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Theorems corresponding to the concepts of stability discussed in the works under reference 

should follow the general pattern of the direct method of  Lyapunov.   

Theorems proved for such stability contain, as special cases results on -  (i) stability for the origin, 

(ii) stability with respect to some components, (iii) stability of a set A, (iv) stability of a set A (t),  

(v) stability of conditional invariant set B relative to A, (vi) Stability of asymptotic invariant set A 

and (vii) stability of conditional asymptotic invariant set B relative to A. 

It is shown that our results on the stability properties can be extended to cover control systems 

with the  set of controls compact in Rm. 
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INTRODUCTION 

It was observed, while studying stability behaviour of an 

invariant set A for a given differential system, that 

Lyapunov’s direct method for stability of equilibrium point 

is carried over in almost similar way.  The conditions on 

differential inequalities remain the same and those of 

positive definiteness and decrescence on Lyapunov 

functions can be interpreted relative to the set A, in a natural 

way (15, 31, 64, 65, 66).  This is evident in the works of 

Oziraner (45, 46, 47), Oziraner and Rumiantsev (48), 

Rumiantsev (52, 53, 54), Peiffer and Rouche (50) and 

Corduneanu (10, 11), on partial stability or stability with 

respect to some components.  Similarly, one can observe 

this phenomena in the work, on conditional invariant sets, of 

Kayande and Lakshmikanthan (26), Leela (31, 38).  

Lakshmikantham, Lella and Ladde (33) have specifically 

observed that similar extension is possible, while discussing 

the stability properties of conditional asymptotic invariant 

sets.  The results on asymptotic invariant sets in (31) can 

also be cited as an example of the observed phenomena.  

Deo (13) has observed the similarity in conditional and 

partial stability, while discussing the strict partial stability 

results.  

It is shown that it is natural that the theorems corresponding 

to the concepts of stability discussed in the works under 

reference should follow the general pattern of the direct 

method of  Lyapunov.  It is felt that if a general concept of 

stability in terms of continuous functions, instead of norms, 

is introduced for a differential system, then the theorems 

proved for such stability contain, as special cases results on -  

(i) stability for the origin, (ii) stability with respect to some 

components, (iii) stability of a set A, (iv) stability of a set A 

(t),  (v) stability of conditional invariant set B relative to A, 

(vi) Stability of asymptotic invariant set A and (vii) stability 

of conditional asymptotic invariant set B relative to A.  Thus 

the work is of a very general nature.  (For unification in a 

different direction see (19) It is shown that our results on the 

stability properties can be extended to cover control systems 

with the  set of controls compact in Rm. 

 

GENERAL SUFFICIENCY CONDITIONS FOR 

STABILITY 

Preliminaries:  

1) Consider the differential system – 

 X’ = f (t, x)  (‘ = d/dt)   ..  (2.1) 

Where f  C (I x D, Rn), I = [0, ) and D is a region of the 

real n-space Rn, invariant for the system (2.1) so that the 

solutions starting in D remain in D for all t  I.  Further we 

assume the Lipschitz condition of f that.    

 |f (t, x) – f (t, y) |  k (t) | x-y|  ..  (2.2)  

Denoting the norm in Rn,  k  C (I, R+), where R+ = [0,  ), 

(2.2) being satisfied for each t  I, x, y   D.  The Lipschitz 

condition ensures the uniqueness of solution of (2.1) and the 

continuous dependence of solutions on initial conditions.  

Let x (t, to, xo) denote the solution of (2.1), through (to, xo)   

I X D, with x (to, to, xo) = xo. 

https://doi.org/10.47191/ijmcr/v10i12.14
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(2) In addition to the class of monotone functions. K*, K, L*, 

L that we recalled. We mention one more class of functions 

defined in (15).  

Definition – (2.1) : A function b  C (I X R+, H+) is said to 

belong to the class D (i.e. b  D) if b (t, r) is decreasing in t 

for each r  R+ and increasing in r for each t  I and lim b 

(t, r) = 0 as t   and r  0+. 

(3) Let V = V (t, x)   r, if  V  Clip (I X D, R+), the class of 

continuous functions satisfying Lipschitz condition in x.  

