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1. INTRODUCTION 

A multiset (mset for short ) is a collection of objects, unlike a 

standard Cantorian set, in which the elements are notallowed 

to repeat. Here repetitions are allowed. For the various 

applications of msets the reader is referred to article [1], [4,],  

[7], [ 9], and [11]. It is observed from the survey of available 

literature on msets and applications that the idea of mset was 

hinted by R. Dedikind in 1888. The msettheory which 

generalizes set theory as a special case was introduced by 

Cerf et al.[2]. The term mset, as noted by Knuth [4] was first 

suggested by N.G de Bruijn in a private communication to 

him. Further study was carried out by Yager [14], Blizard [1]. 

Other researchers ([5], [7], [8]) gave a new dimension to the 

multiset theory.  

From a practical point of view msets are very useful structures 

arising in many areas of mathematics and computer science. 

Mset Topological space has been studied by Shravan and 

Tripathy [10]. Research on the mset theory has been gaining 

grounds. The research carried out so far shows a strong 

analogy in the behaviour of msets. It is possible to extend 

some of the main notion and result of sets to the setting of 

msets. In 2009, Girish and Sunil [3], introduced the concepts 

of relations, function, composition, and equivalence in msets 

context. Tella and Daniel ([12], [13]) have considered sets of 

mappings between msets and studied about symmetric groups 

under mset perspective. Nazmul et al. [6] improved on Tella 

and Daniel’s work and added two axioms which marks the 

foundations of studying group theory in mset perspective. In 

this paper we present the study of semi-groups in mset 

context. From the literatures, there may be some variations in 

the definition of semigroup depending on the point of view of 

the different authors. However, in this paper we consider 

definitions in [15] and [16]. 

In addition to this section, we present some preliminary 

definitions in section two to make the paper self-contained 

and some fundamental results are presented in section three 

while the entire paper is summarized in section four. 

 

2. PRELIMINARIES  

2.1 Definitions and notations 

Definition 2.1.1[15, 16]: Let 𝑆 be a set and µ: 𝑆 × 𝑆 → 𝑆 a 

binary operation that maps each ordered pair (𝑥, 𝑦) of 𝑆 to an 

element µ(𝑥, 𝑦)of 𝑆. The pair (𝑆, µ)(or just 𝑆, if there is no 

fear of confusion) is called a groupoid. The mapping µ is 

called the product of (𝑆, µ). We shall mostly write simply 𝑥𝑦 

Instead of µ(𝑥, 𝑦). If we want to emphasize the place of the 

operation then we often write𝑥. 𝑦. The element 𝑥𝑦(=

µ(𝑥, 𝑦)) is the product of 𝑥 and 𝑦in 𝑆.   

Definition 2.1.2[15, 16]: A groupoid𝑆 is a Semigroup if the 

operation µ is associative; for all 𝑥µ(𝑦µ𝑧) = (𝑥µ𝑦)µ𝑧. Thus 

a semigroup is a pair (𝑆, µ) where 𝑆 is a non empty set and µ 

is its binary operation on µ which satisfied two axioms: 

(i) The closure property 

(ii) The associativity property.   

Definition 2.1.3[1].An mset𝐴 over the set  𝑋 can be defined 

as a function  𝐶𝐴: 𝑋 → ℕ = {0,1,2, … } where the value  𝐶𝐴(𝑥) 
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denote the number of times or multiplicity or count function 

of 𝑥  𝑖𝑛 𝐴 . For example, Let 𝐴 = [𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧], then 

𝐶𝐴(𝑥) = 3, 𝐶𝐴(𝑦) = 3, 𝐶𝐴(𝑧) = 2. [𝐶𝐴(𝑥) = 0 ⇔ 𝑥 ∉ 𝐴]. 

The mset 𝑀 over the set 𝑋 is said to be empty if 𝐶𝑀(𝑥) =

0 for all 𝑥 ∈ 𝑋. We denote the empty mset by ∅. Then 

𝐶∅(𝑥) = 0, ∀ 𝑥 ∈ 𝑋 . (𝐶𝐴(𝑥) > 0 ⇔ 𝑥 ∈ 𝐴). If 𝐶𝐴(𝑥) = 𝑛 

then the membership of  𝑥 in 𝐴 can be denoted by 𝑥 ∈𝑛 𝐴, 

meaning 𝑥 belong to 𝐴 exactly 𝑛 times. 

