International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 10 Issue 12 December 2022, Page no. – 3081-3089

Index Copernicus ICV: 57.55, Impact Factor: 7.362

[DOI: 10.47191/ijmcr/v10i12.14](https://doi.org/10.47191/ijmcr/v10i12.14)

The General Stability – Like Concepts for Differential and Control System

Mahadevaswamy. B.S.

Department of Mathematics, Maharani's Science College for Women, Mysore, Karnataka, India – 570 005

INTRODUCTION

It was observed, while studying stability behaviour of an invariant set A for a given differential system, that Lyapunov's direct method for stability of equilibrium point is carried over in almost similar way. The conditions on differential inequalities remain the same and those of positive definiteness and decrescence on Lyapunov functions can be interpreted relative to the set A, in a natural way (15, 31, 64, 65, 66). This is evident in the works of Oziraner (45, 46, 47), Oziraner and Rumiantsev (48), Rumiantsev (52, 53, 54), Peiffer and Rouche (50) and Corduneanu (10, 11), on partial stability or stability with respect to some components. Similarly, one can observe this phenomena in the work, on conditional invariant sets, of Kayande and Lakshmikanthan (26), Leela (31, 38). Lakshmikantham, Lella and Ladde (33) have specifically observed that similar extension is possible, while discussing the stability properties of conditional asymptotic invariant sets. The results on asymptotic invariant sets in (31) can also be cited as an example of the observed phenomena. Deo (13) has observed the similarity in conditional and partial stability, while discussing the strict partial stability results.

It is shown that it is natural that the theorems corresponding to the concepts of stability discussed in the works under reference should follow the general pattern of the direct method of Lyapunov. It is felt that if a general concept of stability in terms of continuous functions, instead of norms, is introduced for a differential system, then the theorems

proved for such stability contain, as special cases results on - (i) stability for the origin, (ii) stability with respect to some components, (iii) stability of a set A, (iv) stability of a set A (t), (v) stability of conditional invariant set B relative to A, (vi) Stability of asymptotic invariant set A and (vii) stability of conditional asymptotic invariant set B relative to A. Thus the work is of a very general nature. (For unification in a different direction see (19) It is shown that our results on the stability properties can be extended to cover control systems with the set of controls compact in \mathbb{R}^m .

GENERAL SUFFICIENCY CONDITIONS FOR STABILITY

Preliminaries:

1) Consider the differential system –

$$
X' = f(t, x) \quad (*) = d/dt
$$
 (2.1)

Where $f \in C$ (I x D, \mathbb{R}^n), $I = [0, \infty)$ and D is a region of the real n-space \mathbb{R}^n , invariant for the system (2.1) so that the solutions starting in D remain in D for all $t \in I$. Further we assume the Lipschitz condition of f that.

 $|f (t, x) - f (t, y)| \le k (t) |x-y|$.. (2.2)

Denoting the norm in \mathbb{R}^n , $k \in \mathbb{C}$ (I, \mathbb{R}_+), where $\mathbb{R}_+ = [0, \infty)$, (2.2) being satisfied for each $t \in I$, $x, y \in D$. The Lipschitz condition ensures the uniqueness of solution of (2.1) and the continuous dependence of solutions on initial conditions.

Let x (t, t_o, x_o) denote the solution of (2.1), through (t_o, x_o) \in I X D, with x $(t_0, t_0, x_0) = x_0$.

(2) In addition to the class of monotone functions. K^* , K , L^* , L that we recalled. We mention one more class of functions defined in (15).

Definition – (2.1) : A function $b \in C$ (I X R₊, H₊) is said to belong to the class D (i.e. $b \in D$) if b (t, r) is decreasing in t for each $r \in R_+$ and increasing in r for each $t \in I$ and lim b $(t, r) = 0$ as $t \rightarrow \infty$ and $r \rightarrow 0^{+}$.

(3) Let $V = V(t, x) \in r$, if $V \in C_{lip} (IX D, R_+)$, the class of continuous functions satisfying Lipschitz condition in x. We recall –

$$
D^+V(t,x) = \lim_{h \to 0^+} \sup
$$

$$
\frac{1}{h} [(V(t+h, x+hf(t, x)) - V(t, x)] \quad ... (2.3)
$$

And

D'V (t,x) =
$$
\lim_{h \to 0^+} \inf
$$

\n $\frac{1}{h} [(V(t+h, x+hf(t, x)) - V(t, x)]$... (2.4)

The following comparison theorems are well known (2). **Theorem – 2.1 :** Let there exist $V \in \gamma$ such that $D^+(V(t,x)) \le g(t, V(t,x)), (t, x) \in I \times D \quad ... (2.5)$ Where $g \in C(TX R_{+}, R)$. Let r (t, t_o, r_o) denote the maximal

solution of the differential equation – $x' = g(t,r), r(t_0) = r_0$ (' = d/dt) ... (2.6)

Then V $(t_0, x_0) \le r_0$

Implies V (t, x (t, t_o, r_o) \leq r (t, t_o, r_o) … (2.7)

For all $t \ge t_0$ for which r (t, t_0 , r_0) exists.

Theorem – 2.2 : Let there exist $V \in \gamma$ such that D⁻ (V (t,x)) $\geq h$ (t, V(t,x)), (t,x) \in I X D

… (2.8)

Where $h \in C$ (I X R₊, R). Let u (t, t_o, u_o) denote the minimal solution of

$$
u' = h(t, u), u(t_0) = u_0 \tbinom{4}{3} = d/dt \tbinom{3}{4} \tbinom{4}{5} \tbinom{4}{6}
$$

Then V $(t_0, x_0) \geq u_0$

Implies V (t, x (t, t_o, x_o) $) \geq u$ (t, t_o, u_o) …(2.10)

For all $t \ge t_0$ for which u(t, t_0 , u_0) exists.

