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In this work, we investigate the Global Stability of a Mathematical model that describes the impact of 

vaccination on the dynamics of COVID-19 disease transmission in a human population. The model, 

represented by a system of ordinary differential equations explains how infection from an index case, 

which could potentially lead to endemic state, can be averted through effective vaccination. The global 

stability analysis shows that, the diseases free state is globally asymptotically stable, when the basic 

reproduction number, 𝑅0 < 1  in the absence of disease associated death. This is supported by numerical 

simulation which suggests the combination of vaccination and non-pharmaceutical measures in the 

disease control. We also show numerically that the disease invades when 𝑅0 > 1 and that there is a 

transcritical bifurcation at 𝑅0 = 1. 
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1. INTRODUCTION 

SARS-CoV-2 known as COVID-19 is a human infectious 

coronavirus that originated in Wuhan, China, and has caused 

rapid spreading in China and around the world since 

December 2019 [1, 2], believed to have a zoonotic origin [3, 

4, 5] and was identified and named by the World Health 

Organization (WHO) on January 10, 2020 following an ealier 

virus borne infection episode in Wuhan, China in December, 

2019 [6]. The COVID-19 pandemic is considered as the 

biggest global threat because of thousands of confirmed 

infections, accompanied by thousands of deaths over the 

world [7]. Globally, as at 26th November 2021, there have 

been 259,502,031 confirmed cases of COVID-19, with 

5,183,003 disease related deaths [8]. Mathematical modeling 

has become a powerful and important tool to understand 

infectious Disease dynamics and to improve on the control of 

the disease in a population. These models are often described 

by various forms such as: SI, SIS, SIR, or SIRS, etc. models, 

where S stands for susceptible subpopulation, I is infected 

subpopulation, and R is recovered Subpopulation. Depending 

on the mode of transmission of the disease under 

consideration, modification can be made to the above forms 

to give a detail explanation of the dynamics of the disease. 

The concept of Symptomatic, Asymptomatic and Surface 

Virus as considered in [6, 9], Vaccination in [9, 10], Isolation 

and Hospitalization in [11] and convalescence in [12] are 

modifications of the above general infectious disease models. 

Nonlinear ordinary differential equations have been used to 

explore the complex mechanisms of the dynamics of various 

systems in multidisciplinary fields: for instance, they are used 

in economics [13], quantum physics [14], chaos [15], 

medicine [16] and health diseases [17]. These models aim at 

optimizing predictive control of the parameters influencing 

the system dynamics. A Bat – Reservoir population 

transmission model was proposed in [5], to understand and 

simulate potential transmission from zoonotic source to 

humans. They estimated the basic reproductive number (𝑅0 ) 

as 2.4829. This value differs from 3.58, being the value 

estimated in [3]. The work of [2] suggests isolation and 

lockdown as a means of control of Covid-19 pandemic 

whereas some SIR models on Covid-19 have been proposed 

and carefully analyzed in [3, 5, 18, 19]. Lotka-Volterra based 

models of COVID-19 have been proposed and analyzed in 

[20]. 

In the work of [2], an epidemiological 

compartmental model that takes into account a super-

spreading phenomenon of some individuals including fatality 

and hospitalized classes was proposed. The sensitivity 

analysis of their model shows that the most sensitive 

parameters to the basic reproduction number are infection 
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rate of humans, the rate at which exposed humans become 

infectious and the disease related death rate. Increase in the 

infection rate and the rate at which exposed individuals 

become infectious increase the basic reproduction number, 

and in contrast, the disease related death rate and the basic 

reproduction number are inversely related. 

In the work of [6], the authors noted that, Covid-19 

pandemic ravaging the world currently, will not end soon, as 

the result of their work shows damping oscillations. They 

aver that vaccination could be a possible remedy. Vaccination 

is an important public health control strategies that help to 

minimize the burden of an infectious disease spread and to 

delay a possible outbreak. Vaccination has the role of 

preventing healthy people from getting infected by a disease 

[21]. Various vaccination policies were studied in different 

mathematical models [9- 10, 22-26]. 

Various methods have been used in [17-18, 32-35] 

to show conditions of global asymptotic stability of infectious 

disease models. In this paper we extended an earlier work in 

[9] by investigating the global stability of the model exploring 

the technique in [17-18]. The total human population, N(t), is 

divided into 6 classes namely, Susceptible class, Q(t), Latent 

class L(t), Symptomatic class, S(t), Asymptomatic class A(t) 

, Recovered class R(t) and Vaccinated class V(t)).  State 

variables in the model are given in Table 1 and the movement 

between compartments is summarized in Figure 1, the 

individual pathways to be discussed below.

 

1. List of model variable 

State Variables              Description 

N                 Total Human Population.  

L  Latent or Exposed non-infectious Human Population 

Q  Susceptible Human Population  

S  Symptomatic infectious Human Population 

A   Asymptomatic infectious Human Population. 

