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Abstract- We study a nonlinear heat like equation from a lie symmetry stand point.
Heat equation have been employed to study �ow of current, information and propa-
gation of heat. The Lie group approach is used on the system to obtain symmetry
reductions and the reduced systems studied for exact solutions. Solitary waves have
been constructed by use of a linear span of time and space translation symmetries.
We also compute conservation laws using multiplier approach and by a conservation
theorem due to Ibragimov.
Keywords-Invariant, Lie group analysis, Multiplier, Nonlinear heat-like, Station-
ary solution, Soliton, Symmetry reduction

1. Introduction

The heat equation [19] has been studied by many scientists. A coupled system of
such equations can be used to study polydispersive sedimentation. This coupled
system can be used in studying movement of particles in �uids and how gravity
a�ects them. As the particles spread and mix with the �uid, suspensions or colloids
form depending on size of particles. We have derived the nonlinear heat-like equation
from the classical heat equation

∆ ≡ ut + βuxx = 0, (1)

and if we let the thermal conductivity to depend on u and α, that is, β = αu,
Equation (1) becomes

∆ ≡ut + αuuxx = 0. (2)

The role of this paper is study the nonlinear system 2 by Lie group analysis. We in
the �rst section give preliminaries before studying the system.

2. Preliminaries

This section presents a prelude that is used in what comes after.

Department of Pure and Applied Mathematics, Faculty of Applied Science and Technology,

Technical University of Kenya, Kenya,

Joseph Owuor Owino

GROUP ANALYSIS OF ANONLINEAR HEAT-LIKE
EQUATION

3113

mailto:josephowuorowino@gmail.com


Local Lie groups

[6]

We will consider the transformations

Tε : x̄i = ϕi(xi, uα, ε), ūα = ψα(xi, uα, ε), (3)

in the Euclidean space Rn of x = xi independent variables and Rm of u = uα

dependent variables. The continuous parameter ε ranges from a neighbourhood
N ′ ⊂ N ⊂ R of ε = 0 for ϕi and ψα di�erentiable and analytic in the parameter ε.

De�nition 1 Let G be a set of transformations in (3) . Then G is a local Lie group
if:

(i). Given Tε1 , Tε2 ∈ G, for ε1, ε2 ∈ N ′ ⊂ N , then
Tε1Tε2 = Tε3 ∈ G, ε3 = φ(ε1, ε2) ∈ N (Closure).

(ii). There exists a unique T0 ∈ G if and only if ε = 0 such that TεT0 = T0Tε =
Tε(Identity).

(iii). There exists a unique Tε−1 ∈ G for every transformation Tε ∈ G,
where ε ∈ N ′ ⊂ N and ε−1 ∈ N such that
TεTε−1 = Tε−1Tε = T0 (Inverse).

Remark 1 The condition (i ) is su�cient for associativity of G.

Prolongations

Consider the system,

∆α

(
xi, uα, u(1), . . . , u(π)

)
= ∆α = 0, (4)

where uα are dependent variables with partial derivatives u(1) = {uαi },
u(2) = {uαij}, . . . , u(π) = {uαi1...iπ}, of the �rst, second, . . . , up to the πth-orders. We
shall denote by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ . . . , (5)

the total di�erentiation operator with respect to the variables xi and δji , the Kro-
necker delta. Then

Di(x
j) = δji ,

′, uαi = Di(u
α), uαij = Dj(Di(u

α)), . . . , (6)

where uαi de�ned in (6) are di�erential variables [6].

1. Prolonged groups Let G given by

x̄i = ϕi(xi, uα, ε), ϕi
∣∣∣
ε=0

= xi, ūα = ψα(xi, uα, ε), ψα
∣∣∣
ε=0

= uα, (7)

where
∣∣∣
ε=0

means evaluated on ε = 0.
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De�nition 2 The construction of G in (7) is equivalent to the computation
of in�nitesimal transformations

x̄i ≈ xi + ξi(xi, uα)ε, ϕi
∣∣∣
ε=0

= xi,

ūα ≈ uα + ηα(xi, uα)ε, ψα
∣∣∣
ε=0

= uα,
(8)

obtained from (3) by a Taylor series expansion of ϕi(xi, uα, ε) and ψi(xi, uα, ε)
in ε about ε = 0 and keeping only the terms linear in ε, where