Note: (1) Functions g and h are assumed to be smooth enough to ensure the existence of maximal / minimal solution of the equations (2.6) / (2.9) respectively, for all $t \ge$ $t_0, r_0, u_0 \leq p, p > 0.$

(2) If
$$
g \equiv 0
$$
 in (2.5) then (2.7) reduces to

 $V (t, x(t, t_0, x_0)) \leq V (t_0, x_0)$...(2.11)

(3) If $h = 0$ in (2.8) then (2.10) reduces to $V (t, x(t, t_0, x_0)) \geq V (t_0, x_0)$...(2.12)

Now we state and prove some general theorems giving the sufficiency criteria for stability –

Theorem -2.3 : Let $\delta_1 \in C$ (I X D, R₊) and $\delta_2 \in C$ (D, R₊). If there exists a function $V = V(t,x) \in \gamma$ such that for all (t, $x) \in I X D$,

(i)
$$
\delta_2(x) \le V(t,x) \le \delta_1(t,x)
$$
 ...(2.13) for $x_0 \in \Omega t_0(P)$ where $x_0 \in \Omega_{t_0}(P)$ means that
3082 | **Mahadevaswamy. B.S., IJMCR Volume 10 Issue 12 December 2022**

And (ii) $D^+V(t,x) \leq 0$. Then δ_2 (x(t, t_o, x₀)) $\leq \delta_1$ (t₀,x₀). **Proof:** Because of (ii) and (2.11) holds. i.e. V (t, x (t, t_o, x_o)) \leq V (t₀, x₀). Hence by (i)

$$
\delta_2\left(x\leq V\left(t,x\left(t,\,t_{o},\,x_{o}\right)\right)\leq V\left(t_{o},\,x_{o}\right)\leq\delta_1\left(t_{0},\,x_{0}\right)\!.
$$

i.e. δ_2 (x (t, t_o, x₀)) $\leq \delta_1$ (t₀,x₀).

Theorem – 2.4: Let the hypothesis of theorem (2.3) hold, with the exception that δ_1 is independent of t.

i.e. δ_1 (t, x) = δ_3 (x) for all t \in I.

Then δ_2 (x (t, t_o, x₀)) $\leq \delta_3$ (x₀).

Proof: Obvious.

Remark -1 : Consider the following choices for the functions : viz., δ_1 and δ_2 in theorem (2.2) :

i) δ_1 (t, x) = a (t, |x|) \in K* and δ_2 (x) = b (|x|) \in K gives equistability of the origin (15, 31).

ii)
$$
\delta_1(t, x) = a(t, x) \in K^*
$$
 and $\delta_2(x) = b \left[\sum_{i=1}^k x_i^2 \right]_{k \le n}^{\frac{1}{2} \times \frac{1}{2}} \in K$

Where $x = (x_1, x_2, x_3, \ldots, x_k, x_{k+1}, \ldots, x_n)$,

Gives equi-stability of the origin with respect to some components of x (15, 31, 45, 64).

iii) δ_1 (t, x) = a (t, d (x, A)) \in K* and δ_2 = b (d(x,A) \in K, A being a compact closed subset of D, gives equi-stability of the set A (15, 31, 66).

iv) δ_1 (t, x) = a (t, d (x, A)) \in K* and δ_2 = b (d (x, B)) \in K, where A, $B \subset D$, A, B being compact closed sets in D. gives equistability of the conditionally invariant set B, relative to the set A (31, 26).

v) Let $\lambda \in D$. Choose δ_1 (t, x) = M (α) d (x, A) + λ (t) and δ_2 $(x) = d(x,B)$. We obtain the uniform stability of the conditional asymptotically invariant set B relative to the set A (33).

vi) If in (V), we choose δ_2 (x) = d (x, A), then we get uniform stability of asymptotically invariant set A (31, 33).

vii) If δ_1 (t,x) = a (t, d (x,A (t))) and

 δ_2 (x) = b (d (x, A(t))), where $a \in K^*$ and $b \in K$, then the theorem implies the equistability of the set $A(t)$ (68).

Remark – 2 : By choosing δ_1 independent of t, in (i), (ii) (iii), (iv) and (vii) above, we obtain the corresponding uniform stability of the sets mentioned therein.

Theorem – 2.5 : Let there exist a function $V \in \gamma$ such that the hypothesis of theorem (2.3) holds and (2.5) is satisfied. Let the maximal solution r (t, t_0, r_0) of the equation (2.6) satisfy the estimate below –

 $r(t, t_0, r_0) \le a(t_0, r_0), t \ge t_0, a \in K^*$

 δ_2 (x (t, t_o, x_o)) \leq a (t_o, δ_1 (t_o, x_o))

… (2.15)

for some $p > 0$, $r_0 \le p$. Then for $t \ge t_0$,

… (2.14)

 δ_1 (t_o, x_o) $) \leq p$.

Proof: Let $x_0 \in \Omega$ _{to} (P) so that δ_1 (t_o, x_0) \leq (P). Choose $r_0 = V(t_0, x_0)$. By (i) of theorem (2.3). $r_o = V(t_o, x_o) \leq \delta_1 (t_o, x_o) \leq (P)$ Thus, $x_0 \in \Omega_{to}$ (P) implies $r_0 \le p$ Hence (2.14) is satisfied. By the choice of r_0 , we have δ_2 (x (t, t_o, x_o)) \leq V(t, x (t, t_o, x_o)) \leq r (t, t_o, r_o) \leq a (t_o,r_o) = a (t_o,V(t_o, x_o)) \leq a (t_o, δ_1 (t_o, x_o)), Which is what (2.15) asserts. Corollary : Theorem (2.3). **Proof:** Choose $g \equiv 0$, in the above theorem, so that δ_2 (x (t, t_o, x_o)) \leq V(t, x (t, t_o, x_o)) \leq V (t_o, x_o) $\leq \delta_1$ (t_o, x_o), which is what the theorem (2.3) claims. **Theorem – 2.6 :** Let the hypothesis of theorem (2.5) hold except that, instead of the condition (2.14), we have $r(t,t_0,r_0) \le a(r_0), t \ge t_0, a \in K$ … (2.16) for some p>o, $r_0 \le p$, and δ_1 (t, x)= δ_3 (x) for all (t,x) \in I X D. Then δ_2 (x (t, t_o, x₀)) \leq a(δ_3 (x₀)) . . . (2.17) for all $t \ge t_0$, $x_0 \in \Omega_1(p)$ meaning that $\delta_3(x_0) \le p$. **Proof:** Let $x_0 \in \Omega_1(P)$ so that $\delta_3(x_0) \leq p$. Choose $r_0 = V(t_0, x_0)$. $r_o = V(t_o, x_o) \leq \delta_3(x_o) \leq P$. Now $x_0 \in \Omega_1$ (p) implies $r_0 \le p$. Hence (2.16) holds. Therefore, δ_2 (x (t, t_o, x_o)) \leq V(t,x (t, t_o, x_o)) \leq r (t, t_o, r_o) \leq a (r_o) = a (V(t_o, x_o)) \leq a (δ ₃ (x_o))

for $t \ge t_0$, $x_0 \in \Omega_1$ (p). Hence the proof.

Theorem -2.7 **: Let the hypothesis of theorem** (2.5) **hold** except that the condition (2.14) is replaced by $r(t, t_0, r_0) \le a(t_0, r_0) b(t_0, t-t_0)$

… (2.18)

When $a \in K^*$, $b \in L^*$, for some $p > 0$, $r_0 \leq p$, $t \geq t_0$.