R   Recovered but Susceptible Human Population 

V  Vaccinated human Population  

P   Number of Viruses on Surfaces    

t   time  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Pathway diagram of the COVID-19 model showing (a) the progression (solid) and transmission (dashed) of the disease 

between compartments; the variable names are listed in Table 1. The connecting arrows are labelled with the associated 

rate constants, where the natural death of each of the classes are not shown for clarity. 

 

2: THE MODEL 

The entire human population is described by the equation  

   𝑁 = 𝑄 + 𝐿 + 𝑆 + 𝐴 + V +  𝑅   

                                  (2.1) 
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  Susceptible humans get infected by either contacting 

symptomatic and asymptomatic humans or viruses from 

surfaces at a rates 𝜃1
𝑆

𝑁
𝑄, 𝜃2

𝐴

𝑁
 𝑄 and 𝜑1𝑉𝑄  respectively, 

where,𝜃1,𝜃2and 𝜑1are rate constants. The fractions 
𝑆

𝑁
 and  

𝐴

𝑁
 

are the probabilities that the contacts are with symptomatic 

and asymptomatic humans. We note that humans in class 

𝐸 are in the exposed stage of infection and are not infectious. 

Susceptible humans are recruited into the population through 

a constant birth rate, 𝜆1 with a correction term  𝜃3𝑁
2, 

stopping the population from growing without limit in the 

absence of the disease, where 𝜃3 is per capita resource 

availability for the human population. Exposed humans 

become infectious at a rate, 𝜔1𝐿 in which a proportion, 𝑘 of 

them become asymptomatic. This assumption is different 

from that of [5], where they suggested two incubation period 

even though they meant a single incubation period. All 

human classes die naturally at per capita rate, 𝜇1 while some 

individuals in the S class die at an additional rate 𝜎1S from the 

disease. We also assume that recovered Covid-19 patients are 

recruited into the vaccinated class at a rate, 𝜃4𝑅 or, become 

susceptible again at a rate 𝜌1𝑅 with 𝜃4and  𝜌1 as rate 

constants. Surface virus dies at rate 𝛾1𝑃 while symptomatic 

and asymptomatic humans contribute to the emergence of 

surface viruses at rates 𝛼1𝑆 and  𝛼2𝐴 respectively with 

𝛼1and 𝛼2 as rate constant. Susceptible Humans are 

vaccinated at a rate  𝜂1(1 − 𝑚)𝑄, where 𝜂1 as rate constant 

and 𝑚 is the proportion of people unwilling to be vaccinated. 

We assume that vaccinated humans become susceptible at a 

rate 𝜂2𝑉 as the effectiveness of the vaccine wears out. The 

proposed model consistent with the above assumptions is 

given as: 

 
𝑑𝑄

𝑑𝑡
= 𝜆1𝑁 + 𝜌1𝑅 + 𝜂2𝑉 − (𝜃1

𝑆

𝑁
+ 𝜃2

𝐴

𝑁
+ 𝜑1𝑃 + 𝜂1(1 − 𝑚) + 𝜇1)𝑄 − 𝜃3𝑁

2                                 (2.2)    

              
𝑑𝐿

𝑑𝑡
= (𝜃1

𝑆

𝑁
+ 𝜃2

𝐴

𝑁
+ 𝜑1𝑃)𝑄 − (𝜔1 + 𝜇1)𝐿                                     (2.3)     

                                        
𝑑𝑆

𝑑𝑡
= (1 − 𝑘)𝜔1𝐿 + 𝜏1𝐴 − (𝛽1 + 𝜎1 + 𝜇1)𝑆                                     (2.4)     

                                       
𝑑𝐴

𝑑𝑡
= 𝑘𝜔1𝐿 − (𝛽2 + 𝜏1 + 𝜇1)𝐴                                      (2.5)       

                               
𝑑𝑉

𝑑𝑡
= 𝜂1(1 − 𝑚)𝑄 + 𝜃4𝑅 − ( 𝜂2 + 𝜇1)𝑉                                     (2.6)        

                                                        
𝑑𝑅

𝑑𝑡
= 𝛽1𝑆 + 𝛽2𝐴 − (𝜃4 + 𝜌1 + 𝜇1)𝑅                                      (2.7) 

 

 
𝑑𝑃

𝑑𝑡
= 𝛼1𝑆 + 𝛼2𝐴 − 𝜑2𝑃𝑄 − 𝛾𝐼𝑃                                      (2.8)     

              
𝑑𝑁

𝑑𝑡
= (𝜆1 − 𝜇1)𝑁 − 𝜎1𝑆 − 𝜃3𝑁

2                                      (2.9)     

              Equation (2.9) is obtained by adding equations (2.2)-(2.7) 

 

2.1 Parameter Values and Nondimensionalisation 

All the model parameters are listed in Table 2 below together with values taken from various sources. 

 

Table 2. List of model parameters. 

