International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 10 Issue 12 December 2022, Page no. – 3064-3067

Index Copernicus ICV: 57.55, Impact Factor: 7.362

DOI: 10.47191/ijmcr/v10i12.11

t-Derivations in BF-Algebras

Adek Putri Syafriani¹, Sri Gemawati², Syamsudhuha³

1,2,3 University of Riau, Department of Mathematics, Indonesia

ARTICLE INFO	ABSTRACT	
Published Online:	In this paper, we define the concept of (ℓ, r) -t-derivation and (r, ℓ) -t-derivation in <i>BF</i> -algebras.	
21 December 2022	Then, we investigate some properties of (ℓ, r) and (r, ℓ) -t-derivation in <i>BF</i> -algebras. Also, we	
Corresponding Author:	obtain some properties of regular of t-derivation in BF-algebra. Finally, we investigate the	
Sri Gemawati	properties of the concept in BF_1 -algebras.	
KEYWORDS: <i>BF</i> -algebra, (ℓ, r) and (r, ℓ) - <i>t</i> -derivation, <i>t</i> -derivation		

I. INTRODUCTION

In 2002, Neggers and Kim [1] introduced a new algebraic structure called *B*-algebra. *B*-algebra was defined as a nonempty set *A* with a constant 0 and a binary operation * when satisfies the axioms: (*B*1) a * a = 0, (*B*2) a * 0 = a, and (*B*3) (a * b) * c = a * (c * (0 * b)) for all $a, b, c \in A$. Walendziak [2] defined and study one of the generalizations of *B*- algebra: *BF*- algebra. It's satisfying (*B*.1), (*B*.2) and (*BF*) 0 * (a * b) = b * a for all $a, b \in A$.

The concept of derivative was first introduced in the study of rings and near rings [3]. However, as abstract algebras developed, the concept of derivation has been studied in other algebraic structures. Al-Shehrie [4] defined and studied the concept derivation of *B*-algebra. The result obtained is to define (ℓ, r) and (r, ℓ) -derivation, regular in *B*-algebra and obtained the properties. Some development in the concept of *t*-derivation is presented in the following studies [5]–[7]. In 2014, Soleimani and Jahangiri [8] introduced a new notion called *t*-derivation of *B*-algebra. They defined a self-map d_t in *B*-algebra (A; *, 0) with $d_t(a) = a * t$ for all $a, t \in A$ then they defined the concept of *t*-derivation on *B*-algebra. Recently, the concept of *t*-derivation on the other type of algebras was also studied by another author, see for examples [9] and [10].

In this paper, we define the concept of (ℓ, r) and (r, ℓ) -*t*-derivation, also *t*-derivation in *BF*-algebra. Then, we investigate the properties.

II. PRELIMINARIES

Some theories about B-algebra, BF-algebra also the derivation concept of B-algebra and t-derivation are given in this section.

Definition 2.1. [1] *A* is a nonempty set with a constant 0 and with a binary operation * is *B*- algebra if satisfies the axioms: (*B*1) a * a = 0,

(B2) a * 0 = a, (B3) (a * b) * c = a * (c * (0 * b))for all $a, b, c \in A$.

Lemma 2.2. [1] If (*A*; *, 0) is *B*- algebra, then

- (i) 0 * (0 * a) = a,(ii) (a * b) * (0 * b) = a,(iii) b * c = b * (0 * (0 * c)),
- (iv) a * (b * c) = (a * (0 * c)) * b,
- (v) If a * c = b * c, then a = b,
- (vi) If a * b = 0, then a = b,
- For all $a, b, c \in A$.

Proof. The proof of this Lemma has been given in [1].

Example 2.1. Let $A = \{0, 1, 2, 3\}$ be a set with the following table:

Table 2.1:	Cayley	's table fo	r (A; *, 0).
------------	--------	-------------	--------------

*	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Then (A; *, 0) is a *B*-algebra.

The concept of derivation in *B*-algebra was studied in [4]. Let (A; *, 0) be a *B*-algebra, defined $a \land b = b * (b * a)$ for all $a, b \in A$.