We recall –  

D+V (t,x) = 
h

lim
 O

sup
  

 ),()),(,((
1

xtVxthfxhtV
h

      … (2.3) 

And  

D-V (t,x) = 
h

lim
 O

inf
  

 ),()),(,((
1

xtVxthfxhtV
h

      … (2.4) 

The following comparison theorems are well known (2).  

Theorem – 2.1 : Let there exist V   such that  

D+ (V (t,x) )  g (t, V (t,x) ), (t, x)  I X D … (2.5) 

Where g  C( I X R+, R).  Let r (t, to, ro) denote the maximal 

solution of the differential equation – 

 x’ =  g (t,r), r (to) = ro ( ‘ = d/dt) … (2.6) 

Then V (to, xo)  ro 

Implies V (t,x (t, to, ro) )  r (t, to, ro) … (2.7) 

For all t   to for which r (t, to, ro) exists.  

Theorem – 2.2 : Let there exist V   such that D- (V (t,x) ) 

 h (t, V(t,x) ), (t,x)  I X D     

     … (2.8) 

Where h  C (I X R+, R).  Let u (t, to, uo) denote the 

minimal solution of  

 u’ = h (t,u), u(to) = uo (  ‘ = d/dt ) … (2.9) 

Then V (to, xo)  uo 

Implies V (t,x (t, to, xo) )  u (t, to, uo) …(2.10) 

For all t  to for which u(t, to, uo) exists.  

Note: (1) Functions g and h are assumed to be smooth 

enough to ensure the existence of maximal / minimal 

solution of the equations (2.6) / (2.9) respectively, for  all t  

to, ro, uo   p, p > 0. 

(2) If g  0 in (2.5) then (2.7) reduces to  

 V (t, x(t, to, xo))   V (to, xo) …(2.11) 

(3) If h  0 in (2.8) then (2.10) reduces to  

V (t, x(t, to, xo))   V (to, xo) …(2.12) 

Now we state and prove some general theorems giving the 

sufficiency criteria for stability – 

Theorem -2.3 : Let 1C (I X D, R+) and  2C (D, R+). 

If there exists a function V = V (t,x)  such that for all (t, 

x)  I X D, 

(i) 2 (x)  V (t,x)  1 (t,x)  …(2.13) 

And 

(ii) D+V (t,x)  0. 

Then 2 (x(t, to, xo))  1 (t0,x0). 

Proof: Because of (ii) and (2.11) holds.  

i.e. V (t, x (t, to, xo))  V (t0,x0). 

Hence by (i)  

2 (x  V (t,x (t, to, xo))  V (to, xo)  1 (t0,x0). 

i.e. 2 (x (t, to, xo))  1 (t0,x0). 

Theorem – 2.4:  Let the hypothesis of theorem (2.3) hold, 

with the exception that 1 is independent of t.  

i.e. 1 (t, x) =   3 (x) for all t  I. 

Then 2 (x (t, to, xo))  3 (x0). 

Proof: Obvious. 

Remark – 1 : Consider the following choices for the 

functions : viz.,  1 and 2 in theorem (2.2) : 

i) 1 (t, x) = a (t, |x| )  K* and 2 (x) = b ( |x|)  K gives 

equistability of the origin (15, 31).  

ii) 1 (t, x) = a (t,x)  K* and 2 (x) = b 

2

,1

2

y

nk

k

i

ix










  K 

Where x = (x1, x2, x3, . . .  . . xk, xk+1, ……..xn), 

Gives equi-stability of the origin with respect to some 

components of x (15, 31, 45, 64).  

iii) 1 (t, x) = a (t, d (x, A) )  K* and 2 = b (d(x,A)  K, A 

being  a compact closed subset of D, gives equi-stability of 

the set A (15, 31, 66). 

iv) 1 (t, x) = a (t, d (x, A) )  K* and 2 = b ( d (x, B) )  

K, where A, B   D, A, B being compact closed sets in D, 

gives equistability of the conditionally invariant set B, 

relative to the set A (31, 26). 

v) Let D. Choose 1 (t, x) = M () d (x, A) + (t) and 2  

(x) = d (x,B).  We obtain the uniform stability of the 

conditional asymptotically invariant set B relative to the set 

A (33).  

vi) If in (V), we choose 2 (x) = d (x, A), then we get  

uniform stability of asymptotically invariant set A (31, 33).  

vii) If 1 (t,x) = a (t, d (x,A (t))) and  

2 (x) = b (d (x, A(t))), where a   K* and b K, then the 

theorem implies the equistability of the set A(t) (68).  