Definition2.1.4[1]: The cardinality of amset𝑀 denoted |𝑀| 

or 𝑐𝑎𝑟𝑑(𝑀) is the sum of all the multiplicities of its elements 

given by the expression  |𝑀| = ∑ 𝑐𝐴(𝑥)𝑥∈𝑋  . 

Note: Anmset𝑀 is said to be finite if |𝑀| < ∞. 

We denote the class of all finite msets𝐴 over the set 𝑋 by 

𝑀(𝑋) 

Note: Presentation of mset on paper work became a 

challenged as every researcher has his thought in that aspect. 

However the use of square brackets was adopted in ([1], 

[9],[11]) to represent an mset and ever since then it has 

become a standard. For example if the multiplicity of the 

elements 𝑥, 𝑦 and 𝑧 in an mset 𝑀 are 2,3 and 2 respectively, 

then the mset𝑀 can be represented as 𝑀 = [𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧, ], 

others may put it like [𝑥, 𝑦, 𝑧]2,3,2 or [𝑥2, 𝑦3, 𝑧2]  or 

[𝑥2, 𝑦3, 𝑧2] 𝑜𝑟 [2 𝑥⁄ , 3 𝑦⁄ , 2 𝑧⁄ ]  depending on one’s  taste or 

expediencies. But for conveniences sake, curly bracket can be 

used instead of the square bracket. 

Definition 2.1.5[2]: Let 𝑀 be an mset drawn from a set 𝑋. 

The support set of 𝑀denoted by𝑀∗ is a subset of  𝑋  given by  

𝑀∗ = {𝑥 𝜖 𝑋: 𝐶𝑀(𝑥) > 0}. 𝑀∗is also called root set.  

Definition 2.1.6[1](Equal msets): Two msets𝐴, 𝐵 ∈ 𝑀(𝑋)  

are said to be equal, denoted  𝐴 = 𝐵 if and only if for any 

objects 𝑥 ∈ 𝑋, 𝐶𝐴(𝑥) = 𝐶𝐵(𝑥). This is to say that  𝐴 = 𝐵 if 

the multiplicity of every element in 𝐴 is equal to its 

multiplicity in 𝐵 and conversely.  

Note that  𝐴 = B⟹𝐴∗ = 𝐵∗ , though the converse  need  not  

hold. For example, let 

𝐴 = [𝑎, 𝑎, 𝑏, 𝑏, 𝑐] 𝑎𝑛𝑑 𝐵 = [𝑎, 𝑎, 𝑏. 𝑏, 𝑏, 𝑐, 𝑐] 𝑤ℎ𝑒𝑟𝑒  𝐴∗ =

𝐵∗ = {𝑎, 𝑏, 𝑐} 𝑏𝑢𝑡 𝐴 ≠ 𝐵. 

Definition 2.1.7[1](Submultiset): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). 𝐴is a 

submultiset (submset for short) of 𝐵, denoted by 𝐴 ⊆

𝐵 𝑜𝑟 𝐵 ⊇ 𝐴, if 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. Also if  𝐴 ⊆

𝐵 𝑎𝑛𝑑 𝐴 ≠ 𝐵, then 𝐴 is called proper submset of 𝐵 denoted 

by 𝐴 ⊂ 𝐵. In other words 𝐴 ⊂ 𝐵 if 𝐴 ⊆

𝐵 and there exist at least an 𝑥 ∈ 𝑋  such that 𝐶𝐴(𝑥) <

𝐶𝐵(𝑥). We assert that a mset𝐵 is called the parent mset in 

relation to the mset 𝐴. 

Definition.2.1.8[1]:(Regular or Constant mset): An mset𝐴  

over the set 𝑋 is called regular or constant if all its elements 

are of the same multiplicities, i.e for any 𝑥, 𝑦 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝑥 ≠ 𝑦, 𝐶𝐴(𝑥) = 𝐶𝐴(𝑦). 

