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1. INTRODUCTION

In 1922, S. Banach, proved a contraction principle, which
ensures the existence and uniqueness of a fixed point of a self
map on complete metric space, under some appropriate
conditions. This principle is known as ‘Banach Fixed Point
Theorem’. This theorem states that ‘if T be a self mapping of
a complete metric space (X,d) and if there exist a number c,
with 0 <c¢ <1, such that d(Tx,Ty) < cd(x,y) forall X,y € X,
then T has a unique fixed point in X . During the last 80 years,
this result was extended and generalize through a lot of fixed
point and common fixed point theorems which have been
established by many authors in different spaces by taking
more general contractive conditions. In the year 1986, Jungck
[9] introduced the notion of compatible mappings and utilized
the same to improve commutativity condition in common
fixedpoint theorems. This concept has been frequently
employed to prove the existence of common fixed points. In
2002, Branciari [5] gave an analogue of Banach’s contraction
principle for an integral type inequality, which is stated as
follows:

Let (X,d) be a complete metric space, k € [0, 1), f: X ->X a
mapping such that for each x, y € X,

fod(f(X)_f(y)) p(t)dt < kfod(x.y) o(t)dt,
Where, ¢ : R*—>R*be a Lebesgue integrable mapping which
is summable, non-negative and for all & > 0, [ (t)dt> 0.
Then f has a unique fixed point u € X, such that for each x
eX, nlilrgof"x =u.

In the year 1950, The notion of modular space, as
a generalization of a metric space, was introduced by Nakano
[21], later in 1959, which is redefined and generalized by

Musielak and Orlicz [19]. Fixed point theorems in modular
spaces, generalizing the classical Banach fixed point theorem
in metric space, have been studied extensively. Razani and
Maradi [25] studied fixed point theorems for p-compatible
mappings of integral type in modular spaces,
Beygmohammadi and Razani [4] proved the existence of
common fixed point for mappings defined on a complete
modular spaces satisfying contractive inequality of integral
type.

In this paper we prove some common fixed point
theorems for generalized quasi contractive mappings of
integral type.

We start with a brief recollection of basic definitions and facts
in modular spaces from [5], [8], [9], [10], [13], [14], [19],
[25], [26] and [27].

2. PRELIMINARIES

Definition 2.1. Let X be a vector space over the field R (or
C). A functional p : X — [0, o] is called a modular if for any
arbitrary x and y in X, the following conditions are satisfied :

(i) p(x) =0ifand only if x =0,

(ii) p(ax) = p(x) for all scalar o with || =1,

(iii) p(ax + By) < p(x) + p(y), whenever o, 3 >0 and o
+B =1, Ifonereplace (iii) by (iv)

(iv) p(ax + By) < o*p(x) + B°p(y), for o, B > 0 and o®
+ B° =1, where s € (0, 1] then, the modular p is
called s—convex modular, and if s = 1, then p is
called convex modular.

If p is modular in X, then the set defined by
Xp={x eX: p(Ax) > 0as A— 0}
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is called a modular space. Clearly, the modular space X, is a
subspace of space X.
Note that,p be an increasing function. If 0 < a < B, then
property (iii) with y = 0 implies that

p(ax) = p(; (X)) < p(BX)

Definition 2.2. A modular p is called satisfy the A,- condition
if, p(2xn) > 0, as n —oco, whenever p(xn) — 0 as n —oo.

Definition 2.3. Let X, be a modular space. Then,
Q) The sequence {Xn}nen is said to be p-convergent
to xeX,, if p(Xn- X) > 0, as n —co.
2 The sequence {Xn}nen is said to be p-Cauchy, if
p(Xn- Xm) = 0, as n, m —oo0.
3) A subset S of X, is said to be p- complete, if each
p- Cauchy sequence in S, is p- convergent in S.

Definition 2.4. Let S be subset of X, and f: S — S, then fis
called a p- contraction if for each X, y € X, there exists a q
<1, such that p(f(x) — f(y)) < qp(X -Y).

Definition 2.5. Let X, be a modular space, where p satisfies
the Az- condition. Two mappings S, f: X, — X, are said to
be p-compatible, if p(Sfx, — fSxn)) — 0, as n —»oo, whenever
{Xn}nen be a sequence in X,, such that fx,— z and Sx,— z for
some z € Xp.

Definition 2.6. Two self-maps S, h : X, —>X, of a modular
space X, are (i, j, K) — generalized contraction of integral type,
if there exists o< k <1 and i, je R*with j > i, such that

26.1)  [PUSTI oyde < k 17 p(e)dt forall x,
y eXp
Where, M (X, y) = max {p(i(hx - hy)),p(i(Sx —

hx)), p(i(Sy — hy)), 2L hX));'p (hy—5),
p(Sx —hx)[1+ p(i(Sy — hy))
1+ p(i(hx — hy))
p(ithx — SyN[1+ p(i(Sx — hy))
1+ p(i(hx — hy))
and ¢ : R*>R"* be a Lebesgue integrable mapping which is
summable, non-negative and

(262) [, o(t)dt>0, forallc>0.