Remark – 2 :  By choosing 1 independent of t, in (i), (ii) 

(iii), (iv) and (vii) above, we obtain the corresponding 

uniform stability of the sets mentioned therein.  

Theorem – 2.5 : Let there exist a function V   such that 

the hypothesis of theorem (2.3) holds and (2.5) is satisfied.  

Let the maximal solution r (t, to, ro) of the equation (2.6) 

satisfy the estimate below – 

r(t, to, ro)  a (to, ro), t  to, a K*   

     … (2.14) 

for some p > o, ro  p. 

Then for t  to, 

2 (x (t, to, xo) )  a (to, 1 (to, xo) )   

  … (2.15) 

for xo   to (P) where xo  to (P)  means that  
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1 (to, xo) )  p. 

 

Proof: Let  xo  to (P) so that 1 (to, xo)  (P) . 

Choose ro = V (to, xo). By (i) of theorem (2.3).  

ro = V (to,xo)  1 (to, xo)  (P)  

Thus, xo  to (P) implies ro  p 

Hence (2.14) is satisfied. 

By the choice of ro, we have 

2 (x (t, to, xo) )   V(t,x (t, to, xo) )  

 r (t, to, ro)  

 a (to,ro) = a (to,V( to, xo) ) 

 a (to, 1 (to, xo) ), 

Which is what (2.15) asserts. 

Corollary : Theorem (2.3). 

Proof: Choose g   0, in the above theorem, so that  

2 (x (t, to, xo) )   V(t,x (t, to, xo) )  

 V (to, xo)  

 1 (to, xo), 

which is what the theorem (2.3) claims.  

Theorem – 2.6 : Let the hypothesis of theorem (2.5) hold 

except that, instead of the condition (2.14), we have  

r(t,to,ro)   a (ro), t  to,  a  K  … (2.16) 

for some p>o, ro  p, and 1 (t, x)= 3 (x) for all (t,x)I X D. 

Then  2 (x (t, to, xo) )    a(3(x0) )   . .  (2.17) 

for all  t  to, xo1(p) meaning that 3 (xo)  p. 

Proof: Let  xo  1(P) so that 3 (xo)  p . 

Choose ro = V (to, xo).  

ro = V (to,xo)  3 (xo)  P. 

Now xo1 (p) implies ro  p. Hence (2.16) holds.  

Therefore, 2 (x (t, to, xo) )  V(t,x (t, to, xo) )  

 r (t, to, ro)  

 a (ro) = a (V( to, xo) ) 

 a (3 (xo) ) 

for t  to, xo1 (p).  Hence the proof.  

 

Theorem – 2.7: Let the hypothesis of theorem (2.5) hold 

except that the condition (2.14) is replaced by  

r(t, to, ro)   a (to,ro) b (to, t-to)    

   … (2.18) 

When a K*, b L*, for some p > O, ro p, t to. 

Then for xo  to (p), t  to 

2 (x (t, to, xo) )  a (to, 2 (to, xo) ) b (to, t-to)  

  … (2.19) 

Proof: The argument here is parallel to that in the proof of  

theorem (2.3) but for the deviation - 

2 (x (t, to, xo) )    V (t, x(t, to, xo) ) 

 t(t, to, ro)  

 a(to, ro) b (to, t-to) = a (to, V(to, 

xo) ) b (to, t-to) 

 a(to, 1 (to, xo) )  b (to, t-to), for t 

 to, and  xo  to (p).  

Theorem – 2.8 : In the hypothesis of theorem (2.5), let 

(2.14) be replaced by r (t, to, ro)  a (ro) b(t-to)   

   … (2.20) 

Where a  K, b L and  1(t, x) = 3 (x), in hypothesis (i) of 

theorem (2.5).  Then for xo 1(p), t  to,   

2 (x(t, to, xo) )  a (3(xo) ) b (t-to)   

  … (2.21) 

Proof : Similar to that of theorem (2.6). 