ξi(xi, uα) =
∂ϕi(xi, uα, ε)

∂ε

∣∣∣
ε=0
, ηα(xi, uα) =

∂ψα(xi, uα, ε)

∂ε

∣∣∣
ε=0
. (9)

Remark 2 By using the symbol of in�nitesimal transformations, X, (8) be-
comes

x̄i ≈ (1 +X)xi, ūα ≈ (1 +X)uα, (10)

where

X = ξi(xi, uα)
∂

∂xi
+ ηα(xi, uα)

∂

∂uα
, (11)

is the generator G in (7).

Remark 3 The change of variables formula

Di = Di(ϕ
j)D̄j, (12)

is employed to construct transformed derivatives from (3). The D̄j is total
di�erentiation x̄i. As a result

ūαi = D̄i(ū
α), ūαij = D̄j(ū

α
i ) = D̄i(ū

α
j ). (13)

If we apply the change of variable formula given in (12) on G given by (7), we
get

Di(ψ
α) = Di(ϕ

j), D̄j(ū
α) = ūαjDi(ϕ

j). (14)

If we expand (14), we obtain(
∂ϕj

∂xi
+ uβi

∂ϕj

∂uβ

)
ūβj =

∂ψα

∂xi
+ uβi

∂ψα

∂uβ
. (15)

The ūαi can be written as functions of xi, uα, u(1), meaning that,

ūαi = Φα(xi, uα, u(1), ε), Φα
∣∣∣
ε=0

= uαi . (16)

De�nition 3 The transformations in (7) and (16) give the �rst prolongation
group G [1].
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De�nition 4 In�nitesimal transformation of the �rst derivatives is

ūαi ≈ uαi + ζαi ε, where ζαi = ζαi (xi, uα, u(1), ε). (17)

Remark 4 In terms of in�nitesimal transformations, G [1] is given by (8) and
(17).

2. Prolonged generators

De�nition 5 By the relation (14) on G [1] from 3, we obtain [6]

Di(x
j + ξjε)(uαj + ζαj ε) = Di(u

α + ηαε), which gives (18)

uαi + ζαj ε+ uαj εDiξ
j = uαi +Diη

αε, (19)

and thus

ζαi =Di(η
α)− uαjDi(ξ

j), (20)

is the �rst prolongation formula.

Remark 5 Analogously, one constructs higher order prolongations [6],

ζαij = Dj(ζ
α
i )− uαiκDj(ξ

κ), . . . , ζαi1,...,iκ = Diκ(ζαi1,...,iκ−1
)− uαi1,i2,...,iκ−1j

Diκ(ξj).

(21)

Remark 6 The prolonged generators of the prolongations G [1], . . . ,G [κ] of the
group G are

X [1] = X + ζαi
∂

∂uαi
, . . . , X [κ] = X [κ−1] + ζαi1,...,iκ

∂

∂ζαi1,...,iκ
, κ ≥ 1, (22)

for the group generator X in (11).

Group invariants

De�nition 6 A function Γ(xi, uα) is said to be an invariant of G of in (3) if

Γ(x̄i, ūα) = Γ(xi, uα). (23)

Theorem 1 A function Γ(xi, uα) is an invariant of the group G given by (3) if and
only if it solves the following �rst-order linear PDE: [6]

XΓ = ξi(xi, uα)
∂Γ

∂xi
+ ηα(xi, uα)

∂Γ

∂uα
= 0. (24)

From Theorem (1), we have the following result.

Theorem 2 The Lie group G in (3) [6] has precisely n−1 functionally independent
invariants and one can take as the basic invariants, the left-hand sides of the �rst
integrals

ψ1(xi, uα) = c1, . . . , ψn−1(xi, uα) = cn−1, (25)

of the characteristic equations for (24):

dxi

ξi(xi, uα)
=

duα

ηα(xi, uα)
. (26)
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Symmetry groups

De�nition 7 We de�ne the vector �eld X (11) as a Lie point symmetry of (4) if
the determining equations

X [π]∆α

∣∣∣
∆α=0

= 0, α = 1, . . . ,m, π ≥ 1, (27)

are satis�ed for the π-th prolongation of X, namely X [π].