Definition 2.3.[4] Let (A; *, 0) is a *B*-algebra. A self-map *d* of *A* is a (ℓ, r) -derivation of *A* if it satisfying

$$d(a * b) = (d(a) * b) \land (a * d(b)),$$

for all $a, b \in A$ and is a (r, ℓ) -derivation of A if it satisfying $d(a * b) = (a * d(b)) \land (d(a) * b),$

for all $a, b \in A$. Then *d* is called a derivation of *A* if *d* is a (ℓ, r) and also (r, ℓ) -derivation of *A*.

Definition 2.4. [4] Let (A; *, 0) be a *B*-algebra. *d* is a selfmap of *A* and it's said to be regular if d(0) = 0.

Definition 2.5.[8] Let (A; *, 0) is a *B*-algebra. d_t is a selfmap of *A*, for any $t \in A$ defined by $d_t(a) = a * t$ for all $a \in A$.

Definition 2.6.[8] Let (A; *, 0) be *B*-algebra. For any $t \in A$, d_t is a self-map of *A* and it's called (ℓ, r) -*t*-derivation of *A* if it's satisfying

 $d_t(a * b) = (d_t(a) * b) \land (a * d_t(b)),$ for all $a, b \in A$ and is called (r, ℓ) -t-derivation of A if it's satisfying

 $d_t(a * b) = (a * d_t(b)) \land (d_t(a) * b),$

for all $a, b \in A$. Then d_t is a *t*-derivation of A when d_t is a (ℓ, r) and also a (r, ℓ) -*t*-derivation of A.

One of the other generalizations of *B*-algebra is *BG*-algebra. In the following, the definition of *BG*-algebra will be given.

Definition 2.7.[11] A *BG*-algebra is a non-empty set *A* with a binary operation * and a constant 0 if satisfies the following axioms (*B*1), (*B*2) and (*BG*)(a * b) * (0 * b) = a for all $a, b \in A$.

Definition 2.8.[2] Let A is a *BF*-algebra. For all $a, b \in A$ satisfying:

(B1) a * a = 0, (B2) a * 0 = a, (BF) 0 * (a * b) = b * a.

Examples 2.2. Given $A = \{0, x, y, z\}$ is a set with this following Cayley table:

Table 2.2:	Cavley	table for	(A: *, 0)
1 abic 2.2.	Cayley	table for	(1 , ∗, 0)

*	0	x	у	Ζ
0	0	x	у	Z
x	x	0	z	у
у	у	Ζ	0	x
-	-			Δ

Proposition 2.9.[2] Let (A; *, 0) is a *BF*-algebra, then the following hold:

(i) 0 * (0 * a) = a,

(ii) If 0 * a = 0 * b, then a = b,

(iii) If a * b = 0, then b * a = 0.

For all $a, b \in A$.

Proof. The proof of this proposition has been proved in [2].

Definition 2.10.[2] Let A be a *BF*-algebra. Then A is BF_1 -algebra if it's a *BG* - algebra.

Theorem 2.11.[2] Let (*A*; *, 0) be a *BF*₁-algebra, then

(i) If a * b = 0, then a = b,

(ii) If a * b = c * b, then a = c,

(iii) If b * a = b * c, then a = c

For all $a, b, c \in A$.

Proof. The proof of this Theorem has been given in [2].

Theorem 2.12.[2] If (*A*; *, 0) is a *B*-algebra, then (*A*; *, 0) is a *BF* algebra.

Proof. This Theorem has been proven in [2].

Theorem 2.13.[2] For all $a, b, c \in A$, any *BF*-algebra which is that satisfies the identity (a * c) * (b * c) = a * b is also a *B*-algebra.

Proof. This Theorem has been proven in [2].

III. MAIN RESULT

The following is given the concept of *t*-derivation in *BF*-algebra and investigate the properties of (ℓ, r) -*t*-derivation and (r, ℓ) -*t*-derivation in *BF*-algebra and *BF*₁-algebra.