 

Remarks :  

1) The theorems (2.5) to (2.8) are comparison 

theorems and the conditions (2.14), (2.16), (2.18) 

and (2.20) assure equi, uniform, equi-asymptotic 

and uniform asymptotic stability respectively for 

trivial solution of the equation (2.6).  

By proper choice of the  - functions in the above 

theorems we can derive stability properties in each 

of the cases mentioned under remarks 1 and 2 

following theorem (2.4). 

2) The theorems (2.3) to (2.8) give upper estimates on 

the values of 2 – function along the trajectories of 

the solutions of the equation (2.1).  

We now state some theorems in which lower 

estimates are got for the 2 – function along the 

trajectories of the solutions of the equation (2.1).  

Theorem – 2.9 : Let 4  C(I X D, R+) and 5 C(D, R+). 

If there exists a function V1   such that for (t, x) I X D, 

(i) 4 (t, x)   V1 (t, x)  5 (x)  … (2.22) 

and  

(ii) D-V1 (t,x)  O.  

Then, for t  to, 5 (x (t, to, xo) )  4 (to, xo) … (2.23) 

Proof:  From (ii) and (2.12) 

 V1 (t, x (t, to, xo) )  V1 (to, xo). 

From (2.22) it follows that  

 5 (x (t, to, xo) )  V1 (t, x (t, to, xo) )  V1 (to, xo) 4 (to, xo). 

Hence the result 

Theorem 2.10 : Let there exist a function V1  r satisfying 

the hypothesis of theorem (2.9) except that  4  is 

independent of t i.e. 4  (t,x) =  6 (x), for (t,x)  I X D.  

Then   5 (x (t, to, xo) )  6 (xo), for to.… (2.24) 

Proof: On the same lines as in the theorem (2.9). 

 Combing the results of theorem (2.3) and (2.9) we 

obtain the following theorem, which corresponds to strict-

stability properties – 

Theorem – 2.11 : Let there exist functions V and V1 both 

belonging to r satisfying the hypothesis of theorems (2.3) 

and (2.9) respectively with 5 = 2 in hypothesis (i) of 

theorem (2.3).  Then for t  to, 

4 (to, xo)   2 (x (t, to, xo) )  1 (x (to, xo) (2.25) 

 A similar combination of theorems (2.4) and 

(2.10), corresponding to uniform strict stability properties 

yields.  
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Theorem – 2.12: Let there exist functions V and V1 both 

belonging to r satisfying the hypothesis of theorems (2.4) 

and (2.10) respectively with 5 = 2 in hypothesis (i) of 

theorem (2.4).   

Then for t  to  

6 (xo)   2 (x (t, to, xo) )  3 (x (xo)  (2.26) 

Note – 1 : In theorems (2.4) and (2.10), consider the 

following choice of  - functions – 

(a) Let a1, bi  K, I  = 1,2.  Choose 1 (t,x) = a1 (|x|)  

2 b1 (|x|), 5 (x) = a2 (|x|) and 6 (= b2 (|x|) 

Then 

 
1

2

a  b2 (|xo|)  |x (t, to, xo) |  
1

2

b  a1 (x (|xo|)  

Thus the origin is uniformly strictly stable.  

(b) In the same theorems, choose 3 (x) = a1 (|x|) a1  K 

2 (x) = b1 

2/1

2

1

1












x
k

i

   5 (x) = b2 

2/1

2

1

1












x
k

i

 

 6 (x) = a2 (|x|), b1, b2, a2  K 

We obtain strict-partial stability of the origin (38). 

(c) In theorem (2.12), let 2 (x) =  (d(x,B)), 

5 (x) = a (d(x,A) )  and 6 x) = b (d (x,B) ), where  

, a, b  K Then we obtain the uniform strict stability of the 

conditionally invariant set B relative to the set A.  

(d) In theorem (2.12), let 2 (x) =  (d(x, A)), 

3 (x) = a (d(x,A) )  and 6 (x) = b (d (x,A), , a, b  K. 

This yields uniform strict stability of the set A.  

(e) In theorem (2.11), let 2 (x) =  (d(x, A)),   K. 

4 (t,x) = a (t,d(x,A) )  and 6 (t,x) = b (t,d (x,A) ), a, b  K*.  

Then we obtain equistrict stability of the set A.  