 

Symbols  Description         Value                 Units            Source 

𝜆1  Per capita birth rate     0.0000433  𝐷𝑎𝑦−1                             [5,6,9] 

𝜃1 Infectious rate between Susceptible       

and symptomatic human population     0.05   𝐷𝑎𝑦−1        [5,6,9] 

𝜃2 Infectious rate between Susceptible and   

Asymptomatic human population      0.124   𝐷𝑎𝑦−1                          [5,6,9] 

𝜑1 Infectious rate between surface virus and 

 Susceptible Human population    0.00000123     𝑉𝑖𝑟𝑢𝑠−1𝐷𝑎𝑦−1                             [5,6,9] 

𝛽1  Recovery rate of Symptomatic human population.  0.0987                   𝐷𝑎𝑦−1                         [5,6,9] 

𝛽2 Recovery rate of Asymptomatic human population  0.854     𝐷𝑎𝑦−1                         [15,6,9] 

𝜃3  Per capita Resources available for the human Population 0.00024  𝐻𝑢𝑚𝑎𝑛−1𝐷𝑎𝑦−1                           [5,6,9] 
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𝜇1 Natural death rate      0.0000357    𝐷𝑎𝑦−1                          [5,6,9] 

𝜏1 Rate of loss of Asymptomatic status   0.035    𝐷𝑎𝑦−1                       [5,6,9] 

𝑘 Proportion of exposed Human becoming infectious  0.005                Non-dimensional             [5,6,9] 

𝛼1 Contribution of Symptomatic humans to surface Viruses. 0.0398            Viruses𝐻𝑢𝑚𝑎𝑛−1𝐷𝑎𝑦−1            [5,6,9] 

𝛼2           Contribution of Asymptomatic humans to surface viruses 0.001          Viruses𝐻𝑢𝑚𝑎𝑛−1𝐷𝑎𝑦−1                    [5,6,9] 

𝜑2 Depletion rate of surface virus due to contact with 

                Susceptible Human                        0.00000123            𝑉𝑖𝑟𝑢𝑠−1𝐷𝑎𝑦−1             [5,6,9] 

𝜔1 Transition rate from exposed State to infectious State  0.000479  𝐷𝑎𝑦−1                          [5,6,9] 

𝛾1 Mortality rate of virus on surfaces    0.01   𝐷𝑎𝑦−1                          [5,6,9] 

 𝜎1 Disease induced death rate     0.043                              𝐷𝑎𝑦−1                 [11] 

 𝜂1 Rate at which susceptive humans are vaccinated.  0.0196              𝐻𝑢𝑚𝑎𝑛−1𝐷𝑎𝑦−1         Calculated from [6] 

𝜌1   Rate at which recovered humans are been susceptible  0.084    𝐷𝑎𝑦−1           assumed 

 m Proportion of humans that were not vaccinated as     

       a result of Conspiracy theory.    0.98  𝐷𝑎𝑦−1                  Calculated from [4]  

 𝜂2 Vaccine wearing out rate     0.08  𝐷𝑎𝑦−1                    [9] 

𝜃4 Rate of vaccination of recovered humans   0.89   𝐷𝑎𝑦−1                   [9]

    

 

We define nondimensional variables of the form: 

                    

𝑄 ̂ =
𝑄

𝑁
, 𝐿̂ =

𝐿

𝑁
, 𝑆̂ =

𝑆

𝑁
, 𝐴̂ =

𝐴

𝑁
, 𝑉 =

𝑉

𝑁
, 𝑅̂ =

𝑅

𝑁
, 𝑃̂ =

𝑃

𝑃0
, 𝑁̂ =

𝑁

𝑁0
, 𝑡̂ =

𝑡

𝑡0
,                                                                                          (2.10) 

such that  

 𝑄 ̂ + 𝐿̂ + 𝑆̂ + 𝐴̂ + 𝑉̂ + 𝑅̂ = 1                                                                                                                                                        (2.11)  

We substitute (2.10) in (2.2) – (2.9), carry out some algebraic simplifications and rescale time with 

 the rate of Vaccinated human population. By defining the following dimensionless parameters.  

         𝑡0 =
1

 𝜂1

, 𝜆 =
𝜆1

 𝜂1

, 𝜌 =
𝜌1

 𝜂1

  𝑎 =
𝜃1

 𝜂1

, 𝑏 =
𝜃2

 𝜂1

, 𝜇 =
𝜇1

 𝜂1

, 𝑑 =
𝜑1𝑉0

 𝜂1

, 𝑒 =
𝛽2

 𝜂1

, 𝜎 =
𝜎1

 𝜂1

,  

 

𝑓 =
𝜃3𝑁0

 𝜂1
, 𝜏 =

𝜏1

 𝜂1
, 𝜔 =

𝜔1

 𝜂1
, 𝑔 =

𝛼1𝑁0

 𝜂1𝑉0
, ℎ =

𝛼2𝑁0

 𝜂1𝑉0
, 𝜃 =

𝜃4

 𝜂1
, 𝛾 =

𝛾1

 𝜂1
, η =

η2

 𝜂1
, 𝜑 =   

𝜑2𝑁0

 𝜂1
                                                                  (2.12) 

     𝛽 =
𝛽1

 𝜂1
 ,                                                                                                                             

and dropping the hats for notational simplicity, we obtain the nondimensional system; 