Definition 3.1. For any $t \in A$, let d_t be a self-map of *BF*-algebra *A* and defined by $d_t(a) = a * t$ for all $a \in A$.

Let (A: *, 0) be a *BF*-algebra. Defined $a \land b = b * (b * a)$ for all $a, b \in A$.

Definition 3.2. Let (A; *, 0) is a *BF*-algebra, a self-map d_t of *A* for any $t \in A$ is called (ℓ, r) -*t*-derivation of *A*, then

 $d_t(a * b) = (d_t(a) * b) \land (a * d_t(b))$

for all $a, b \in A$ and is called (r, ℓ) -*t*-derivation of A, then $d_t(a * b) = (a * d_t(b)) \land (d_t(a) * b)$

for all $a, b \in A$. d_t is a *t*-derivation of A if d_t is a (ℓ, r) -*t*-derivation and also a (r, ℓ) -*t*-derivation of A.

Definition 3.3. A self-map d_t of *BF*-algebra *A* is regular if $d_t(0) = 0$.

The following is given a property of (ℓ, r) -*t*-derivation and property of (r, ℓ) -*t*-derivation in *BF*-algebra and some properties of *BF*₁-algebra.

Theorem 3.4. Let A is a *BF*-algebra. d_t is a (ℓ, r) -t-derivation of A. Let d_t regular, then we have $d_t(a) = d_t(a) \wedge a$ for all $a \in A$.

Proof. Suppose (A; *, 0) is a *BF*-algebra and d_t is a (ℓ, r) -t-derivation of *A*. Since d_t is a regular, by (B.2) obtained

$$d_t(a) = d_t(a * 0) = (d_t(a) * 0) \land (a * d_t(0)) = d_t(a) \land (a * 0) d_t(a) = d_t(a) \land a.$$

Thus, it is proved that if d_t regular, then $d_t(a) = d_t(a) \wedge a$ for all $a \in A$.

Theorem 3.5. Let d_t is a (r, ℓ) -*t*-derivation in *BF*- algebra *A* and d_t regular, then we define $d_t(a) = a \wedge d_t(a)$ for all $a \in A$.

Proof. Suppose d_t is a (r, ℓ) -*t*-derivation in *BF*-algebra *A* and d_t is a regular, then by (*B*.2) obtained

$$\begin{split} d_t(a) &= d_t(a * 0) \\ &= (a * d_t(0)) \wedge (d_t(a) * 0) \\ &= (a * 0) \wedge d_t(a) \\ d_t(a) &= a \wedge d_t(a). \end{split}$$

Thus, it is proved that if d_t is regular, then $d_t(a) = a \wedge d_t(a)$ for all $a \in A$.

Lemma 3.6. Let (A; *, 0) be a BF_1 -algebra, then d_t is an injective function.

Proof. Let $d_t(a) = d_t(b)$ for all $a, b \in A$, then by Theorem 2.11(ii) obtained

$$d_t(a) = d_t(b)$$
$$a * t = b * t$$
$$a = b$$

Thus, it is proved that d_t is an injective function.

Theorem 3.7. Let (A; *, 0) is a BF_1 -algebra. d_t is a (ℓ, r) -tderivation of A. d_t regular if and only if d_t is an identity. **Proof.** Suppose d_t is a (ℓ, r) -t-derivation in BF_1 -algebra A. Because d_t regular, then by (B1), (B2) and Theorem 2.11 (iii) obtained

$$d_t(0) = d_t(a * a)$$

$$0 = (d_t(a) * a) \land (a * d_t(a))$$

$$(a * d_t(a)) * (a * d_t(a)) = (a * d_t(a))$$

$$* [(a * d_t(a)) * (d_t(a) * a)]$$

$$(a * d_t(a)) = (a * d_t(a)) * (d_t(a) * a)$$

$$(a * d_t(a)) * 0 = (a * d_t(a)) * (d_t(a) * a)$$

$$= d_t(a) * a$$

$$d_t(a) * d_t(a) = d_t(a) * a$$

$$d_t(a) = a.$$

Thus, it is proved that d_t is an identity. Then, on the other side, suppose that d_t is an identity with $d_t(a) = a$ for all $a \in A$, then $d_t(0) = 0$. So, it is proved that d_t regular. This completes the proof.