Then for $x_0 \in \Omega$ t_0 (p), $t \ge t_0$

 δ_2 (x (t, t_o, x_o)) \leq a (t_o, δ_2 (t_o, x_o)) b (t_o, t-t_o) … (2.19)

Proof: The argument here is parallel to that in the proof of theorem (2.3) but for the deviation -

 δ_2 (x (t, t_o, x₀)) \leq V (t, x(t, t_o, x₀)) $\leq t(t, t_0, r_0)$ \leq a(t_o, r_o) b (t_o, t-t_o) = a (t_o, V(t_o, (x_0)) b $(t_0, t-t_0)$ \leq a(t_o, δ_1 (t_o, x_o)) b (t_o, t-t_o), for t $\geq t_{o}$, and $x_{o} \in \Omega_{to}(p)$.

Theorem -2.8 : In the hypothesis of theorem (2.5) , let (2.14) be replaced by r (t, t_o, r_o) \leq a (r_o) b(t-t_o) \geq … (2.20) Where $a \in K$, $b \in L$ and $\delta_1(t, x) = \delta_3(x)$, in hypothesis (i) of theorem (2.5). Then for $x_0 \in \Omega_1(p)$, $t \ge t_0$, δ_2 (x(t, t_o, x_o)) \leq a (δ_3 (x_o)) b (t-t_o) … (2.21)

Proof : Similar to that of theorem (2.6).

Remarks :

1) The theorems (2.5) to (2.8) are comparison theorems and the conditions (2.14) , (2.16) , (2.18) and (2.20) assure equi, uniform, equi-asymptotic and uniform asymptotic stability respectively for trivial solution of the equation (2.6).

By proper choice of the δ - functions in the above theorems we can derive stability properties in each of the cases mentioned under remarks 1 and 2 following theorem (2.4).

2) The theorems (2.3) to (2.8) give upper estimates on the values of δ_2 – function along the trajectories of the solutions of the equation (2.1).

We now state some theorems in which lower estimates are got for the δ_2 – function along the trajectories of the solutions of the equation (2.1).

Theorem – 2.9 : Let $\delta_4 \in C(I \times D, R_+)$ and $\delta_5 \in C(D, R_+)$.

If there exists a function $V_1 \in \gamma$ such that for $(t, x) \in I X D$,

(i) δ_4 (t, x) $\leq V_1$ (t, x) δ_5 (x) … (2.22) and

(ii) $D^{\text{-}}V_1(t,x) \ge 0$.

Then, for $t \ge t_0$, δ_5 (x (t, t_0 , x_0) $\ge \delta_4$ (t_0 , x_0) ... (2.23)

Proof: From (ii) and (2.12)

$$
V1\;(t,\,x\;(t,\,t_{o},\,x_{o})\;)\geq V_{1}\;(t_{o},\,x_{o}).
$$

From (2.22) it follows that

 δ_5 (x (t, t_o, x_o)) \geq V₁ (t, x (t, t_o, x_o)) \geq V₁ (t_o, x_o) δ_4 (t_o, x_o). Hence the result

Theorem 2.10 : Let there exist a function $V1 \in r$ satisfying the hypothesis of theorem (2.9) except that δ_4 is independent of t i.e. δ_4 (t,x) = δ_6 (x), for (t,x) \in I X D. Then δ_5 (x (t, t_o, x_o)) $\geq \delta_6$ (x_o), for \in t_o.... (2.24)

Proof: On the same lines as in the theorem (2.9).

Combing the results of theorem (2.3) and (2.9) we obtain the following theorem, which corresponds to strictstability properties –

Theorem – 2.11 : Let there exist functions V and V_1 both belonging to r satisfying the hypothesis of theorems (2.3) and (2.9) respectively with $\delta_5 = \delta_2$ in hypothesis (i) of theorem (2.3). Then for $t \ge t_0$,

 δ_4 (t_o, x_o) $\leq \delta_2$ (x (t, t_o, x_o)) $\leq \delta_1$ (x (t_o, x_o) (2.25)

A similar combination of theorems (2.4) and (2.10), corresponding to uniform strict stability properties yields.

Theorem – 2.12: Let there exist functions V and V_1 both belonging to r satisfying the hypothesis of theorems (2.4) and (2.10) respectively with $\delta_5 = \delta_2$ in hypothesis (i) of theorem (2.4) .

Then for $t \geq$ to

 δ_6 (x_o) $\leq \delta_2$ (x (t, t_o, x_o)) $\leq \delta_3$ (x (x_o) (2.26)

Note – 1 : In theorems (2.4) and (2.10) , consider the following choice of δ -functions –

(a) Let $a_1, b_i \in K$, $I = 1,2$. Choose $\delta_1(t,x) = a_1(|x|)$

 δ_2 b₁ (|x|), δ_5 (x) = a₂ (|x|) and δ_6 (= b₂ (|x|)

Then

$$
a_2^{-1} b_2 (|x_0|) \le |x (t, t_0, x_0)| \le b_2^{-1} a_1 (x (|x_0|)
$$

Thus the origin is uniformly strictly stable. (b) In the same theorems, choose $\delta_3(x) = a_1(|x|) a_1 \in K$

 $\delta_2(x) = b_1$ 1/ 2 $\left[\begin{array}{cc} x_1^2 \\ y_1 \end{array}\right]$ $\left(\begin{matrix} \frac{k}{2} & x_1^2 \end{matrix}\right)$ l $\left(\sum_{i=1}^k\right)$ *x k i* $\delta_5(x) = b_2$ 1/ 2 $\left[\begin{array}{cc} x_1^2 \\ y_1 \end{array}\right]$ I $\left(\begin{matrix} \frac{k}{2} & x_1^2 \end{matrix}\right)$ l $\left(\sum_{i=1}^k\right)$ *x k i*

 δ_6 (x) = a₂ (|x|), b₁, b₂, a₂ \in K

We obtain strict-partial stability of the origin (38) .

(c) In theorem (2.12), let $\delta_2(x) = \phi(d(x,B))$,

 δ_5 (x) = a (d(x,A)) and δ_6 x) = b (d (x,B)), where

 ϕ , a, $b \in K$ Then we obtain the uniform strict stability of the conditionally invariant set B relative to the set A.

(d) In theorem (2.12), let $\delta_2(x) = \phi$ (d(x, A)),

 δ_3 (x) = a (d(x,A)) and δ_6 (x) = b (d (x,A), ϕ , a, b \in K. This yields uniform strict stability of the set A. (e) In theorem (2.11), let $\delta_2(x) = \phi(d(x, A)), \phi \in K$. δ_4 (t,x) = a (t,d(x,A)) and δ_6 (t,x) = b (t,d (x,A)), a, b \in K^{*}. Then we obtain equistrict stability of the set A.

Other results can be obtained similarly.