Definition 2.1.9 [9] (⋀ and ⋁ notations): The notations ⋀ and 

⋁ denote the minimum and maximum operator respectively, 

for instance;  

𝐶𝐴(𝑥)⋀𝐶𝐴(𝑦) = 𝑚𝑖𝑛{𝐶𝐴(𝑥), 𝐶𝐴(𝑦)} 𝑎𝑛𝑑 𝐶𝐴(𝑥)⋁𝐶𝐴(𝑦) =

𝑚𝑎𝑥{𝐶𝐴(𝑥), 𝐶𝐴(𝑦)}. 

2.2   mset Operations. 

Definition2.2.1[9] (msets union): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The 

union of  𝐴 𝑎𝑛𝑑 𝐵 denoted𝐴 ∪ 𝐵is the mset defined by   

𝐶𝐴∪𝐵(𝑥) = 𝐶𝐴(𝑥)⋁𝐶𝐵(𝑥) ∀ 𝑥 ∈ 𝑋 

Definition 2.2.2[9] (msets intersection) Let𝐴, 𝐵 ∈ 𝑀(𝑋).The 

intersection of two mset 𝐴 and 𝐵 denoted by 𝐴 ∩ 𝐵, is the 

mset for which   

𝐶𝐴∩𝐵(𝑥) = 𝐶𝐴(𝑥)⋀𝐶𝐵(𝑥)∀ 𝑥 ∈ 𝑋. 

Definition 2.2.3[9]( mset addition): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The 

direct sum or arithmetic addition of  𝐴 and 𝐵 denoted by 𝐴 

+ 𝐵 or 𝐴⊎ 𝐵 is the mset defined by 

𝐶𝐴⊎𝐵(𝑥) = 𝐶𝐴(𝑥) + 𝐶𝐵(𝑥)∀ 𝑥 ∈ 𝑋. 

Note that ∣𝐴 ⊎ 𝐵∣= ∣𝐴 ∪ 𝐵∣ + ∣𝐴 ∩ 𝐵∣. 

Definition 2.2.4[9] (mset difference): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then 

the difference of 𝐵from 𝐴, denoted by 𝐴 − 𝐵 is the mset such 

that 𝐶𝐴−𝐵(𝑥) = (𝐶𝐴(𝑥) − 𝐶𝐵(𝑥))⋁0∀ 𝑥 ∈ 𝑋. If 𝐵 ⊆ 𝐴, then 

𝐶𝐴−𝐵(𝑥) = 𝐶𝐴(𝑥) − 𝐶𝐵(𝑥). 

It is sometimes called the arithmetic difference of 𝐵from 

𝐴. If 𝐵 ⊈ 𝐴 this definition still holds. It follows that the 

deletion of an element 𝑥 from an mset 𝐴 give rise to a new 

mset  𝐴′ = 𝐴 − 𝑥 such that 𝐶𝐴′(𝑥) = (𝐶𝐴(𝑥) − 1)⋁0∀ 𝑥 ∈ 𝑋 

Definition 2.2.5[8] (mset symmetric difference): Let 𝑋  be a 

set and 𝐴, 𝐵 ∈ 𝑀(𝑋)Then the symmetric difference, denoted  

𝐴∆𝐵, is defined by   𝐶𝐴∆𝐵(𝑥) = |𝐶𝐴(𝑥) − 𝐶𝐵(𝑥)|. 

Note that  𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴). 

Definition2.2.6[8] (mset complement): Let 𝐺 =

{𝐴1, 𝐴2, … , 𝐴𝑛} be a family of finite msets generated 

from the set 𝑋. Then, the maximum mset 𝑍 is 

defined by 𝐶𝑍(𝑥) = 𝑚𝑎𝑥𝐴∈𝐺𝐶𝐴(𝑥) for all 𝐴 ∈ 𝐺and 

𝑥 ∈ 𝑋. The Complement of an mset  𝐴, denoted by 

𝐴,̅ is defined: 

𝐴̅ = 𝑍 − 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐶𝐴̅(𝑥) = 𝐶𝑍(𝑥) − 𝐶𝐴(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈

𝑋.  

