of infected humans increases. This is an 

expected behaviour in as much as the threshold disease 

indicator, 𝑅0, is greater than unity. However, following the 

definitions of the parameters in (1), 𝑓 ∈ (𝑐0, 2𝑐0) and if 𝑅0 is 

less than unity due to reduction in the baseline biting rate, and 

or, the infection rates of mosquitoes and humans, the disease 

goes into extinction as time progresses with a characteristic 

of continuously reduced seasonal pattern with decaying 

amplitude as shown in figure 5. The populations of humans 
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and mosquitoes are gradually increasing in figures 3a and 3b 

with that of malaria showing some oscillatory behaviour due 

to our assumption of a simple seasonal birth rate. We note that 

even with different initial conditions of the populations, the 

system converges to a certain equilibrium level oscillating 

around the average endemic state. 

        We investigate some data on the number of malaria 

infection cases for 22 years obtained from the University of 

Port Harcourt Teaching Hospital in Rivers State in the Niger 

Delta region of Nigeria. A plot of the data as shown in figure 

3 appears to suggest some seasonal pattern of infection. We 

compare our model with a line plot of the data points in figure 

4 where the characteristic feature of seasonality is well 

represented. The results suggest that the level of seasonality 

in infection may likely follow the rainfall pattern. However, 

in order to demonstrate a reasonable degree of objectivity we 

will be careful not to make any general statement about the 

data. Malaria transmission also depends on climatic 

conditions which may affect the abundance and survival of 

mosquitoes, such as rainfall pattern, temperature and 

humidity. In many places, transmission is seasonal with the 

peak during and just after the rainy season [23]. The 

intricacies of monthly or annual variation of malaria 

transmission may be better explicated with meteorological 

data like average monthly and annual rainfall and 

temperature. Thus, the availability of such data may assist in 

arriving at better results. 

 

5.2 Conclusion 

In this work, we presented a mathematical model on malaria 

transmission dynamics driven by seasonal forcing integrating 

simple features of host-vector-parasite interactions. The 

model focuses on the contributions of seasonality due to 

effect of rainfall, temperature and other metrological features 

of the environment in the transmission of malaria. This will 

create a better understanding and provide a clear policy 

direction to biologists and public health groups to adopt better 

regional specific strategies in disease control. We remark that 

despite the inherent oscillatory behaviour of the solution due 

to the strength of seasonality, the disease free equilibrium is 

locally and globally asymptotically stable if the disease 

control index, 𝑅0 is less than unity. From the simulations, a 

reduction in the infection rate of humans and mosquitos is 

very important in the control of the disease despite the level 

of seasonality as suggested by 𝑅0. Thus intervention 

strategies should be targeted at reducing seasonal contacts of 

mosquitoes and humans.   
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