De�nition 8 The Lie group G is a symmetry group of (4) if (4) is form-invariant,
that is

∆α

(
x̄i, ūα, ū(1), . . . , ū(π)

)
= 0. (28)

Theorem 3 The Lie group G (3) can be constructed from the in�nitesimal trans-
formations in (7) by integrating the Lie equations

dx̄i

dε
= ξi(x̄i, ūα), x̄i

∣∣∣
ε=0

= xi,
dūα

dε
= ηα(x̄i, ūα), ūα

∣∣∣
ε=0

= uα. (29)

Lie algebras

De�nition 9 A vector space Vr of operators [6] X (11) is a Lie algebra if for any
Xi, Xj ∈ Vr,

[Xi, Xj] = XiXj −XjXi, (30)

is in Vr for all i, j = 1, . . . , r.

Remark 7 The commutator is bilinear, skew symmetric and admits to the Jacobi
identity [6].

Theorem 4 The set of solutions of (27) forms a Lie algebra[6].

Exact solutions

The methods of (G'/G)-expansion method [22], Extended Jacobi elliptic function
expansion [23] and Kudryashov [20] are usually applied after symmetry reductions.

Conservation laws

[6]
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Fundamental operators

De�nition 10 The Euler-Lagrange operator δ
δuα

is

δ

δuα
=

∂

∂uα
+
∑
κ≥1

(−1)κDi1 , . . . , Diκ

∂

∂uαi1i2...iκ
, (31)

and the Lie- Bäcklund operator in abbreviated form [6] is

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+ . . . . (32)

Remark 8 The Lie- Bäcklund operator (32) in its prolonged form is

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
κ≥1

ζi1...iκ
∂

∂uαi1i2...iκ
, (33)

for

ζαi = Di(W
α) + ξjuαij, . . . , ζαi1...iκ = Di1...iκ(Wα) + ξjuαji1...iκ , j = 1, . . . , n.

(34)

and the Lie characteristic function

Wα = ηα − ξjuαj . (35)

Remark 9 The characteristic form of Lie- Bäcklund operator (33) is

X = ξiDi +Wα ∂

∂uα
+Di1...iκ(Wα)

∂

∂uαi1i2...iκ
. (36)

The method of multipliers

De�nition 11 A function Λα
(
xi, uα, u(1), . . .

)
= Λα, is a multiplier of (4) if [22]

Λα∆α = DiT
i, (37)

where DiT
i is a divergence expression.

De�nition 12 To �nd the multipliers Λα, one solves the determining equations (38)
[21],

δ

δuα
(Λα∆α) = 0. (38)

63118

“Group Analysis of a Nonlinear Heat-Like Equation”



Ibragimov's conservation theorem

The technique [6] enables one to construct conserved vectors associated with
each Lie point symmetry of (4).

De�nition 13 The adjoint equations of (4) are

∆∗α
(
xi, uα, vα, . . . , u(π), v(π)

)
≡ δ

δuα
(vβ∆β) = 0, (39)

for a new dependent variable vα.

De�nition 14 The Formal Lagrangian L of (4) and its adjoint equations (39) is
[6]

L = vα∆α(xi, uα, u(1), . . . , u(π)). (40)

Theorem 5 Every in�nitesimal symmetry Xof (4) leads to conservation laws [6]

DiT
i
∣∣∣
∆α=0

= 0, (41)

where the conserved vector

T i = ξiL+Wα

[
∂L
∂uαi
−Dj

(
∂L
∂uαij

)
+DjDk

(
∂L
∂uαijk

)
− . . .

]
+

Dj(W
α)

[
∂L
∂uαij

−Dk

(
∂L
∂uαijk

)
+ . . .

]
+DjDk(W

α)

[
∂L
∂uαijk

− . . .

]
.