 

 
𝑑𝑄

𝑑𝑡
= 𝜆(1 − 𝑄) + 𝜌𝑅 + 𝜂𝑉 − [𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃+(1 − 𝑚)]𝑄 + 𝑓(𝑄 − 1)𝑁 + 𝜎𝑄𝑆,                                          

(2.13) 
𝑑𝐿

𝑑𝑡
= (𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃)𝑄 −(𝜔 + 𝜆)𝐿 + 𝑓𝐿𝑁 + 𝜎𝐿𝑆,                                                                                                     

(2.14)    
𝑑𝑆

𝑑𝑡
= (1 − 𝑘)𝜔𝐿 + 𝜏𝐴 − (𝛽 + 𝜎 + 𝜆)𝑆 + 𝑓𝑆𝑁 + 𝜎𝑆2,                                                                                 

(2.15) 
𝑑𝐴

𝑑𝑡
= 𝑘𝜔𝐿 − (𝑒 + 𝜏 + 𝜆)𝐴 + 𝑓𝐴𝑁 + 𝜎𝐴𝑆,                                                                                                 

(2.16) 
𝑑𝑉

𝑑𝑡
=  (1 − 𝑚)𝑄 + 𝜃𝑅 − (𝜂 + 𝜆)𝑉 + 𝑓𝑉𝑁 +  𝜎𝑉𝑆,                                                                                                     

(2.17)           
𝑑𝑅

𝑑𝑡
= 𝛽𝑆 + 𝑒𝐴 − (𝜃 + 𝜌 + 𝜆)𝑅 + 𝑓𝑅𝑁 + 𝜎𝑅𝑆,                                                                                                             

(2.18) 
𝑑𝑃

𝑑𝑡
= 𝑔𝑆𝑁 + ℎ𝐴𝑁 − 𝜑𝑁𝑃𝑄 − 𝛾𝑃,                                                                                                           

(2.19) 
𝑑𝑁

𝑑𝑡
= (𝜆 − 𝜇)𝑁 − 𝜎𝑆𝑁 − 𝑓𝑁2,                                                                                                                           

(2.20) 

subject to the initial conditions, 
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 𝑄(0) = 𝑞0, 𝐿(0) = 1 − 𝑞0, 𝑆(0) = 𝐴(0) = V(0) = R(0) = P(0) = 0 

 

3.0 MODEL ANALYSIS 

 

3.1 The Basic Reproduction Number, 𝑹𝟎  

 

Using the next generation matrix approach [27, 28, 30], we consider the equation 

 

    𝑊′ =
𝑑𝑊

𝑑𝑡
, where 

𝑊′ = 𝐹𝑊 − 𝑀𝑊                                                                                                             

(3.1)                                                                                     

 

    𝐹 = ⌊

0 𝑎𝑄0 𝑏𝑄0 𝑑𝑄0

0 0 0 0
0 0 0 0
0 0 0 0

⌋ ,    𝑀 = ⌊

ℎ1 0 0 0
−ℎ6 ℎ2 −𝜏 0
−ℎ7 0 ℎ3 𝑜
0 −ℎ4 −ℎ5 ℎ8

⌋ ,   𝑊 = [

𝐿
𝑆
𝐴
𝑃

] 

 

Here,  𝐹𝑊 represents the emergence of new infections, 𝑀𝑊 the transition of these infections among compartments and W, the 

reservoir of infection where,  

𝜆 > 𝜇, 𝑘 < 1, 𝑚 < 1,   𝑟1 =   𝜆 − 𝜇,  𝑟2 = 1 − 𝑘,   𝑟3 = 1 − 𝑚 

 

ℎ1 = 𝜔 + 𝜇, ℎ2 = 𝛽 + 𝜎 + 𝜇, ℎ3 = 𝑒 + 𝜏 + 𝜇,                                                        

(3.2) 

 ℎ4 =
𝑔𝑟1

𝑓
, ℎ5 =

ℎ𝑟1

𝑓
 , ℎ6 =   𝑟2𝜔,   ℎ7 = 𝑘𝜔, ℎ8 =

𝜑𝑟1

𝑓
+ 𝛾        

The largest eigenvalue of 𝐺 = 𝐹𝑀−1 is the basic reproduction number. 

      

 𝐺 =
1

𝑔0
[

𝑔9 0 0 0
𝐾2 𝑔8 𝐾6 0
𝐾3 0 𝐾7 0
𝐾4 𝐾5 𝐾8 𝐵8

],                                                                                                           

(3.3) 

 

Where 𝑔8 = ℎ1ℎ3ℎ4, 𝑔9 = ℎ2ℎ3ℎ8, 𝐾2 = ℎ3ℎ6ℎ8 + 𝜏ℎ7ℎ8, 𝐾3 = ℎ2ℎ7ℎ8 

𝐾4 = ℎ2ℎ5ℎ7 + ℎ3ℎ4ℎ6 + 𝜏ℎ4ℎ7,  𝐾5 = ℎ1ℎ3ℎ4 

 𝐾6 = 𝜏ℎ1ℎ8,  𝐾7 = ℎ1ℎ2ℎ8,  𝐾8 = ℎ1(ℎ2ℎ5 + 𝜏ℎ4), 𝐵7 = ℎ1ℎ2, 𝐵8 = 𝐵7ℎ3 

 