Some comparison theorems giving the lower estimates are stated below:

Theorem 2.13: Let there exist a function $V1 \in \gamma$ such that (2.22) and (2.8) are satisfied. Let the minimal solution u (t, (t_0, u_0) of (2.9) satisfy the estimate :

 $u(t, t_0, u_0) \ge a(t_0, u_0)$ …(2.27) for all $t \ge t_0$, $a \in K^*$, for some $p \ge o$, u_0 , $\ge p$. Then, for $t \ge t_0$, and $x_0 \in \Omega_1$ to (p) which means δ_4 (t_0, x_0) $\ge P$ δ_5 (x (t, t_o, x_o)) \leq a (t_o, δ_4 (t_o, x_o)) …(2.28) **Proof:** Let $x_0 \in \Omega_1$ t_o (p) so that (t_0, x_0) p. Choose $u_0 = V_1(t_0, x_0)$. By (2.22) $u_0 = V_1(t_0, x_0) \ge \delta_4(t_0, x_0)$ $\geq p$. Thus $x_0 \in \Omega_1$ t_o (p) implies $u_0 \ge p$. Therefore, δ_5 (x (t, t_o, x₀)) \geq V₁ (t, x(t, t_o, x₀)) $\geq u(t, t_0, u_0)$ \geq a(t_o, u_o) = a (t_o, V₁(t_o, x_o)) Therefore, δ_5 (x (t, t_o, x_o)) \geq a (t_o, δ_4 (t_o, x_o)). **Theorem – 2.14 :** Let the assumptions of theorem (2.15)

hold with δ_4 (t, x) = δ_6 (x) (i.e. independent of t), for all (t,x) \in I X D and (2.26) be replaced by

 $u(t, t_0, u_0) \ge a(u_0), a \in K$ …(2.29)

Then for $t \ge t_0$, δ_5 (x (t, t_0 , x_0)) $\ge a \delta_6$ (x₀)) …(2.30) for all $x_0 \in \Omega_1$ t_o (p) which means δ_6 (x_o) \geq p. Proof: Runs on the same lines as the proof of the theorem (2.13)

Theorem -2.15 **: Let the assumptions of theorem** (2.13) hold with the condition (2.27) replaced by

 $u(t, t_0, u_0) \ge a(t_0, u_0) b(t_0, t-t_0)$ … (2.31)

where $a \in K^*$ and $b \in L^*$:

Then for $t \ge t_0$, $x_0 \in \Omega_1$ t_o (p) which means δ_4 (t_o, x_0) $\ge p$ δ_5 (x (t, t_o, x_o)) \geq a (to, δ_4 (t_o,x_o)) b (to, t-to) ... (2.32)

The proof is similar to that for theorem (2.13) but for the deviation –

$$
(x (t, t_0, x_0)) \ge V_1 (t, x (t, t_0, x_0))
$$

\n
$$
\ge u (t, t_0, x_0)
$$

\n
$$
\ge a (t_0, u_0) b (t_0, t-t_0)
$$

\n
$$
\ge a (t_0, V_1(t_0, x_0)) b (t_0, t-t_0)
$$

\n
$$
\ge a (t_0, (t_0, x_0)) b (t_0, t-t_0)
$$

For all $t \ge t_0$, $x_0 \in \Omega_1 t_0(p)$.

Theorem -2.16 **: Let the assumptions of theorem** (2.13) **be** satisfied, with δ_4 (t,x) = δ_6 (x) for all (t, x) \in I X D and the condition (2.27) replaced by

 $U(t, t_0, u_0) \ge a(u_0)b(t-t_0), a \in K, b \in L$ … (2.33)

Then for $t \ge t_0$, $x_0 \in \Omega_1$ (p) which means δ_6 (x) $\ge p > 0$,

 δ_5 (x(t,t_o,x_o)) \geq a (δ_6 (x_o)) b (t-t_o) ... (2.34)

Proof: Just on the same lines as for theorem (2.15) .

Combing the theorems (2.5) and (2.13) , we obtain –

Theorem – 2.17 : Let there exist functions V and $V_1 \in r$ satisfying the hypothesis of theorems (2.5) and (2.13) respectively, with the function δ_2 (of theorem (2.5)) identical with the function δ_5 (of theorem (2.13)).

Then for $t \ge t_0$

 δ_4 (t_o,x_o)) $\geq \delta_2$ (x (t, t_o, x_o)) $\leq \delta_1$ (t_o,x_o) … (2.35) By proper choice of the functions, we get strict stability properties of sets.

Combining the theorems (2.6) and (2.14) , we obtain –

Theorem 2.18 : Let there exist functions V and $V_1 \in r$ satisfying the conditions of theorems (2.6) and (2.14) respectively, with the function δ_2 (of theorem (2.6) identical with the function δ_5 (of theorem (2.14)).

Then for $t \ge t_0$,

$$
\delta_4(x_o) \supset \ge \delta_2(x(t, t_o, x_o)) \le \delta_1(x_o) \quad \dots (2.36)
$$

Proper choice of δ - functions lead to strict uniform stability of sets.

Combining the theorems (2.8) and (2.16), we obtain

Theorem – 2.19 : Let there exist functions V and $V_1 \in r$ satisfying the conditions of theorems (2.8) and (2.14) respectively, with $\delta_2 = \delta_5$. Then for $t \ge t_0$,

 δ (x_o) σ (t-t_o) $\leq \delta_2$ (x (t, t_o, x_o)) $\leq \delta$ (x_o) $\overline{\sigma}$ (t-t_o)

… (2.37)

Proper choice of functions δ and σ lead to strict uniform asymptotic stability properties of sets.

3. THEOREMS ON THE EXISTENCE OF LYAPUNOV FUNCTIONS

In this section, the existence of Lyapunov functions is proved on the assumptions that the system (2.1) satisfies the condition (2.2) so that its solution is unique and continuously depends on initial conditions.

Theorem – 3.1 : Let the trajectories x (t, t_0, x_0) of (2.1) with (2.2) satisfy the estimates –

 δ_2 (x (t, t_o, x_o)) $\leq \delta_3(x_0), t \geq t_0, t_0 \in I$ … (3.1)

Where $\delta_2 \in C(D,R_+)$ and $\delta_2 \in C(D,R_+)$ as well, with $|\delta_3(x) - \delta_3(y)| \le k$ |x-y|, for x, y $\in D$

… (3.2)

Then there exists a V-function satisfying the hypotehses of theorem (2.4).

Proof : Define V (t,x) =

$$
\inf \qquad \delta 3(x(T,t,x_o)), \text{ for } (t,x) \text{ } I \text{ } X \text{ } D.
$$

$$
0\leq T\leq t
$$

Because of (2.2), $|f(t,x) - f(t,y)| \leq \lambda(t) |x-y|$.