Theorem 3.8. Let d_t is a (r, ℓ) -*t*-derivation in BF_1 -algebra A. d_t regular if and only if d_t identity.

Proof. Suppose d_t is a (r, ℓ) -t-derivation of BF_1 -algebra A. Because d_t regular, then by Theorem 3.5, axioms (B.1), (B.2) and Theorem 2.11(iii) obtained

$$d_t(a) = a \wedge d_t(a)$$

$$d_t(a) * 0 = d_t(a) * (d_t(a) * a)$$

$$0 = d_t(a) * a$$

$$d_t(a) * d_t(a) = d_t(a) * a$$

$$d_t(a) = a.$$

Thus, it is proved that d_t is an identity. Then, conversely suppose that d_t is identity with $d_t(a) = a$ for all $a \in A$, then $d_t(0) = 0$. Therefore, it is proved that d_t is regular.

Theorem 3.9. Let d_t is a *t*-derivation in BF_1 -algebra A. d_t regular if only if d_t is identity.

Proof. Suppose (A; *, 0) be a BF_1 -algebra, by Theorem 3.7 we have that if d_t is a (ℓ, r) -t-derivation of A, then d_t regular if and only if d_t identity and from Theorem 3.8 we have that if d_t is a (r, ℓ) -t-derivation of A, so d_t is regular if and only if d_t identity. Therefore, it is proved that if d_t is a t-derivation in A, then d_t regular if and only if d_t identity.

IV. CONCLUSION

In this paper, we can conclude in general in *BF*-algebra, the (ℓ, r) -*t*-derivation's properties are different from (r, ℓ) -*t*-derivation's properties. However, in *BF*₁-algebra they have the properties that prevail in (ℓ, r) and also in (r, ℓ) -*t*-derivation: if and only if d_t regular then d_t identity. Therefore, if d_t is a *t*-derivation in *A*, then d_t regular if and only if d_t identity in *BF*₁-algebra.

REFERENCES

- J. Neggers and H. S. Kim, "On B-algebras," no. May, 2002.
- A. Walendziak, "On BF-Algebras," vol. 57, no. 2, 2007, doi: 10.2478/sl2175-007-0003-x.
- 3. C. H. M. Ashraf, S. Ali, "On derivations in rings and their applications," no. April, 2014.
- N. O. Al-shehrie, "Derivations of B -algebras," vol. 22, no. 1, pp. 71–83, 2010.
- G. Muhiuddin and A. M. Al-Roqi, "On t-derivations of BCI-algebras," *Abstr. Appl. Anal.*, vol. 2012, 2012, doi: 10.1155/2012/872784.
- T. Ganeshkumar and M. Chandramouleeswaran, "Tderivations on tm-algebras," *Int. J. Pure Appl. Math.*, vol. 85, no. 1, pp. 95–107, 2013, doi: 10.12732/ijpam.v85i1.8.
- C. Jana, T. Senapati, and M. Pal, "T-Derivations on Complicated Subtraction Algebras," *J. Discret. Math. Sci. Cryptogr.*, vol. 20, no. 8, pp. 1583–1595, 2017, doi: 10.1080/09720529.2017.1308663.
- R. Soleimani and S. Jahangiri, "A Note on t-Derivations of B-Algebras," vol. 10, pp. 138–143, 2014.

- 9. T. F. Siswanti and S. Gemawati, "Derivations in BP -Algebras," vol. 1, no. 3, pp. 97–103, 2021.
- W. Anhari, S. Gemawati, and I. Hasbiyati, "On t -Derivations of BE -algebras," vol. 10, no. 06, pp. 2722–2725, 2022, doi: 10.47191/ijmcr/v10i6.04.
- C. B. Kim and H. S. Kim, "On BG-algebras," *Demonstr. Math.*, vol. 41, no. 3, 2017, doi: 10.1515/dema-2013-0098.