The highest eigenvalue of G gives the basic reproduction number:  

 

𝑅0 =
𝜔𝑄0{𝐿1(𝑒+𝜏+𝜇)+𝐿2(𝛽+𝜎+𝜇)}

(𝜔+𝜇)(𝑒+𝜏+𝜇)(𝛽+𝜎+𝜇)(𝑓𝜎+𝜃𝑟1)
                                                                                     

(3.4) 

 

Where, 𝐿1 = 𝑟2{𝑎𝑓𝜎 + 𝑟1(𝑎𝜃 + 𝑑𝑔)}, 𝐿2 = 𝑘{𝑏𝑓𝜎 + 𝑟1(𝑏𝜃 + 𝑑ℎ)} and 

            𝑄0 =
𝜂+𝜇

𝜂+𝜇+𝑟2
 

 

3.2       Positivity, Existence and Uniqueness of Solution 

The model is described in the domain 

Ω ∈ ℝ8 = {𝑄, 𝐿, 𝑆, 𝐴 , 𝑅, 𝑉, 𝑃, 𝑁: 𝑄 ≥ 0, 𝐿 ≥ 0, 𝑆 ≥ 0, 𝐴 ≥ 0, 𝑅 ≥ 0, 𝑉 ≥ 0, 

 𝑃 ≥ 0, 𝑁 > 0,     𝑄 + 𝐿 + 𝑆 + 𝐴 + 𝑉 + 𝑅 = 1}                                       (3.5) 

Assuming all variables are positive 𝑎𝑡 𝑡 = 0, then 𝑄(0) + 𝐿(0) + 𝑆(0) + 𝐴(0) + 𝑉(0) + 𝑅(0) = 1. If  𝐿 = 0 , and all 

other variables are in Ω, then,  
𝑑𝐿

𝑑𝑡
≥ 0, this is also the case for variables in (2.15) - (2.19). If 𝑁 = 0, 𝑡ℎ𝑒𝑛,   

𝑑𝑁

𝑑𝑡
= 0.  But if  𝑁 > 0 

and assuming 𝜆 > 𝜇 , then with  suitable initial conditions,  
𝑑𝑁

𝑑𝑡
> 0 ∀ 𝑡 > 0. We observe that the right-hand side of (2.15) - (2.20) 
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is continuous with continuous partial derivatives. Thus, solutions exist and are unique and the model has mathematically and 

biologically relevant solutions in the domain Ω ∀ 𝑡 ∈ [0,∞). 

3.3 Steady State Solution  

The equilibrium point is given as 𝐸0 = (𝑄, 𝐿, 𝑆, 𝐴, 𝑉, 𝑅, 𝑃) = (𝑄0, 0,0,0, 𝑉0, 0,0).  Substituting S = 0 and A = 0 into the 

right hand side of (2.18), and (2.19) gives R = 0, and P = 0.  Further substitution of the values of S, A, R, and P into (2.14) gives 

L=0. Using S=A=R=L=P=0 in (2.17) and (2.12) gives 𝑉0 = 
𝑟2

𝜂+𝜇+𝑟2
 and  𝑄0 =

𝜂+𝜇

𝜂+𝜇+𝑟2
 respectively.  At the disease free state, all 

humans are entirely susceptible and we obtain from (2.20) the following logistic equation, 
𝑑𝐻

𝑑𝑡
= 𝑟1𝑁 − 𝑓𝑁2                                                                    

(3.6) 

With solution  

𝑁(𝑡) =
𝐾𝑁𝑂

𝑁𝑂+(𝐾−𝑁𝑂)𝑒−𝑟1𝑡,                                                                                                                                                   

(3.7)                                         

where 𝑟1 is as defined above and   𝐾 =
𝑟1 

𝑓
 . As 𝑡 → ∞,𝑁(𝑡) → 𝐾,  which is the carrying capacity of the environment. 

 

3.4 Local Stability Analysis of the Disease Free Equilibrium (𝑬𝟎) 

Lemma 3.1: The disease free equilibrium is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

 

Proof: 

The proof of Lemma 3.1 is given in [9]. 

 

3.5 Global Stability Analysis of the Disease Free Equilibrium (𝑬𝟎) 

Following the method used in [18-19], we consider the following two conditions, 𝐻1 and 𝐻2. 

(𝐻1): For  
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0), 𝐸0 is globally asymptotically stable (g.a.s.),  

(𝐻2):  𝐺̂(𝑋, 𝑌) = 𝐴𝑌 − 𝐺(𝑋, 𝑌) ≥ 0 ∀ (𝑋, 𝑌) ∈ Ω  

 

Lemma 3.2. The disease free equilibrium of the model equations (2.13) to (2.19) is globally 

asymptotically stable (g.a.s) if the system is locally asymptotically stable for 𝑅0 <1 and in addition, 𝐻1and 𝐻2 hold. 