The continuity of and continuous dependence of x on initial conditions imply the continuity of $V(t,x)$.

Also V (t,x) = δ_3 (x (T₁, t, x)) for some T₁ \in [o,t] and V (t,y) = δ_3 (x (T₂, t, y)) for some T₂ \in [o,t]. Let $T_1 \leq T_2$.

Then $|V(t,x) - V(t,y)| = | \delta_3(x (T_1, t, x)) - \delta_3(x (T_2, t, y)) |$ $\leq k |x (T_2, t, x) - x (T_2, t, y)|$ $\leq k |x-y| \exp \int$ $\exp |\lambda(s) ds$.

This shows that V satisfies Lipachitz condition in x. for each $t \in I$.

Thus $V \in r$.

Along the trajectory x (t, t_0 , x_0) of (2.1)

$$
V(t, x(t, t_0, x_0)) = \inf \begin{aligned} \delta_3(x(T, t, x(t, t_0, x_0)) \\ O \le T \le t \\ \inf \delta_3(x(T, t_0, x_0) \\ O \le T \le t \\ \dots (3.3) \end{aligned}
$$

Since the solution of (2.1) is unique. Similarly,

 V (t+h, x(t+h, t_o, x₀)) = $Q \le T \le t + h$ inf $\delta 3(x(T, t_o, x_o))$.. (3.4) And V (t+h, x(t+h, t_o, x₀)) – V (t, x (t, t_o, x₀)) \leq O. Hypothesis (ii) of theorem (2.3) follows easily. From the definition of V, V (t,x) $\leq \delta_3$ (x) …(3.5) From (3.1) for each $T \in [o,t]$, $\delta_3(x(T)) \geq \delta_2(x)$ Thus V $(t,x) \ge \delta_2(x)$ …(3.6) (3.5) and (3.6) verify (i) of theorem (2.3)

With δ_1 (t,x) = δ_3 (x)

This completes the proof.

Theorem – 3.2: Let the trajectories x (t, t_0, x_0) of (2.1) with (2.2) satisfy the estimates –

$$
\delta_5(x(t, t_0, x_0)) \ge \delta_6(x_0), t \ge t_0, t_0 \in I \qquad \dots (3.7)
$$

Where $\delta_3 \in C(D, R_+), \delta_6 \in C(D, R_+)$ with

 $|\delta_6(x) - \delta_6(y)$ k |x-y| for x, y \in D. … (3.8)

Then there exists a function V satisfying the hypothesis of theorem (2.10).

Proof : For $(t, x) \in I X D$, define

$$
V(t,x) = \frac{\sup \ \delta6(x(T,t,x))}{0 \leq T \leq t}
$$

Clearly V (t,x) $\geq \delta_6(x)$

… (3.9) And from (3.7), V (t,x) $\leq \delta_5(x)$

$$
\dots (3.10)
$$

Since for each $T \in [o,t]$, $\delta_6(x(T)) \ge \delta_5(x)$.

 (3.9) and (3.10) together verify (i) of theorem (2.10) with $\delta_4(t,x) = \delta_6(x)$.

V \in r follows, because V is continuous as δ_6 is so and x continuously depends on the initial conditions. Also V satisfies Lipschitz condition because of (3.8) and (2.2). Which can be proved on the same lines as in previous theorem.

$$
V (t, x (t, t_o, x_o)) = \n\begin{cases}\n\sup \delta_6(x(T, t, x(t, t_o, x_o)) \\
O \leq T \leq t \\
\sup \delta_6(x(T, t_o, x_o))\n\end{cases}
$$
\n
$$
O \leq T \leq t
$$
\nand\n
$$
V (t+h, x(t+h, t_o, x_o)) =
$$

 $\sup \qquad \delta_2(x(T,t,x_o))$

 $0 \leq T \leq t+h$

$$
\sup \delta_6(x(T,t,x_o)) = V(t,x)
$$

$O \leq T \leq t$

Therefore D⁻V (t,x) \geq 0,which is the hypothesis (ii) of theorem (2.9), and this completes the proof.

Theorem -3.3 **:** Let the trajectories x (t, t_o, x_o) of (2.1) with (2.2) satisfy the estimate :

 δ_1 (x (t, t_o,x_o)) $\leq \delta_2$ (x_o) σ (t-t_o), t $\geq t_0, t_0 \in I$ … (3.11) Where δ_1 , $\delta_2 \in C$ (D,R₊) and $\sigma \in L$, σ being differentiable on I and $\sigma'(t) = -\lambda_1 \sigma(t)$, $t \ge 0$, $\lambda > 0$ …(3.12)

For each $t \in I$. Let δ_2 satisfy the Lipechite condition $|\delta_2 (x) - \delta_2 (y)| \le k |x-y|, x, y \in D$ …(3.13) Then there exists a V-function, satisfying – 1) $V \in \gamma$

"The General Stability – Like Concepts for Differential and Control System"

- 2) D+ V(t,x) \leq λ_1 V (t,x), and
- 3) $\delta_1(x) \le V(t,x) = \delta_2(x) \sigma(0)$, for $(t,x) \in X$ D.

Proof: Define
$$
V(t,x) = \frac{\inf}{\rho \leq T \leq t} \delta_2(x(T,t,x))
$$
 (t-T)

For $(t,x) \in I X D$

The continuity of δ_2 and σ and the continuous dependence of x (t,t_0,x_0) on initial conditions ensure (1). The continuity of V.

Also as in theorem (3.1), it can be easily shown that

 $|V (t,x) - V (t,y)| \le k |x-y|\sigma (0) \int_0^t$ $\int_0^{\infty} \lambda(s) ds.$

Hence (1) is satisfied.

=

Next, V (t, x(t, t₀, x₀)) =
\n
$$
\inf \delta_2(x(T, t, x(t, t_o, x_o)) \sigma(t - T)
$$
\n
$$
0 \leq T \leq t
$$

$$
\inf \delta_2(x(T,t,x))\sigma(t-T)
$$

$$
0 \le T \le t
$$

Thus V (t,x (t,t_o,x_o)) = δ_2 (x(T₁,t,x_o)) σ (t,-T₁). for some $T_1 \in [0,t]$ due to the compactness of [O, t]. Thus V (t+h, $x(t+h,t_0,x_0)$) =

$$
\inf Q T \leq t + h \qquad \delta_2(x(T, t_o, x_o)) \sigma(t + h - T)
$$

$$
= \inf \qquad \delta_2(x(T,t_o,x_o))\,\sigma(t+h-T)
$$

 $QT \le t + h$

$$
= \delta_2\left(x(T_1,t_o,x_o)\; \right) \, \sigma\; (t{+}h\; T_1).
$$

Hence,

 D^+ $V(t,x)$ = $\overline{}$ $\overline{}$ 1 L $\int \sigma(t+h-T_1)-\sigma(t \rightarrow$ o^+ h^+ $h^ h^ h^ \lim_{t \to \infty} \sup \delta_2(x(T_1, t_o, x_o)) \left| \frac{\sigma(t + h - T_1) - \sigma(t - T_1)}{h} \right|$ $h \rightarrow o^+$ $\delta_2(x(T_1,t_2,x_1))\left[\frac{\sigma(t+h-I_1)-\sigma}{\sigma(t+h-I_1)}\right]$

$$
= \delta_2(x(T_1,t_0,x_0)) \sigma'(t-T_1).
$$

=
$$
\delta_2(x(T_1,t_0,x_0)) \sigma(t-T_1) \frac{\sigma'(t-T_1)}{\sigma(t-T_1)}
$$

.