(42)

3. Main results

3.1. Lie point symmetries of nonlinear heat-like Equation(2)

We start �rst by computing Lie point symmetries of the system (2), which admits
the one-parameter Lie group of transformations with in�nitesimal generator

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(43)

if and only if

X [2]∆

∣∣∣∣
∆=0

= 0, (44)

By de�nition

X [2] = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζ1

∂

∂ut
+ ζ22

∂

∂uxx
(45)
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where

ζ1 = ηt + ut(ηu − τt) + ux(−ξt) + utux(−ξu) + u2
t (−τu),

ζ2 = ηx + ux(ηu − ξx) + ut(−τx) + utux(−τu) + u2
x(−ξu),

ζ22 = ηxx + ux(2ηxu − ξxx) + ut(−τxx) + utux(−2τxu) + utuxx(−τu)
+ utx(−2τx) + uxx(ηu − 2ξx) + uxutx(−2τu) + uxuxx(−3ξu) + u2

x(ηuu − 2ξxu)

+ utu
2
x(−τuu) + u3

x(−ξuu)
(46)

Using the prolonged generator (45) in Equation (44) gives

αηuxx + ζ1 + αuζ22 = 0. (47)

If we substitute for ζ1 and ζ22 in the determining Equation (44), we obtain the
following;

uxx(αη) + {ηt + ut(ηu − τt) + ux(−ξt) + utux(−ξu) + u2
t (−τu)}

αu{ηxx + ux(2ηxu − ξxx) + ut(−τxx) + utux(−2τxu) + utuxx(−τu)
+ utx(−2τx) + uxx(ηu − 2ξx) + uxutx(−2τu) + uxuxx(−3ξu) + u2

x(ηuu − 2ξxu)

+ utu
2
x(−τuu) + u3

x(−ξuu)}
∣∣
uxx=− ut

αu

= 0

(48)

Now replacing uxx by − ut
αu

in the Equation (48), we obtain,

[
− ut
αu

]
(αη) +

{
ηt + ut(ηu − τt) + ux(−ξt) + utux(−ξu) + u2

t (−τu)

}

αu

{
ηxx + ux(2ηxu − ξxx) + ut(−τxx) + utux(−2τxu) + ut

[
− ut
αu

]
(−τu)

+ utx(−2τx) +

[
− ut
αu

]
(ηu − 2ξx) + uxutx(−2τu) + ux

[
− ut
αu

]
(−3ξu) + u2

x(ηuu − 2ξxu)

+ utu
2
x(−τuu) + u3

x(−ξuu)
}

= 0

(49)

or

ηt + αuηxx + ut
(
2ξx − αuτxx −

η

u
− τt

)
+ ux(−ξt + αu{2ηxu − ξxx})

+ utux(2ξu − 2αuτxu) + utx(−2αuτx) + uxutx(−2αuτu)

+ u2
x(αu{ηuu − 2ξxu}) + utu

2
x(−αuτuu) + u3

x(−αuξuu) = 0

(50)

Since the functions τ, ξ and η depend only on t, x and u and are independent of the
derivatives of u, we can then split the above equation on the derivatives of u and
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obtain

τx = τu = ξu = ηuu =0, (51)

u{2ξx − τt} − η =0, (52)

αu{2ηxu − ξxx} − ξt =0 (53)

ηt + αuηxx =0. (54)

From Equation (51�52), it is evident that

τ =τ(t), (55)

ξ =ξ(t, x), (56)

η =u{2ξx − τt}. (57)

Using these functions in Equation (53),

3αξxxu− ξt = 0 (58)

and separating on powers of u gives the system

u :ξxx = 0,

u0 :ξt = 0.
(59)

Equation (59) is necessary and su�cient for

ξ(t, x) = c1x+ c2. (60)

Now using Equation (54), we have

τtt = 0, (61)

which can be integrated twice with respect to t to give us

τ(t) = c3t+ c4. (62)

and �nally;

τ =c3t+ c4, (63)

ξ =c1x+ c2, (64)

η =(2c1 − c3)u. (65)

We have obtained a four dimensional Lie algebra of symmetries spanned by

X1 =x
∂

∂x
+ 2u

∂

∂u
, (66)

X2 =
∂

∂x
, (67)

X3 =t
∂

∂t
− u ∂

∂u
, (68)

X4 =
∂

∂t
. (69)
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3.2. Commutator Table for Symmetries

We evaluate the commutation relations for the symmetry generators. By de�ni-
tion of Lie bracket [23], for example, we have that

[X2, X4] = X2X4 −X4X2 =

(
∂

∂x

∂

∂t

)
−
(
∂

∂t

∂

∂x

)
= 0. (70)

Remark 10 The remaining commutation relations are obtained analogously. We
present all commutation relations in Table (1) below.