 Other results can be obtained similarly.  

 

Some comparison theorems giving the lower estimates 

are stated below: 

Theorem 2.13: Let there exist a function V1   such that 

(2.22) and (2.8) are satisfied.  Let the minimal solution u (t, 

to, uo) of (2.9) satisfy the estimate : 

 u (t, to, uo)  a (to,uo)  …(2.27) 

for all t  to, a  K*, for some p  o, uo,   p.  

Then, for  t  to, and xo1 to (p) which means 4 (to,xo)  P 

5 (x (t, to, xo))   a (to, 4 (to, xo) )  …(2.28) 

Proof: Let xo 1 to (p)   so that (to, xo)   p. 

Choose uo  = V1 (to,xo). By (2.22) uo = V1 (to,xo)  4 (to, xo) 

 p. 

Thus xo 1 to (p)  implies uo  p. 

Therefore, 5 (x (t, to, xo))   V1 (t, x(t, to, xo) ) 

  u(t, to, uo)  

 a(to, uo) = a (to, V1(to, xo) )  

Therefore, 5 (x (t, to, xo))   a (to,  4 (to, xo) ). 

Theorem – 2.14 : Let the assumptions of theorem (2.15) 

hold with  4 (t, x) = 6 (x) (i.e. independent of t), for all (t,x) 

 I X D and (2.26) be replaced  by 

 u(t, to, uo)  a (uo),  a  K  …(2.29) 

Then for t  to, 5 (x (t, to, xo))   a 6 (xo) )   …(2.30) 

for all  xo 1 to (p)  which means 6 (xo)  p. 

Proof: Runs on the same lines as the proof of the theorem 

(2.13) 

Theorem – 2.15 : Let the assumptions of theorem (2.13) 

hold with the condition (2.27) replaced by  

u(t, to, uo)  a (to, uo) b(to, t-to)    … (2.31) 

where a  K* and b  L*: 

Then for t  to  , xo 1 to (p)   which means 4 (to, xo)  p 

5 (x (t, to, xo))   a (to,  4 (to,xo) ) b (to, t-to) … (2.32) 

The proof is similar to that for theorem (2.13) but for the 

deviation – 

 (x (t, to, xo) )  V1 (t, x (t, to, xo) ) 

    u (t, to, xo) 

    a (to, uo) b (to, t-to) 

    a (to, V1(to, xo) ) b (to, t-to)  

    a (to, (to, xo) ) b (to, t-to) 

For all t  to, xo 1to (p). 

 

Theorem – 2.16 : Let the assumptions of theorem (2.13) be 

satisfied, with 4 (t,x) = 6 (x) for all (t, x)  I X D and the 

condition (2.27) replaced by 

U(t, to, uo)  a (uo)b(t-to), a  K, b  L  … (2.33) 

Then for t  to, xo  1 (p) which means 6 (x)  p > O, 

5 (x(t,to,xo) )  a (6 (xo)) b (t-to)  … (2.34) 

Proof: Just on the same lines as for theorem (2.15). 

 Combing the theorems (2.5) and (2.13), we obtain – 

Theorem – 2.17 : Let there exist functions V and V1  r 

satisfying the hypothesis of theorems (2.5) and (2.13) 

respectively, with the function  2 (of theorem (2.5) ) 

identical with the function 5 (of theorem (2.13) ). 

Then for t  to 

4 (to,xo) )  2 (x (t, to, xo))  1 (to,xo)  … (2.35) 

By proper choice of the functions, we get strict stability 

properties of sets.  

Combining the theorems (2.6) and (2.14), we obtain – 

Theorem 2.18 : Let there exist functions V and V1  r 

satisfying the conditions of theorems (2.6) and (2.14) 

respectively, with the function 2 (of theorem (2.6)  identical 

with the function 5  (of theorem (2.14) ). 

Then for t   to , 

4 (xo) )  2 (x (t, to, xo))  1(xo) … (2.36) 

Proper choice of   - functions lead to strict uniform stability 

of sets.  