Note that 𝐴𝑖 ⊆ 𝑍 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 and 𝐴̅ ∩ 𝐴 ≠ ∅ 

Definition2.2.7[8] (Multiplication by Scalar): Let  𝐴 ∈

𝑀(𝑋), then the scalar multiplication denoted by 𝑏. 𝐴 is 

defined by 𝐶𝑏.𝐴(𝑥) = 𝑏. 𝐶𝐴(𝑥), ∀ 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑏 ∈ {1,2,3, … }. 

Definition 2.2.8[8] (Arithmetic Multiplication): Let 𝐴, 𝐵 ∈

𝑀(𝑋), then the Arithmetic Multiplication denoted by 𝐴. 𝐵 is 

defined by  𝐶𝐴.𝐵(𝑥) = 𝐶𝐴(𝑥). 𝐶𝐵(𝑥)  ∀ 𝑥 ∈ 𝑋. 

Definition2.2.9[7] (Raising to an Arithmetic Power): Let  

𝐴 ∈ 𝑀(𝑋), then  𝐴 raised to power 𝑛  denoted by  𝐴𝑛is 

defined:  

𝐶𝐴𝑛(𝑥) = (𝐶𝐴(𝑥))
𝑛

 𝑓𝑜𝑟 𝑛 ∈ {0,1,2,3, … }. 

Theorem 2.2.10[19]: Let  X  be a set and let  𝐴 ∈ 𝑀(𝑋). Then  

(i) 𝐴∗ = 𝐴0. 

(ii) 𝐴𝑛 . 𝐴𝑚 = 𝐴𝑛+𝑚, and  

(iii) (𝐴. 𝐵)𝑛 = 𝐴𝑛 . 𝐵𝑛 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛, 𝑚 ∈ {0,1,2, … } 

Theorem 2.2.11[19]: For any  𝐴 ≠ ∅ such that  𝐴 ∈ 𝑀(𝑋), 

then  (𝐴𝑛)∗ = 𝐴∗  for 𝑛 ∈ {0,1,2 … } 

Definition 2.3.12[19]: Let 𝑋 be a groupoid, and 𝐴 ∈ 𝑀(𝑋). 

𝐴is said to be a multi-groupoid (mgroupoid for short) if the 

following condition is satisfied. 
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𝐶𝐴(𝑥𝑦) ≥ 𝐶𝐴(𝑥) ∧ 𝐶𝐴(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋. 

We denote the class of all mgroupoids over 𝑋by 𝑀𝐺𝑃(𝑋).  

Definition 2.3.13[19](Composition of mgroupoids): Let 

𝐴, 𝐵 ∈ 𝑀𝐺𝑃(𝑋), then the composition of 𝐴 and 𝐵 denoted 

𝐴 ∘ 𝐵 is defined:   

𝐶𝐴∘𝐵(𝑥) = ⋁{𝐶𝐴(𝑦) ∧ 𝐶𝐵(𝑧): 𝑦, 𝑧 ∈ 𝑋 ∋ 𝑦𝑧 = 𝑥} 

Definition 2.3.14[19]: Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋) and let 𝐵 be a 

submset of 𝐴. Then 𝐵 can be said to be a sub mgroupoid of 

𝐴, if 𝐵 ∈ 𝑀𝐺𝑃(𝑋) 

Theorem 2.3.15[19]: For any 𝐴 ∈ 𝑀𝐺𝑃(𝑋),  then 

(i).𝐴∗ = 𝐴0 ∈ 𝑀𝐺𝑃(𝑋) 

(ii). 𝐴𝑛 ∈ 𝑀𝐺𝑃(𝑋) 

(iii) 𝑘𝐴 ∈ 𝑀𝐺𝑃(𝑋), 𝑘 ∈ ℕ = {1,2,3, … } 

Note that 𝐴∗ is a subgroupoid of 𝑋[19] 