Proof 

We write the model equations (2.13) to (2.19) in the form 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑌) = [

𝜆(1 − 𝑄) + 𝜌𝑅 + 𝜂𝑉 − [𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃 + (1 − 𝑚)]𝑄 + 𝑓(𝑄 − 1)𝑁 + 𝜎𝑄𝑆

(1 − 𝑚)𝑄 + 𝜃𝑅 − (𝜂 +  𝜆)𝑉 +  𝑓𝑉𝑁 +   𝜎𝑉𝑆 

𝛽𝑆 + 𝑒𝐴 − (𝜃 + 𝜌 + 𝜆)𝑅 +  𝑓𝑅𝑁 +  𝜎𝑅𝑆

] 

𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑌) =

[
 
 
 

(𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃)𝑄 − (𝜔 + 𝜆)𝐿 + 𝑓𝐿𝑁 + 𝜎𝐿𝑆

(1 − 𝑘)𝜔𝐿 + 𝜏𝐴 − (𝛽 + 𝜎 + 𝜆)𝑆 + 𝑓𝑆𝑁 + 𝜎𝑆2

𝑘𝜔𝐿 − (𝑒 + 𝜏 + 𝜆)𝐴 + 𝑓𝐴𝑁 + 𝜎𝐴𝑆
𝑔𝑆𝑁 + ℎ𝐴𝑁 − 𝜑𝑁𝑃𝑄 − 𝛾𝑃 ]

 
 
 

 

where 𝑋 = (𝑄, 𝑉, 𝑅) and 𝑌 = (𝐿, 𝑆, 𝐴, 𝑃), with the components of 𝑋 ∈ 𝑅3, denoting uninfected population 

 and the components of  𝑌 ∈ 𝑅4, denoting the infected population.  

From Section 3.3,  𝐸0 = (𝑄0, 0,0,0, 𝑉0, 0,0). Now, 

𝐹(𝑋, 0) =  [
𝜂𝑉 + μ   −   (𝑟3 + 𝜇)𝑄

𝑟3𝑄 − (𝜂 +  𝜇)𝑉
0

]          3.13 

From (3.13);  

𝑑𝑉

𝑑𝑡
=

𝑟3(𝜂 +  𝜇)

𝜂 +  𝜇 + 𝑟2
− (𝜂 +  𝜇)𝑉 

𝑑𝑉

𝑑𝑡
+ (𝜂 +  𝜇)𝑉 =

𝑟3(𝜂 + 𝜇)

𝜂 + 𝜇+𝑟2
            3.14 

Integrating factor (IF) of (3.14) = 𝑒∫(𝜂 + 𝜇)𝑑𝑡 = 𝑒(𝜂 + 𝜇)𝑡 , then;       

𝑉. 𝑒(𝜂 + 𝜇)𝑡 = ∫𝑒(𝜂 + 𝜇)𝑡 (
𝑟3(𝜂 + 𝜇)

𝜂 + 𝜇+𝑟2
) 𝑑𝑡          

𝑉. 𝑒(𝜂 + 𝜇)𝑡 = (
𝑟3

𝜂 + 𝜇+𝑟3
) 𝑒(𝜂 + 𝜇)𝑡 + 𝐾 ,          3.15 
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Where K is the constant of integration. Multiplying (3.15) through by 𝑒−(𝜂 + 𝜇)𝑡, then;  

𝑉(𝑡) =
𝑟3

𝜂 + 𝜇+𝑟3
+ 𝐾𝑒−(𝜂 + 𝜇)𝑡.          3.16 

At 𝑡 = 0, 𝐾 =   𝑉(0) −
𝑟3

𝜂 + 𝜇+𝑟2
.  Thus, (3.16) becomes: 

𝑉(𝑡) =
𝑟3

𝜂 + 𝜇+𝑟3
+ 𝐴0𝑒

−(𝜂 + 𝜇)𝑡.          3.17 

Where  𝐴0 =  𝑉(0) −
𝑟3

𝜂 + 𝜇+𝑟2
.  From (3.17), 

𝑉(𝑡) = 𝑉0 𝑎𝑠 𝑡 → ∞. 

Similarly, 𝑄(𝑡) =
𝑟3

𝜂 + 𝜇+𝑟2
 𝑎𝑠 𝑡 → ∞. 

Hence, H1 holds.  