Combining the theorems (2.8) and (2.16), we obtain  

Theorem – 2.19 : Let there exist functions V and V1  r 

satisfying the conditions of theorems (2.8) and (2.14) 

respectively, with 2=5 . Then for t  to, 

 (xo)  (t-to)  2 (x (t, to, xo))   (xo) (t-to) 

     … (2.37) 

Proper choice of functions   and   lead to strict uniform 

asymptotic stability properties of sets.  
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3. THEOREMS ON THE EXISTENCE OF 

LYAPUNOV FUNCTIONS 

In this section, the existence of Lyapunov functions is 

proved on the assumptions that the system (2.1) satisfies the 

condition (2.2) so that its solution is unique and 

continuously depends on initial conditions.  

Theorem – 3.1 : Let the trajectories x (t, to, xo) of (2.1) with 

(2.2) satisfy the estimates – 

2 (x (t, to, xo) )  3(xo),  t  to, to  I  

   … (3.1) 

Where 2  C(D,R+) and 2C(D,R+)   as well, with  

|3 (x) - 3(y) |  k  |x-y|, for x, y  D  

  … (3.2) 

Then there exists a V-function satisfying the hypotehses of 

theorem (2.4). 

Proof : Define V (t,x) =  

 
.),(),),,((3inf DXIxtforxtTx

tTO

o


  

Because of (2.2), |f(t,x) – f (t,y) |  (t) |x-y|. 

The continuity of and continuous dependence of x on initial 

conditions imply the continuity of V (t,x).   

Also V (t,x) =  3 (x (T1, t, x) ) for some T1[o,t] 

and V (t,y) =  3 (x (T2, t, y) ) for some T2[o,t]. 

Let T1   T2. 

Then |V (t,x) – V(t,y) |= |  3 (x (T1, t, x) ) - 3 (x (T2, t, y) )| 

     k |x (T2, t,x) – x (T2, t, y) | 

     k |x-y| 
t

o

dss .)(exp   

This shows that V satisfies Lipachitz condition in x. for each 

t  I. 

Thus  V  r. 

Along the trajectory x (t, to, xo) of (2.1) 

V (t,x (t,to,xo) ) =    
)),,(,,((inf 3 oo xttxtTx

tTO




 

   
),,((inf 3 oo xtTx

tTO





    .. (3.3) 

Since the solution of (2.1) is unique.  

Similarly,  

V (t+h,x(t+h, to, xo) ) = 
)),,((3inf oo xtTx

htTO





     .. (3.4) 

And V (t+h,x(t+h, to, xo) ) – V (t,x (t, to, xo) )   O. 

Hypothesis (ii) of theorem (2.3) follows easily.  

From the definition of V, V (t,x)   3 (x)  

     …(3.5) 

From (3.1) for each T  [o,t], 3 (x(T) )  2 (x) 

Thus V (t,x)  2 (x)   …(3.6) 

(3.5) and (3.6) verify (i) of theorem (2.3) 

With 1 (t,x) = 3 (x) 

This completes the proof.  

Theorem – 3.2:  Let the trajectories x (t, to, xo) of (2.1) with 

(2.2) satisfy the estimates – 

 

5 (x (t,to,xo) )  6 (xo),  t  to,  to  I   … (3.7) 

Where  3  C (D, R+),  6 C (D, R+) with   

| 6 (x) - 6 (y) k |x-y| for x, y  D.   … (3.8) 

Then there exists a function V satisfying the hypothesis of 

theorem (2.10). 

Proof :  For (t, x)  I X D, define 

  V (t,x) = 
)),,((6sup xtTx

tTO




 

Clearly V (t,x)   6(x)    

   … (3.9) 

And from (3.7), V (t,x)  5(x)   

   … (3.10) 

Since for each T   [o,t], 6 (x(T) )  5 (x). 

(3.9) and (3.10) together verify (i) of theorem (2.10) with  

 4(t,x) = 6(x). 

Vr follows, because V is continuous as 6  is so and x 

continuously depends on the initial conditions.  Also V 

satisfies Lipschitz condition because  of (3.8) and (2.2).  

Which can be proved on the same lines as in previous 

theorem.  

V (t,x (t,to,xo) ) =    
)),,(,,((sup 6 oo xttxtTx

tTO




 

   
),,((sup 6 oo xtTx

tTO




 

and V (t+h,x(t+h,to,xo) ) =    

),,((sup 2 oxtTx

htTO




 

     

),()),,((sup 6 xtVxtTx

tTO

o 




 

Therefore D-V (t,x)  0,which is the hypothesis (ii) of 

theorem (2.9), and this completes the proof.  