[Xi, Xj] X1 X2 X3 X4

X1 0 -X2 0 0
X2 X2 0 0 0
X3 0 0 0 -X4

X4 0 0 X4 0

Table 1. A commutator table for Lie algebra of a nonlinear heat-like equation.

3.3. Group Transformations

The corresponding one-parameter group of transformations can be determined
by solving the Lie equations [24]. Let Tεi be the group of transformations for each
Xi, i = 1, 2, 3, 4. We display how to obtain Tεi from Xi by �nding one-parameter
group for the in�nitesimal generator X2 = ∂

∂x
. In particular, we have the Lie equa-

tions

dt̄

dε2
=0, t̄

∣∣∣
ε2=0

= t,

dx̄

dε2
=1, x̄

∣∣∣
ε2=0

= x,

dū

dε2
=0, ū

∣∣∣
ε2=0

= u.

(71)

Solving the system (71) one obtains,

t̄ = t, x̄ = x+ ε2, ū = u, (72)

and hence the one-parameter group Tε2 corresponding to the operator X2 is

Tε2 : (t̄, x̄, ū) = (t, x+ ε2, u). (73)

All the �ve one-parameter groups are presented below :

Tε1 : (t̄, x̄, ū) = (t, xeε1 , ue2ε1),

Tε2 : (t̄, x̄, ū) = (t, x+ ε2, u),

Tε3 : (t̄, x̄, ū) = (teε3 , x, ueε3),

Tε4 : (t̄, x̄, ū) = (t+ ε4, x, u).

(74)
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3.4. Symmetry transformations

The symmetries we have obtained can be used to transform special exact solu-
tions of the nonlinear heat-like equation into new solutions. The Lie group analysis
vouches for fundamental ways of constructing exact solutions of PDEs, that is,
group transformations of known solutions and construction of group-invariant solu-
tions. We will illustrate these methods with examples. If ū = g(t̄, x̄) is a solution of
equation (2)

φ(t, x, u, ε) = g(f1(t, x, u, ε), f2(t, x, u, ε)), (75)

is also a solution. The one parameter groups dictate to the following generated
solutions:

Tε1 : u =g
(
t, xeε1

)
e−2ε1 ,

Tε2 : u =g(t, x+ ε2),

Tε3 : u =g(teε3 , x)e−ε3 ,

Tε4 : u =g(t+ ε4, x).

(76)

3.5. Construction of Group-Invariant Solutions

Now we compute the group invariant solutions of a non-linear heat-like equation.

(i). X1 = x ∂
∂x

+ 2u ∂
∂u

The associated Lagrangian equations

dt

0
=

dx

x
=

du

2u
, (77)

yield two invariants, J1 = t and J2 = 2u
x
. Thus using J2 = Φ(J1), we have

u(t, x) =
xΦ(t)

2
. (78)

The derivatives are given by :

ut =
xΦ′(t)

2
,

ux =
Φ(t)

2
,

uxx =0.