 
𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑌) =

[
 
 
 
(𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃)𝑄 − (𝜔 + 𝜆)𝐿 + 𝑓𝐿𝑁 + 𝜎𝐿𝑆    

(1 − 𝑘)𝜔𝐿 + 𝜏𝐴 − (𝛽 + 𝜎 + 𝜆)𝑆 + 𝑓𝑆𝑁 + 𝜎𝑆2

𝑘𝜔𝐿 − (𝑒 + 𝜏 + 𝜆)𝐴 + 𝑓𝐴𝑁 + 𝜎𝐴𝑆
𝑔𝑆𝑁 + ℎ𝐴𝑁 − 𝜑𝑁𝑃𝑄 − 𝛾𝑃 ]

 
 
 

 

𝐴 =

[
 
 
 
−(𝜔 + 𝜇)     𝑎𝑃 𝑏𝑃      𝑑𝑃           
(1 − 𝑘)𝜔 −(𝛽 + 𝜎 + 𝜇)    𝜏 0

𝑘𝜔 0 −(𝑒 + 𝜏 + 𝜇) 0

0 𝑔𝑁 ℎ𝑁 −(𝜑𝑁𝑃 − 𝛾)]
 
 
 

 

𝐴𝑌 =

[
 
 
 
(𝑎𝑆 + 𝑏𝐴 + 𝑑𝑉)𝑃 − (𝜔 + 𝜇)𝐿 

(1 − 𝑘)𝜔𝐿 + 𝜏𝐴 − (𝛽 + 𝜎 + 𝜇)𝑆

𝑘𝜔𝐿 − (𝑒 + 𝜏 + 𝜇)𝐴

𝑔𝑁 + ℎ𝑁 − (𝜑𝑁𝑃 − 𝛾)𝑉 ]
 
 
 

 

𝐺̂(𝑋, 𝑌) = 𝐴𝑌 − 𝐺(𝑋, 𝑌) 

=

[
 
 
 

(𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃)𝑄 − (𝜔 + 𝜇)L

(1 − 𝑘)𝜔𝐿 + 𝜏𝐴 − (𝛽 + 𝜎 + 𝜇)𝑆

𝑘𝜔𝐿 − (𝑒 + 𝜏 + 𝜇)𝐴

𝑔𝑁 + ℎ𝑁 − (𝜑𝑁𝑄 − 𝛾)𝑃 ]
 
 
 

−

[
 
 
 
(𝑎𝑆 + 𝑏𝐴 + 𝑑𝑃)𝑄 − (𝜔 + 𝜆)𝐿 + 𝑓𝐿𝑁 + 𝜎𝐿𝑆    

(1 − 𝑘)𝜔𝐿 + 𝜏𝐴 − (𝛽 + 𝜎 + 𝜆)𝑆 + 𝑓𝑆𝑁 + 𝜎𝑆2

𝑘𝜔𝐿 − (𝑒 + 𝜏 + 𝜆)𝐴 + 𝑓𝐴𝑁 + 𝜎𝐴𝑆
𝑔𝑆𝑁 + ℎ𝐴𝑁 − 𝜑𝑁𝑃𝑄 − 𝛾𝑃 ]

 
 
 

 

 

∴ 𝐺̂(𝑋, 𝑌) = [

−𝜎𝐿𝑆
−𝜎𝑆2

−𝜎𝐴𝑆
0

] 

→ 𝐺̂(𝑋, 𝑌) ≥ 0 ∀ (𝑋, 𝑌) ∈ 𝛺 𝑖𝑓𝑓 𝜎 = 0. It follows that 𝐻1 and 𝐻2 hold when 𝜎 = 0. 

Thus, 𝐸0 is globally asymptotically stable, when 𝜎 = 0. 

 

3.6 Numerical Solution 

We carry out the numerical simulations with MATLAB’s ODE15s, using the following valued dimensionless parameters :𝜆 =

0.0221, 𝑎 = 2.551, 𝑏 = 6.326, 𝑑 = 0.0000628, 𝛽 = 5.0357, 𝑒 = 43.571, 𝑓 = 0.01224, 𝜇 = 0.00182, 𝜂 = 4.081, 𝜏 =

1.7857, 𝑔 = 2.0306, ℎ = 0.05102, 𝜔 = 0.0244, 𝐶𝜌 = 4.286, 𝑘 = 0.005, 𝜃 = 0.42857, 𝜑 = 0.0000628, 𝛾 = 0.5102,𝑚 = 0.01 

with initial conditions Q = 0.9, L = 0.1, S = 0, A = 0, V = 0, R=0, P = 0, N =  
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Fig.1. Results showing the effect of Vaccination on Symptomatic, Asymptomatic and Recovered humans and Surface Virus. 

where t = 1, represents approximately 5 days in real time. The initial conditions used are Q = 0.9, L = 0.1, S = 0, A = 0, V=0, 

R = 0, P = 0, N = 1 and the parameter values are given above. 