 \leq - λ_1 V (t,x(t,t_o,x_o)) due to (3.12). Hence (2).

From the definition of V and (3.11). it follows that V (t,x) \leq δ_2 (x) σ (0) and V (t,x) $\geq \delta_1$ (x) due to the fact that for each $T \in [0,t], \delta_2(x(T, t, x)) \sigma(t-T) \geq (x)$. This verifies (3) and hence the proof.

Remark:

The condition (3.11) verifies a result corresponding to uniform asymptotic stability. The condition (3.12) shows that this stability is exponential. In the above theorem, if δ_1 $(x) = d(x, B)$. $\delta_2(x) = d(x, A)$, $\delta_3(x) = d(x, B)$, then we have the converse theorem on exponential uniform asymptotic stability of the C.I. Set B with respect to A. Other deductions can similarly be made obtaining converse theorems in the case of exponential asymptotic partial stability (47) and exponential asymptotic stability of the set A.

4. CONTROL SYSTEMS

In this it is shown that our results on the stability properties can be extended to control systems with the set of controls compact in \mathbb{R}^m .

Consider the control system:

$$
x' = f(t, x, u) \quad (d = d/dt)
$$

$$
\dots (4.1)
$$

where $f \in C(I \times D \times E, R^n)$, D being a region in R^n and E is a compact set in R^m.

For converse results, it is assumed that for each fixed $u \in E$, $|f (t, x, u) - f (t, y, u)| \le \lambda (t) |x - y|$

$$
\ldots (4.2)
$$

Where $\lambda \in C$ (I, R₊). It is further assumed that the region D is invariant for the system (4.1).

An extension of comparison theorems (2.1) and (2.2) to the control system (4.1)

Let $x_u(t, t_0, x_0)$ denote a trajectory of (4.1) corresponding to a fixed $u \in E$.

Theorem – 4.1 : Let there exist a function $V \in \gamma$, such that

$$
D^{+} V (t,x) = \lim_{h \to 0^{+}} \sup
$$

$$
\frac{1}{h} \Big[(V(t+h, x+hf(t, x, u)) - V(t, x) \Big]
$$

 $\leq g$ (t, V(t,x)) … (4.3)

for all $(t,x) \in I X D$, $u \in E$ and where $g \in C (I X R_{+}, R)$. Let r (t, t_0, r_0) denote the maximal solution of the differential equation:

$$
\mathbf{r}' = \mathbf{g} \text{ (t, r)}
$$
\n
$$
\mathbf{r}(\mathbf{t}_0) = \mathbf{r}_0 \qquad \dots \text{ (4.4)}
$$
\n
$$
\text{Then } \mathbf{V} \text{ (t0, x0) } \leq \mathbf{r}_0 \text{ implies } \qquad \mathbf{I}
$$

$$
V(t, x_u (t, t_o, x_o)) \le r (t, t_o, r_o) \quad J \qquad \dots (4.5)
$$

for all $t \ge t_0$ for which r (t, t_0 , r_0) exists.

Theorem -4.2 : Let there exist a function V such that for all $(t,x) \in I X D$, $u \in E$,

$$
\text{D} \cdot \text{V} \text{ (t,x)} = \lim_{h \to 0^+} \text{inf}
$$
\n
$$
\frac{1}{h} \Big[\left(\text{V} \left(t + h, x + h \text{f} \left(t, x, u \right) \right) - \text{V} \left(t, x \right) \Big] \Big] \Big|
$$
\n
$$
\geq \overline{h} \quad \text{g} \left(\text{t}, \text{V} \left(\text{t}, x \right) \right) \Big|
$$
\n
$$
\therefore \text{ (4.6)}
$$

 \overline{V}

Where $h \in C(I \times R_+, R)$. Let (t, to, \int) be the minimal solution of

$$
\int_{f}^{x} = (t, \overline{h} \int_{0}^{t})
$$

$$
\int_{f}^{t} (t_{0}) = \int_{0}^{t} ... (4.7)
$$

Then V (t₀, x₀) $\geq \int_{0}^{t}$.

Implies V (t, x_u (t, t_o , x_o)) \geq \int (t, to, \int_0^1) $\left(1, 4.8\right)$ for all $t \ge t_0$ for which (t, t_0 , \int_0^t) exists.

As in section 2, g and h are smooth enough to ensure the existence of solutions of the equations (4.4) and (4.7) respectively, for all $t \ge t_0$, r_0 , $\int_0^t s p$, $p > 0$.

In case of $g \equiv o$, \overline{h} = 0, (4.5) and (4.8) reduce to $V(t, x_u (t, t_o, x_o)) \leq V(t_o, x_o)$.. (4.9) And V (t, x_u (t, t_o , x_o)) \geq V (t_o , x_o) .. (4.10)

respectively.

Now we prove an extension of theorem (2.3) to control systems and its converse as well.

Theorem 4.3 : (Corresponding to theorem (2.3))

Let $\delta_1 \in C(I \times D, R_+)$ and $\delta_2 \in C(D, R_+)$. If there exists a function $V \in r$ such that, for all $(t, x) \in I X D$

(i) $\delta_2(x) \le V(t,x) \le \delta_1(t,x)$

.. (4.11)

And (ii) (4.3) holds with $g \equiv 0$.

Then δ_2 (x_u (t, t_o, x_o)) $\leq \delta_1$ (t_o, x_o),

Proof : Because of (ii), (4.9) follows at once.

i.e. V (t, X_{11} (t, t_0 , X_0)) \leq V (t_0 , X_0)

Now δ_2 (x_u (t, t_o , x_o)) \leq V (t, x_u (t, t_o , x_o))

$$
\leq V\left(t,\,x_{o}\right)\leq\delta_{1}\left(t_{o},\,x_{o}\right)
$$

Theorem 4.4 : (Corresponding to theorem (2.4))

Let $\delta_i \in C(D,R_+)$, (i = 2, 3). If there exists $V \in r$ such that, for all $(t, x) \in I X D$,

(i) $\delta_2(x) \leq V(t,x) \leq \delta_3(x)$

And

(ii) (4.3) holds with $g \equiv 0$, them δ_2 (x_u (t,t_o, x_o)) $\leq \delta_3$ (x_o),

Proof : On the same lines as in theorem (4.3) with δ_1 (t,x) = δ_3 (x).