Theorem – 3.3:  Let the trajectories x (t, to, xo) of (2.1) with 

(2.2) satisfy the estimate : 

1 (x (t, to,xo) )  2 (xo)  (t-to), t  to, to  I  

  … (3.11) 

Where 1 , 2  C (D,R+) and   L,  being differentiable 

on I and ′ (t) = - 1(t), t  0,  > 0  

     …(3.12)  

For each t I. Let 2  satisfy the Lipechite condition 

 |2 (x) – 2 (y)|  k |x-y|, x, y  D  

  …(3.13) 

Then there exists a V-function, satisfying – 

1) V   
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2) D+ V(t,x)  - 1V (t,x), and  

3) 1 (x)  V(t,x) =  2 (x)  (0), for (t,x) I X D. 

Proof: Define V(t,x) =
tTo 

inf
  2 (x(T,t,x) )  (t-T) 

For (t,x)  I X D 

The continuity of 2 and   and  the continuous dependence 

of x (t,to,xo) on initial conditions ensure (1).  The continuity 

of V.  

Also as in theorem (3.1), it can be easily shown that  

|V (t,x) – V (t,y) | k |x-y| (o) 
t

0
(s) ds. 

Hence (1) is satisfied.  

Next, V (t, x(t, to, xo) )  = 

)()),,(,,((inf 2 TtxttxtTx

tTO

oo 




 

   

 =
)()),,((inf 2 TtxtTx

tTO






 

Thus V (t,x (t,to,xo) ) = 2 (x(T1,t,xo) )  (t,-T1). 

for  some T1  [O,t] due to the compactness of [O, t]. 

Thus V (t+h,x(t+h,to,xo) ) =  

)()),,((inf 2 ThtxtTx

htQT

oo 




 

    = 

)()),,((inf 2 ThtxtTx

htQT

oo 




 

  = 2 (x(T1,to,xo) )  (t+h T1). 

Hence,  

D+ V(t,x) =  








 

  h

TtTht
xtTx

oh
oo

)()(
)),,((suplim 11

12




 

  = 2 (x(T1,to,xo) ) ’ (t-T1). 

  = 2 (x(T1,to,xo) )  (t-T1)
)(

)(

1

1

'

Tt

Tt








 . 

 -  1 V (t,x(t,to,xo) ) due to (3.12).  Hence (2).  

From the definition of V and (3.11). it follows that  V (t,x)  

2 (x)  (0) and V (t,x)  1 (x) due to the fact that for each 

T  [0,t], 2 (x(T, t, x) )  (t-T)  (x).  This verifies (3) and 

hence the proof.  

 

Remark: 

The condition (3.11) verifies a result corresponding to 

uniform asymptotic stability.  The condition  (3.12) shows 

that this stability is exponential.  In the above theorem, if 1 

(x) = d (x, B). 2 (x) = d (x, A), 3 (x) = d (x, B), then we 

have the converse theorem on exponential uniform 

asymptotic  stability of the C.I.  Set B with respect to A.  

Other deductions can similarly be made obtaining converse 

theorems in the case of exponential asymptotic partial 

stability (47) and exponential asymptotic stability of the set 

A.  

 

4. CONTROL SYSTEMS 

In this it is shown that our results on the stability properties 

can be extended to control systems with the set of controls 

compact in Rm. 

Consider the control system: 

 x’ = f (t,x,u)    (‘ = d/dt)     

   … (4.1) 

where f  C(I X D X E, Rn), D being a region in Rn and E is 

a compact set in Rm. 

For converse results, it is assumed that for each fixed u  E, 

|f (t,x,u) – f (t,y,u) |   (t) |x-y|   

  . . (4.2) 

Where    C (I, R+). It is further assumed that the region D 

is invariant for the system (4.1). 

An extension of comparison theorems (2.1) and (2.2) to 

the control system (4.1) 

 Let  xu(t, to, xo) denote a trajectory of (4.1) 

corresponding to a fixed uE. 