                           

                                          
1Fig.2. Result showing the effect of high contact rate between infectious and susceptible humans on the disease dynamics 

with 𝐑𝟎 > 𝟏  and the values used for the simulations are the same as above with only a =3.25, b =4.126, d =0.728 and 𝛚 =

𝟎. 𝟐𝟒𝟒, 𝛔 = 𝟎. 𝟎𝟕𝟑,𝐦 = 𝟎. 𝟗𝟗 

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

-6

t

Hu
m

an
 fr

ac
tio

ns

 

 

0 50 100 150 200
0

1

2

3

4

5

6

7

8
x 10

-3

t

VI
RU

S 
PO

PU
LA

TI
O

N

 

 

A P

c d

0 500 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

Hu
ma

n fr
act

ion
s

 

 

L

0 500 1000
0

0.005

0.01

0.015

t

Hu
ma

n fr
act

ion

 

 

S

a b

0 500 1000
0

1

2

3

4

5

6

7

8

9
x 10

-6

t

Hu
ma

n f
rac

tio
ns

 

 

A

0 500 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

VIR
US

 PO
PU

LA
TIO

N

 

 

P

c d

  



“Global Stability Analysis of a Mathematical Model on the Transmission Dynamics of Covid-19 with Vaccination” 

3047 A. B. Okrinya1, IJMCR Volume 10 Issue 12 December 2022 
 

                                                       

                                                                                                                                                                                             

 

Fig.3. Results showing the disease free and endemic states for 𝐑𝟎 < 𝟏 and 𝐑𝟎 > 𝟏 respectively, as 𝐑𝟎 varies from 0 to 5 based 

on the parameter, d. The values used for the simulations are the same as those in Fig.2 except that d was varied upwards 

from zero.  

 

                         
1Fig.4. Results showing asymptomatic infection free and persistent states for 𝐑𝟎 < 𝟏 and 𝐑𝟎 > 𝟏 respectively, as 𝐑𝟎 varies 

from 0 to 5 based on the parameter, d. The values used for the simulations are the same as those in Fig.3. 

 

3.5 Discussions 

In this model, we describe the transmission of Covid-19 

disease in an entirely susceptible human population due to the 

introduction of a single case and the effect of vaccination on 

the Disease dynamics. Using available data and with the 

introduction of vaccination, we obtain the Basic 

Reproduction Number,   𝑅0 = 0.28  different from the results 

of [5], [6] and [9]. This value of   𝑅0 suggests that the disease 

may likely die out due to vaccination as seen in fig.1a,b,c,d,; 

where the reservoir of infection comprising the latent or 

exposed, symptomatic and asymptomatic human populations 

and number of viruses in environmental decay,. This behavior 

is as a result of the impact vaccination in the system. This 

result agrees with the recommendation that was made in [6].  

However, increasing the contact rates between infectious and 

susceptible humans will hinder the positive effect of 

vaccination. This agrees with the results of [9] and [10], 

which maintain that vaccination should be carried out in 

conjunction with other social measures that restrict contact 

rate between infectious and susceptible humans. The analysis 

shows that the disease free state is globally asymptotically 

stable in the absence of disease related death.  

We note that some major parameters, a, b 𝑑 and 𝜔 

play significant roles in perpetuating the progression of the 

disease depending on whether they are high or low even 

though sensitivity analysis has not been carried out. Their 

high values will significantly increase 𝑅0  despite the 

introduction of vaccination. If the transition rate from latent 
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period to infectiousness continues to increase leading to high 

number of symptomatic and asymptomatic humans and 

viruses in the environment without control, then there is every 

possibility that the disease will invade the population as 

shown in Fig2a,b,c, 𝑑 where the level of infection, and viruses 

on environmental surfaces increase to a steady state,  

implying an endemic situation.. Thus, in other to eradicate the 

disease, control measures like Social distancing, contact 

tracing, testing, quarantine, treatment, etc. are to be 

considered alongside vaccination.  

We use the parameter, d to vary   𝑅0 where 𝑑 =

0.016 corresponds to 𝑅0 = 1. Fig.3a,b,c and Fig.4 show  the 

relationship between 𝑅0 and the disease compartments as it 

affects the entire population. The disease establishes itself for 

values of 𝑅0 > 1 and dies out if  𝑅0 < 1. Fig.3 and Fig.4 are 

bifurcation diagrams showing a switch from disease free state 

to disease persistent state. The result is obtained by plotting 

the steady states of the various compartments against 

different values of 𝑅0. The plots show a transcritical 

bifurcation in the vicinity of  𝑅0 = 1 as expected. Although 

we are not certain about whether or not the disease invades at  

𝑅0 = 1, but the disease free state is locally asymptotically 

stable for values of  𝑅0 < 1 from the analysis of [9] and 

globally asymptotically stable with an additional condition 

that 𝜎 = 0.  The disease free state becomes unstable when 

𝑅0 > 1, whereas, the endemic state becomes stable as 

expected. 

 

4. CONCLUSION 

In this work, we presented a mathematical model on the 

dynamics of Covid -19 disease with vaccination. The model 

focuses on the effect of vaccination in the transmission 

dynamics of Covid-19 in a totally susceptible population due 

to the introduction of an index case. Analysis of the model 

shows that with the introduction of Vaccination the disease 

will likely die out. However, control measures like Social 

distancing, contact tracing, testing, quarantine; treatment 

should be encouraged despite vaccination [9, 10], as there 

exists the possibility of the disease becoming endemic with 

vaccination alone. The numerical simulations show a 

transcritical bifurcation within the vicinity of 𝑅0 = 1, and the 

model is globally asymptotically stable if 𝜎 = 0, in which 

case it carefully avoids disease related deaths to establish a 

status of global stability. 
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