)

3. MAIN RESULT

Theorem 3.1. Let X, be a p -complete modular space, where
p satisfies the A,-condition. Suppose S, h: X, — X, are (i, j,
k) — generalized contraction of integral type such that S(Xp)
< h(X,). If one of S or h is continuous, then S and h have a
unigue common fixed point.

Proof : Choose é > i and let a.eR* be the conjugate of % :
i.e.f_ + i = 1.Then é > i implies that ai <j.

Now, we choose an arbitrary point xo in Xpand construct
inductively the sequence {SXn}nen as follows:

SXn = th+1 and S(Xp) c h(Xp)
Thus, we have from (2.6.1)
fop(f(sxnﬂ—sxn)) p(t)dt < kfoM(xnﬂrxn) p(t)dt
Where,
M(xn+1:xn) = maX {p(i(hxn+1 - hxn))t p(i(an+1 -

hxn+1)): p(i(sxn - hxn));
p(i(Sxn— hxnt1))+p(i(Sxnt1— hxn))
2

p(i(Sxns1—hxns1))[ 1+ p(i(Sxn—hxp))]
1+ p(i(hxpe1—hxy))
p((hxny1— Sxp))[ 1+ p(i(Sxns1— hxn))] }
1+ p(i(hxp41—hxn))

)

= max {p(i(hxn+1 - hxn))t p(i(hxn+2 -
hxn+1)): p(i(hxn+1 - hxn)):

p(ithxny1— hxpe1)) + p(i(hxn—hxny2))
2
p(i(hxn+a—hxn+1))[ 1+ p(i(hxn+1—hxn))]
1+ p(i(hxn+1—hxn))
p(i(hxny1—hxne1))[1+ P(i(h"n—hx"“'z))}
1+ p(i(hxp+1—hxpn))

(3-1-1) M(xn+1'xn): max {p(i(hxn+1 - hxn))'

. i(hxp42—hxp)
i, = ity ), LEneztmn)ly

l

1]

Moreover, by ai < j,
p(i(hxn - hxn+2)) = p(i(hxn - hxn+2)) =
p(i(an_1 - an+1))

\= P (aé(sxn+1 - an) + if:(sxn - an—l))

\ < p(ai(sxn+1 - an)) + p(j(an - an—l))
\< p(j(sxn+1 - an)) + p(j(an - an—l))
Then,
M (xn+1:xn) < P(f(an - an—l))
So that
(312) fop(f(sxn+1_sxn)) q)(t)dt <k fop(f(sxn_sxn—l)) (p(t)dt

S k2 fop(j(sxn—l_sxn—z)) w(t)dt
By induction, we have
(313) fop(j(sxn+1_sxn)) q)(t)dt < k" fop(j(5x1_sx0)) (p(t)dt
On taking the limit n —oo,
we get lim p(j(Sx,, — Sxp41) =0.
n —oc
Now, suppose that | <j' < 2i.
Since p is an increasing function, then we have
(3.14) p(j'(an - an—l)) < p(j(sxn - an+1):
whenever, j'< 2i < j
On taking the limit n —oo, we get lim p(j'(Sx, — Sxp41)
n —oo,
=0, for i<j'< 2i.
Thus, we have
(3.1.5) lim p(j(Sx,, — Sxp41) =0, foranyj>i
n—oo,
Now, we show that {Sx,,},, viS p - Cauchy in X.

If not, then there exists an € > 0 and two subsequences {p(s)}
and {q(s)} of integers, with s < p(s) < q(s), such that
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(B.16)  p((Sxpes) — Sxqe) =& fors=1,2,3,. ..
Thus, we can assume that
B.L7)  p((Sxpes) — Sxqes)-1)<E
In order to show that q(s) be the smallest number exceeding
p(s) for which (3.1.6) holds and

Y= {n eN: 3 p(s) € N: p(i(Sxn, — Sxpes)) 2 €
and n>p(s) >s}.
Obviously, Y= @ and since ;< N, then by well ordering
principle, the smallest element of Y is denoted by p(s),
and clearly (3.1.6) holds.
Then,

(3.18) [PUCPO™OD ppyar < k [N O opyar,
where,

(319) M(Xp(s), xq(s)) max {p (i(hxp(s) -

hxq(s))) P (i(Sxp(s) - hxp(s))) P (i(qu(s) - hxq(s)))'

P(i(sxq(s)'hxp(s))) + P(i(h"q(s)' Sxp(s)))
2

p(A(Sxp(s)—hxp))[ 1+ p(i(qu(s)—hxq(s)))
1+ p(i(hxp(s)—hxq(s)))
p(i(hxp(5)=Sxp(s))[ 1+ P(i(s"p(s)‘ hxq(S)))
1+ p(i(hxp(s)—hxq(s)))