Note : The remarks following theorem (2.4) are quite relevant, in the context of control systems aswell.

Theorem -4.5 : (Converse of theorem (4.4))

Let the system (4.1) satisfy the condition (4.2) . Let the trajectories x_u (t, t_o , x_o) of (4.1) satisfy the estimate -

 δ_2 (X_u (t,t_o, X_o)) $\leq \delta_3$ (X_o), $t \geq t_o, t_o \in I$

.. (4.13)

Where δ_2 , $\delta_3 \in C$ (D,R₊) And $|\delta_3(x) - \delta_3(y)| \leq k |x-y|$

.. (4.14)

for $x,y \in D$.

Then there exists a V-function satisfying the hypotheses of theorem (4.4).

Proof : For $(t, x) \in I X D$; define

$$
(\mathsf{t}, \mathsf{x}) = \begin{bmatrix} \inf & \inf & (x_u \left(T, t, x) \right) \\ u \in E & 0 \le T \le t \end{bmatrix}
$$

The continuity and Lipschitz'u condition δ_3 on, besides the continuous dependence on initial conditions of x_u and the compactness of E, show that $V \in r$.

The hypothesis (ii) of theorem (4.4) can be shown to be satisfied by arguments similar to these in theorem (3.1).

Trivially, V (t,x) $\leq \delta_3(x)$.

Also for each T \in [0, t], δ_3 (x_u (T,t,x)) $\geq \delta_2(x)$ due to the uniqueness of the solutions of (4.1) and (4.14).

$$
\inf (x_u(T,t,x)) \ge \delta_2(x)
$$

Thus

Noting that δ_2 is now independent of u, it follows that $V(t,x) \geq \delta_2(x)$. Hence the proof.

 $0 \leq T \leq t$

REFERENCES

- 1. H.A. Antosiewicz: A survey of Lyapunov's second method. Ann. Math. Studies 41 (1958) pp. 141- 166, MR Vol. 21 # 1432 (1960).
- 2. E.A. Barbashin: ve'en zap M.G.V. no. 135 pp. 110- 133 (1949) Russian.
- 3. R. Bellman: Vector Lyapunov functions. J. SIAM Centro Ser. A1 (1962) pp. 32-34, MR Vol.26 (1963).
- 4. N.P. Bhatia: Stability and Lyapunov functions in Dynamical Systems, Contributions to Differential equations, 3 (1964), pp. 175-188, MR Vol.29 (1965).
- 5. N.P. Bhatia and O. Hajek: Local semi-dynamical systems, Lecture notes in Mathematics (1969), Springer-verlag.
- 6. N.P. Bhatia and G.P. Szego: Stability theory of Dynamical systems, Springer-Verlag, (1970).
- 7. G.D. Birkhoff: Dynamical systems American Mathematical Society Colloquium, Vol. IX, Providence R.I. (1927).
- 8. L. Cesari: Asymptotic behaviour and stability problems in ordinary differential equations – Sringer – Verlag, Heidelberg (1959), MR Vol. 29 # 1973 (1961).
- 9. A.S.N. Charlu, A.A. Kayande and V. Lakshmikantham: Stability in tube-like domains (See 31).
- 10. C. Corduneanu: Symp. Math. 6. Meccanica nonlineare Stabilita, Feb. (1970), Li, New York, Acad. Press (1971).
- 11. C. Corduneanu: Applications of differential inequalities to stability theory (Rusaian) (1960).
- 12. W.J. Cunningham: Introduction to nonlinear Analysis, McGraw Hill, New York, (1958).
- 13. S.G. Deo: Boll. Della Unione. Mate Italiana 6, (1972).

"The General Stability – Like Concepts for Differential and Control System"

- 14. S.G. Deo: Onvector Lypunov functions: Proc. Amer. Math. Soc. 29 (1971), pp. 575-580, MR Vol. 43 # 7725 (1972).
- 15. W. Hahn: Stability of Motion, Springer-Verlag (1967) Translated by Arne P. Baartz, MR Vol. 36 # 6716 (196 B).
- 16. W.Hann: Theory and applications of Lyapunov's direct method, MR Vol.26, (1962).
- 17. A.Halany: For and against the Lyapunov function, Symposia Mathematica, Vol. VI (INDAM, Rome, 1970), pp. 167-175, Acad. Press, London (1971). MR Vol. 44 # 1889 (1972).
- 18. A. Halany: Diff. eqn., stability, oscillations and time lag, Acad. Press, Maths on Science and Engg. Vol. 23, (1966).
- 19. P. Habets and K.Peiffer: Classification of stability like concepts and their study using vector Lyapunov functions. Inst. Math. Pure et Appl. Uiv. Catholiquo di Liouvain. Rapport No. 43 Nov. (1971); J. Math. Anal. Appl. 43 (1973) pp. 537- 570, MR Vol. 48 # 11696 (1974).
- 20. O. Hajek: Dynamical systems in the Plane, Acad, Press (1968), MR Vol. 39, (1970).
- 21. R.E. Kalman : Algebraic aspects of the theory of dynamical systems; Differential equations and dynamical systems, Acad. Press, (1967).
- 22. R.E. Kalman: Mathematical description of Linear Dynamical Systems, J. SIAM Control, (1963).
- 23. R.E. Kalman and J.E. Bertram: Control system Analysis and design via the second method of Lyapunov, A.S.M.E.J. of Basic Engineering (1960).
- 24. A.A. Kayande and V. Lakshmikantham: General Dynamical systems and conditional stability, Proc. Cambridge Philos, Soc. 63 (1967), pp. 199-207, MR Vol. 34 # 6258 (1967).
- 25. A.A. Kayande and V. Lakshmikantham: Conditional invariant sets and vector Lyapunov functions – J. Math. Anal. Appl. 14 (1966), pp. 285-293, MR Vol. 32 # 7880 (1966).
- 26. A.A. Kayande and V. Lakshmikantham : Complex differential systems and extensions of Lyapunov's method. J. Math. Anal. Appl. 13 (1966), pp. 337- 347, MR Vol. 32 # 2682 (1966).
- 27. A.A. Kaynande and V. Lakshmikantham : General dynamical systems and differential inequalities. Technical report, U.R.I. No.2 (1968).
- 28. V.Lakshmikantham: Conditional stability and vector Lyapunov functions, J. Math. Anal. Appl. 10 (1965), pp. 368-377, MR Vol.32 # 257 (1966).
- 29. G.S. Ladde and V. Lakshmikantham : On flowinvariant sts Pacific J. Math. 51 (1974), pp. 215- 220, MR Vol. 49 # 10972 (1975).
- 30. V. Lakshmikantham and S. Leela: Asymptotically self invariant sets and conditional stability –

Dynamical systems – An International Symposium, Vol. 2, Edited by L. Cesari, Jack. Hale, and J.P. Lasalle, Acad, Press, pp. 363-375, (1967), MR Vol. 36 # 2910 (1968).