If we substitute these derivatives into Equation (2) , we obtain the �rst order
ordinary di�erential equation

xΦ′(t)

2
= 0. (79)
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For any x 6= 0, Equation (79) is equivalent to

Φ′(t) = 0, (80)

whose solution is Φ(t) = C1. Hence the solution for Equation (2) obtained
from this symmetry is

u(t, x) =
C1x

2
, C1 ∈ R. (81)

(ii). X2 = ∂
∂x

dt

0
=

dx

1
=

du

0
. (82)

This gives the constants J1 = t and J2 = u , giving the solution

u(t, x) = f(t). (83)

We obtain the derivatives as follows:

ut =ft(t), (84)

ux =0 = uxx. (85)

If we substitute the above derivatives in Equation (2), we obtain the �rst order
ordinary di�erential equation

ft(t) = 0, (86)

whose solution is

f(t) = C2, C2 ∈ R. (87)

Hence the solution for Equation (2) obtained from this symmetry is

u(t, x) = C2, C2 ∈ R. (88)

(iii). X3 = t ∂
∂t
− u ∂

∂u

The Lagrangian system associated with the operator X3 is

dt

t
=

dx

0
= −du

u
, (89)

whose invariants are J1 = x and J2 = tu. So, u(t, x) = ψ(x)
t

is the group-
invariant solution. The derivatives are namely;

ut =− ψ(x)

t2
, (90)

ux =
ψ′(x)

t
(91)

uxx =
ψ′′(x)

t
(92)

123124

“Group Analysis of a Nonlinear Heat-Like Equation”



Substituting of u = ψ(x) into (2) yields

αψ(x)ψ′′(x)− ψ(x) = 0. (93)

For any x ∈ R such that ψ(x) = 0, we have the trivial solution. Otherwise,
for x ∈ R such that ψ(x) 6= 0, Equation (93) is equivalent to

αψ′′(x)− 1 = 0, (94)

where α 6= 0 lest we have a contradiction.

The solution to Equation (94) is

ψ(x) =
x2

2α
+ C3x+ C4, (0, 0) 6= (C3, C4) ∈ R2. (95)

Hence the associated group-invariant solution is

u(t, x) =
1

t

{
x2

2α
+ C3x+ C4

}
, (0, 0, 0, 0) 6= (t, α, C3, C4) ∈ R4. (96)

(iv). X4 = ∂
∂t
.

Characteristic equations associated to the operator X4 are

dt

1
=

dx

0
=

du

0
, (97)

yieldsJ1 = x and J2 = u. As a result, the group-invariant solution of (2) for
this case is J2 = δ(J1), for δ an arbitrary function. That is,

u(t, x) = δ(x). (98)

Substitution of the value of u from Equation (98) into Equation (2) yields a
second order ordinary di�erential equation

αδ(x)δ′′(x) = 0. (99)

. Whenever, (α, δ(x)) = (0, 0) for any roots of δ(x), we have the trivial
solution. Otherwise Equation (99) is satis�ed by

δ(x) = C5x+ C6, (0, 0) 6= (C5, C6) ∈ R2. (100)

Consequently, the group-invariant solution under X4 is

u(t, x) = C5x+ C6 (0, 0, 0) 6= (α,C5, C6) ∈ R3. (101)
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3.6. Soliton

We obtain a traveling wave solution of the non-linear heat-like Equation(2) by
considering a linear span of the symmetries X2 and X4, namely, [22]

X = cX2 +X4 = c
∂

∂x
+
∂

∂t
, for some constant c. (102)

The characteristic equations are

dt

1
=

dx

c
=

du

0
. (103)

We get two invariants, J1 = x− ct and J2 = u. So the group-invariant solution is

u(t, x) = Ω(x− ct), (104)

for some arbitrary function Ω and c the velocity of the wave. The resulting deriva-
tives are

ut =− cΩ′(x− ct), (105)

ux =Ω′(x− ct), (106)

uxx =Ω′′(x− ct). (107)

Substitution of u into (2) yields a second order nonlinear ordinary di�erential equa-
tion

− cΩ′ + ΩΩ′′ = 0, Ω = Ω(x− ct). (108)

Integration of Equation (108) with respect to Ω′ yields

−cΩ′2

2
+ ΩΩ′ = 0, (109)

where we have taken the zero on the right hand side as the constant of integration.
If the function Ω is non constant, that is, Ω′ 6= 0, then we have from Equation (109)
that

−cΩ′ + 2Ω = 0. (110)

By letting ξ = x− ct, we have

dΩ

Ω
=

2dξ

c
, (111)

whose integration yields

Ω = C8e
2ξ
c , ξ = x− ct, C8 = eC7 . (112)

Clearly, we have the one-soliton solution as

u(t, x) = C8e
2(x−ct)

c , (0, 0) 6= (c, C8) ∈ R2. (113)
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4. Conservation laws of equation (2)

We will employ multipliers in the construction of conservation laws.