}
Note that
p (i(Sxp(S)_1 - qu(S)—l)) = P (i(sxp(S)—l -

SXp(s) T SXp(s) — qu(S)—l))
<

P ((aé(SXp(s)—l —Sxp(s))) + (if(Sxp(s) - 5xq<s)—1))>

= »r (ai(Sxp(s)—l -
Sxp(S))) tp (j(Sxp(S) - qu(S)—l))
On taking limit s—oo, using A,- condition and (3.1.5), we get
Sli_)rg),,r) (ai(Sxp(S)_1 — Sxp(s)))—> 0
andsli_glo’ 1% (i(qu(S)_l - qu(s))) -0
Therefore, as s—oo,
(3.1.10) [MOP© ¥ oy < [Co(t)dt
= 0 §0 — 0 §0
On the other hand, by the inequality (3.1.5), as s —>oo,
(3.L11) [ e(t)dt < fo”(" (5%p9=5%49)) (1 gt
Therefore from (2.6.2), (3.1.5), (3.1.10) and (3.1.11), we have
fowar < pUSroEe) onars

k[, PO %) y()de < k[T o(t)dt
Which is a contradiction.
Therefore, by A,- condition the sequence {Sx,},cn 1S p -
Cauchy.
Then by the p -completeness of X,, there exists a point ue
Xp, such that

p(j(Sx, —w))— 0,asn —>oo,.

Now, we show that u be a fixed point of S.

If S is continuous, then S2x,, —»Su and Shx,,—Su.

Since, p((hSx, — Shx,))—> 0, then by p- compatibility,
hSx,—Su.

Note that,

[P oeyde < ke [y iyt
Where,
M(ty, Sx,) =
max {p(i(hx, — hSx,)), p(i(Sx, — hx,)), p(i(hSx, —
$5x,)),

p(i(8Sxpn— hxp))+ p(i(Sxp—hSxp)) p(i(Sxp—hxp))[ 1+ p(i(SSxn—hSxy))
2 ’ 1+ p(i(hxp—hSxy))
p(i(hxn— SSxp))[ 1+ p(i(Sxp—hSxp)) }
1+ p(i(hxp—hSxy))

)

Limit n —o0, yields JPUC yyde <

k fop(j(u—su)) p(t)dt

And so, Su =u.

Since S(X,) = h(Xp), then there exists a point weX,, such
that

u=Su=hw.

Now, we have

fop(j(San—Sw)) o(t)dt < kfoM(an W) o(t)dt

Where,

M(Sx,,w) = max {p(i(hSx, — hw)), p(i(S?x, —
hSx, )),p(i(Sw — hw)),

p(i(Sw—hSxpn))+ p(i(hw— S2%xn ))
2
pi(S2xn —hSxn D[ 1+ p(i(Sw—hw))
1+ p(i(hSxpn —hw))
p(i(hSxp = Sw)[ 1+ p(i(5%xn — hw))
1+ p(i(hSxy —hw))
On taking the limit n —co, we get
Thus, u = Sw = hw and hence hu = hSw = Shw =Su =u
Moreover, if h is continuous instead of S, by a similar proof
as above, we have hu = Su = u.
Now, to prove the uniqueness of common fixed point, let v be
another common fixed point of S and h. Then,
M (u, v) = max {p(i(u — v)),p(i(u — u)),p(i(v — v)),

p(ilv—w)+ p(iv-w)
2 L

)

}

pliu-w)[1+ p(iw-v)) p(iu-v)[1+ p(i(u—v))}
1+ p(i(u-v)) ! 1+ p(i(u-v))

=p(i(u— v))
Therefore,
fop(j(u_V)) (D(t)dt S kfop(j(u_V)) @(t)dt
Which implies, u = v.
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4. GENERALIZATION

Now, we prove another version of above theorem 3.1. We
need the following lemma [27].

Lemma 4.1 [27] Lett > 0, o(t)dt< t if and only if
nhj%o ¢*(t) = 0, where ¢" denotes the n- times repeated

compositions of ¢ with itself.
Theorem 4.2. Let X, be a p - complete modular space,
where p satisfies the Ap-condition. Suppose i, j € R* with j >
iand S, h: Xp— X,,such that S(X,) = h(X,) and
@21) [P pyar < o(fM p(e)dr), for all
X, ¥ €X,, where
M(x, y) = max {p(i(hx — hy)), p(i(Sx — hx)), p(i(Sy —
hy)), p(i(sy- hx));r p(i(hy—Sx)),
p(i(Sx = hx))[1+ p(i(Sy — hy))
1+ p(i(hx — hy))
plithx — SyN[1+ p(i(Sx — hy))
1+ p(i(hx — hy))
And ¢ : R*5R* be a continuous nondecreasing and right
continuous function such that ¢(t)dt<t for any t > 0. If one
of h or S is continuous, then h and S have a uniqgue common
fixed point.
Proof. As in the proof of Theorem 3.1, we have from (3.1.2)

fop(j(sxn+1_sxn)) o(t)dt < (P(fop(j(sxn_sxn_l)) o(t)dt)
< (02 fOP(J(SXn—1—an—2)) o(t)dt

By induction,

fop(j(sxn+1_sxn)) Ppt)dt < o fop(j(SX1_SXO)) o(t)dt
Taking the limit n —oo, then yields by lemma 4.1, we get
lim [PUSTH7S) oy ge < o,

n —»oo

Using the same method of Theorem 3.1, S and h have a
unique common fixed point.
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