- 31. V. Lakshmikantham and S. Leela: Differential and Integral Inequalities, Acad. Press, Vol. 55-I, Math. In Sc. & Engg. (1969).
- 32. V. Lakshmikantham and S. Leela: Rev. Roun, de-Math-Pure et. Appl. 12 (1967) pp. 969-976.
- 33. V. Lakshmikantham and S. Leela and G.S. Ladde : Conditionally asymptotically Invariant sets and perturbed systems, Annali Di Mate Pure et appl. Bolgona.
- 34. V. Lakshmikantham and S. Leela and T. Sastry : Converse theorems for conditional stability, J. Math. Anal. Appl. 19 (1967), pp. 444-456, MR Vol. (35) (1968).
- 35. G.S. Ladde and S. Leela : Analysis of Invariant sets, Ann. Mat. Pura. Appl. (4) 94 (1972) pp. 283- 289, MR Vol. (47) # 3777 (1974).
- 36. J.P. Lasalle : Stability and Control, J. SIAM Control Ser. A1 (1962) pp. 3-15; MR Vol. 26 (1963).
- 37. J.P. Lasalle and S. Lefschetz : Stability by Lyapunov's direct method with applications, Acad. Press, New York, Vol. 4, Maths in Sc. & Engg. (1961), MR Vol. 23 (1962).
- 38. S. Leela: Analele Stii Univ. "API Cuza" (1971)
- 39. S. Lefschetz: Differential equations-geometric theory, Interscience, New York, 1957, MR Vol. 22 # 12257 (1961).
- 40. H. Leipholz: Stability theory, Acad, Press, New York (1970) (Translation from German edition – Stuttgar, 1968).
- 41. A.M.Liapunov : Probleme general de stabilitie de movement. Ann. Fac. Sci. Toulouse (1907), French translation of the original paper published in 1893 in Comm. Math. Kharkow; reprinted as Vol. 17 in Ann. Math. Studies, Princeton (1949).
- 42. A.M. Liapunov : Stability of Motion (English translation), New York, (1966).
- 43. A.A. Markov: On a general property of minimal sets (Russian) Rusk. Astron, Zn. (1932).
- 44. G. Malkin: Theorie der stabilitat einer Bewegung Verlag R. Olden Beurg Munchen (1959), German.
- 45. A.S. Oziraner: Vest Mosk Gos. Univ. Mat. Mekh. No. 1 (1971), Mekh No; 1. (1972).
- 46. A.S. Oziraner: Vest Mosk Gos. Univ. Mat. Mekh No.3 (1971).
- 47. A.S. Oziraner: PMM 36 (1972), pp. 396-404, English translation in J. Appl. Math. Mech. Oct. (1972).
- 48. A.S. Oziraner and V.V. Rumiantesev : PMM 36 (1972), pp. 341-362, English translation J. Appl. Math. Mech.

"The General Stability – Like Concepts for Differential and Control System"

- 49. B.G. Pachpatte: Strict stability in dynamical systems, J. Diff. eqns. 11 (1972), pp. 494-473, MR Vol.45 # 7219 (1973).
- 50. K. Peiffer and N. Rouche : Liapunov's Second method applied to partial stability (French summary), J. Mechanique (1969), pp. 323-324, MR Vol.40 (1970).
- 51. C.Risoto: Anali di Math Pure et Appl. Sect. 6 Vol.84 (1970).
- 52. V.V. Rumiantsev: Symp. Math. 6. Meccanica nonlineare et stabilita Feb (1970) L.1. New York, Acad. Press (1971), pp. 243-265.
- 53. V.V. Rumiantsev: PMM 35 (1971), pp. 138-143 (English translation J. Appl. Math. Mech).
- 54. V.V. Rumiantsev: Method of Liapunov Functions in the stability theory of Motion – Fifty years of Mechanics in USSR Vol.1 Nauka, Moscow (1968).
- 55. V.V. Rumiantsev: Vest Moskov. Ges. Univ. No.4 (1957)
- 56. V.V. Rumiantsev : PMM 34, No.4 (1970).
- 57. E.O.Roxin: Stability in general control systems, J. Diff. equations. Vol.1 (1965), pp. 115-150.
- 58. N.Rouche, P. Habets and M. Laley: Stability by Liapunov's Direct method, Appl. Maths. Sciences, 22, Springer-verlag (1977), MR Vol. 56 # 9008 (1978).
- 59. G. Sansone and R. Conti: Equazion Differentiali Non-Linear, Roma (1956), Chap. IX.
- 60. P. Seibert: Liapunov Functions and Comparison Principles; Dynamical systems – An International Symposium, Vol.2, Edited by L. Cesari; J. Hale, J.P. Laaalle, Acad, Press (1976), pp. 181-185.
- 61. G.R.Sell: Topological dynamics and Ord. Diff. equns, Van Nostrand Reinhold Coy. Lond. (1971).
- 62. G.R. Sell: On the fundamental theory of ord. diff. eqna., J. Diff. eqns., J. Diff. eqns. July (1965), Vol. 1,
- 63. H. Whitney: Proc. Nat. Acad. Sci. USA 18/1932 pp. 275-278 and 340-342.
- 64. T. Yoshizawa: Funkciallaj Ekvacioj, 5 (1963), pp. 1-11.
- 65. T. Yoshizawa: Funkciallaj Ekvacioj, 6 (1964)
- 66. T.Yoshizawa: Stability theory and the existence of periodic solutions and almost periodic solutions. Appl. Math. Sciences, Springer – Verlag (1975).
- 67. T. Yoshizawa: Asymptotic behaviour of solutions of a system of differential equations, Contrib, Diff. eqns. 1 (1963), pp. 371-387.
- 68. T.Yoshizawa: Stability theory of Liapunov's second method Publication No.9, The Math. Soc. Of Japan, Tokyo, (1966).
- 69. V.I. Zubov: Mathematical Methods for Investigation of Automatic control systems, Leningrad Supromgiz (1959), MR Vol. 21 # 5791 (1960).

3089 **Mahadevaswamy. B.S., IJMCR Volume 10 Issue 12 December 2022**

70. V.I. Zubov : The methods of A.M. Lyapunov and their applications (English translation) Noordhoff, (1964).