4.1. The multipliers

We make use of the Euler-Lagrange operator de�ned as de�ned in [24] to look
for a zeroth order multiplier Λ = Λ(t, x, u). The resulting determining equation for
computing Λ is

δ

δu
[Λ{ut + αuuxx}] = 0. (114)

where

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

x

∂

∂uxx
+ . . . (115)

Expansion of Equation (114) yields

Λu(ut + αuuxx) + αΛuxx −Dt(Λ) + αD2
x(Λu) = 0. (116)

Invoking the total derivatives

Dt =
∂

∂t
+ ut

∂

∂u
+ utx

∂

∂ux
+ utt

∂

∂ut
+ · · · , (117)

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ . . . . (118)

on Equation (116) produces

2α(Λx + uΛxu)ux + 2α(Λ + uΛu)uxx + α(2Λu + uΛuu)u
2
x − Λt + αuΛxx = 0 (119)

Splitting Equation (119) on derivatives of u produces an overdetermined system of
four partial di�erential
equations, namely,

ux :Λx + uΛxu = 0, (120)

uxx :Λ + uΛu = 0, (121)

u2
x :2Λu + uΛuu = 0, (122)

rest :− Λt + αuΛxx = 0 (123)

Note that Equation (121) is su�cient for Equations (122) and (120) . We can write
Equation (121) as

dΛ

Λ
= −du

u
(124)

if and only if

dΛ

Λ
= du, (125)
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giving the solution

Λ =
c1

u
, c1 ∈ R. (126)

Essentially, we extract the one multiplier

Λ1 =
1

u
. (127)

Remark 11 Recall that a multiplier Λ for Equation(2) has the property that for the
density T t = T t(t, x, u) and �ux T x = T x(t, x, u, ux),

Λ (ut + αuuxx) = DtT
t +DxT

x. (128)

We derive a conservation law corresponding to the multiplier.

4.1.1. Conservation law for the multiplier Λ = 1
u

Expansion of equation (128) gives

1

u
{ut + αuuxx} = T tt + utT

t
u + T xx + uxT

x
u + uxxT

x
ux . (129)

Splitting Equation (129) on the second derivative of u yields

uxx : T xux = α, (130)

Rest :
1

u
{ut} = T tt + T tuut + T xx + T xuux. (131)

The integration of Equation (130) with respect to ux gives

T x = αux + A(t, x, u). (132)

Substituting the expression of T x from (132) into Equation (131) we get

1

u
{ut} =T tt + T tuut + Ax + Auux. (133)

which splits on �rst derivatives of u, to give

ux : Au = −0, (134)

ut : T tu =
1

u
, (135)

Rest : 0 = T tt + Ax. (136)

Integrating equations (134) and (135) with respect to u manifests that

T t = lnu+ C(t, x), (137)

A = B(t, x) (138)
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By substituting the obtained functions into Equation (136), we have

Ct(t, x) +Bx(t, x) = 0. (139)

Since C(t, x) and B(t, x) contribute to the trivial part of the conservation law, we
take C(t, x) = B(t, x) = 0 and obtain the conserved quantities

T t = lnu, (140)

T x =αuxx, (141)

from which the conservation law corresponding to the multiplier Λ = 1
u
is given by

Dt (lnu) +Dx (αux}) = 0. (142)

Remark 12 It can be shown that the two sets of conserved quantities are conserva-
tion laws. Furthermore, since u 6= 0 and 1

u
6= 0 , the nonlinear heat-like equation is

itself a conserved quantity.

5. Conclusion

In this manuscript, four dimensional Lie algebra of Lie point symmetries has
been applied to study a nonlinear heat-like equation. A commutator table has been
constructed for the obtained Lie algebra. We have also used symmetry reductions
to compute exact group-invariant solutions, including a soliton. A conservation law
has been derived by the method of zeroth order multipliers.
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