 

Theorem – 4.1 : Let there exist a function V  , such that 

  

D+ V (t,x) = 
h

lim
 O

sup
  

 ),()),,(,((
1

xtVuxthfxhtV
h

      

  

 g (t, V(t,x) )  … (4.3) 

for all (t,x)  I X D, u  E and where g  C (I X R+, R). 

Let r (t, to, ro) denote the maximal solution of the differential 

equation:  

   r′ = g (t, r) 

   r(to) = ro  … (4.4) 

Then V (to, xo)  ro implies 

V(t,xu (t, to, xo) )  r (t, to, ro)  … (4.5) 

for all t  to for which r (t, to, ro) exists. 

Theorem – 4.2 : Let there exist a function V such that for all 

(t,x) I X D, u E, 

D- V (t,x) = 
h

lim
 O

inf
  

 ),()),,(,((
1

xtVuxthfxhtV
h

      

  

 h g (t, V(t,x) )  

    … (4.6) 
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Where  h C(I X R+, R).  Let  (t, to, ,) be the minimal 

solution of  

 ’ = (t, h ) 

   (to) = o   … (4.7) 

Then V (to, xo)   o. 

Implies V (t, xu (t, to, xo) )   (t, to, o ) … (4.8) 

for all t  to for which  (t, to, o) exists.  

 As in section 2, g and h  are smooth enough to 

ensure the existence of solutions of the equations (4.4)  and 

(4.7) respectively, for all t  to, ro, o  p,  p > 0. 

In case of g  o, 

__

h   0, (4.5) and (4.8) reduce to  

 V (t, xu (t, to, xo))  V (to, xo)  

  .. (4.9) 

And V (t, xu (t, to, xo))  V (to, xo)  

  .. (4.10) 

respectively.  

 Now we prove an extension of theorem (2.3) to 

control systems and its converse as well.   

Theorem  4.3 : (Corresponding to theorem (2.3)) 

Let 1  C(I X D,R+) and 2C(D,R+). If there exists a 

function V  r such that, for all (t, x)  I X D 

(i)  2 (x)  V (t,x)  1 (t,x)   

   .. (4.11) 

And (ii) (4.3) holds with g  0. 

Then 2 (xu (t,to,xo))  1 (to, xo), 

Proof : Because of (ii), (4.9) follows at once.  

 i.e. V (t, xu (t, to, xo))  V (to, xo) 

Now  2 (xu (t,to,xo))  V (t, xu (t, to, xo))  

      V (t, xo)  1 (to, xo) 

Theorem  4.4 : (Corresponding to theorem (2.4)) 

Let i  C(D,R+), (i = 2, 3).  If there exists V  r such that, 

for all (t, x)  I X D, 

(i)  2 (x)   V (t,x)  3(x) 

And 

(ii) (4.3) holds with g  0, them  2 (xu (t,to,xo))  3 (xo), 

Proof : On the same lines as in theorem (4.3) with  1 (t,x)  

3 (x). 

Note : The remarks following theorem (2.4) are quite 

relevant, in the context of control systems aswell.  

Theorem – 4.5 : (Converse of theorem (4.4)) 

Let the system (4.1) satisfy the condition (4.2).  Let the 

trajectories xu (t, to, xo) of (4.1) satisfy the estimate - 

2 (xu (t,to,xo))  3 (xo), t   to, to  I  

   .. (4.13) 

Where  2, 3 C (D,R+) 

And |3(x) – 3(y)  k |x-y|    

  .. (4.14) 

for x,y  D.  

Then there exists a V-function satisfying the hypotheses of 

theorem (4.4). 

Proof : For (t, x)  I X D ; define 

V (t,x) =  










)),,((infinf xtTx

tTOEu

u
  

The continuity and Lipschitz’u condition 3on, besides the 

continuous dependence on initial conditions of xu and the 

compactness of E, show that Vr. 

 The hypothesis (ii) of theorem (4.4) can be shown 

to be satisfied by arguments similar to these in theorem 

(3.1). 

Trivially, V (t,x) 3(x). 

Also for each T  [0, t], 3 (xu (T,t,x)) 2(x) due to the 

uniqueness of the solutions of (4.1) and (4.14). 

Thus   
tTO

xxtTxu



 )()),,((inf 2
  

Noting that 2 is now independent of u, it follows that 

V(t,x) 2 (x).  Hence the proof.  
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