Theorem 2.3.16[19]:Let 𝐴, 𝐵 ∈ 𝑀𝐺𝑃(𝑋). Then 

(i) 𝐴 ∩ 𝐵 ∈ 𝑀𝐺𝑃(𝑋) 

(ii) 𝐴. 𝐵 ∈ 𝑀𝐺𝑃(𝑋) 

(iii) 𝐴𝜊𝐵 ∈ 𝑀𝐺𝑃(𝑋) 

Note that 𝐴 ∪ 𝐵, 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴∆𝐵, and Â need not be 

mgroupo 

Definition 2.3.17[19]:Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋) an element 𝑎 ∈ 𝐴 is 

said to be cancellable if 

𝐶𝐴(𝑎𝑥) = 𝐶𝐴(𝑎𝑦), 𝑎𝑛𝑑 𝐶𝐴(𝑥𝑎) = 𝐶𝐴(𝑦𝑎),

implies  𝐶𝐴(𝑥) = 𝐶𝐴(𝑦).  

Definition 2.3.18[19]:Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋). Then  𝐴 is said to 

be cancellable if 𝑎 is cancellable for all 𝑎 ∈ 𝐴.. 

Theorem2.3.19[19]:Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋), then  𝐴 is regular if 

and only if 𝐴 is cancellable. 

Definition (2.3.20)2.4.4[19]: Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋), then  𝐴 is 

said to be a commutative mgroupoid if 

𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥)  ∀ 𝑥, 𝑦 ∈ 𝑋. 

Commutative mgroupoid can also be called 

Abelianmgroupoid. 

Theorem2.3.21[19]:Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋). Then  𝐴 is 

commutative if and only if 𝐴 is regular. 

Proposition2.3.22: Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋). Then  𝐴 is 

commutative if and only if 𝐴 is cancellable. 

Proof: Let 𝐴 ∈ 𝑀𝐺𝑃(𝑋) be commutative. Then 𝐴 is regular 

(Theorem 2.3.21) and cancellable (Theorem 2.3.19) 

Conversely, Let𝐴 ∈ 𝑀𝐺𝑃(𝑋) be cancellable. Then 𝐴 is 

regular (Theorem2.3.19) and commutative (Theorem 2.3.21) 

Theorem2.3.23[19]:Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋).If  𝐴 is a commutative 

mgroupoid,  then 𝐴∗ is a commutative sub mgroupoid. 

3.1Semi-group in mset Context. 

Definition 3.1.1: Let   𝐴 ∈ 𝑀𝐺𝑃(𝑋), then 𝐴is said to be a 

semi –multigroup (semi-mgroup for short) if 𝑋 is a semi-

group. 

Example 3.1.2: Let 𝑋 = {𝑒, 𝑎, 𝑏, 𝑐}, such that 𝑎2 = 𝑏2 =

𝑐2 = 𝑒2 = 𝑒 𝑎𝑛𝑑 

 𝑎𝑏 = 𝑏𝑎 = 𝑐, 𝑎𝑐 = 𝑐𝑎 = 𝑏, 𝑏𝑐 = 𝑐𝑏 = 𝑎.Where 𝑒 is the 

identity element.  If 𝐴 = {𝑒, 𝑎, 𝑏, 𝑐}3,2,3,2 is an mset overX. 

Clearly 𝑋 is a semi-group and 

𝐶𝐴(𝑒𝑎) = 𝐶𝐴(𝑎) = 2 ≥ [𝐶𝐴(𝑒) ∧ 𝐶𝐴(𝑎)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑒), 𝐶𝐴(𝑎)] = 𝑚𝑖𝑛[3,2] = 2 

𝐶𝐴(𝑎𝑎) = 𝐶𝐴(𝑒) = 3 ≥ [𝐶𝐴(𝑎) ∧ 𝐶𝐴(𝑎)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑎), 𝐶𝐴(𝑎)] = 𝑚𝑖𝑛[2,2] = 2 

𝐶𝐴(𝑏𝑐) = 𝐶𝐴(𝑎) = 2 ≥ [𝐶𝐴(𝑏) ∧ 𝐶𝐴(𝑐)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑏), 𝐶𝐴(𝑐)] = 𝑚𝑖𝑛[3,2] = 2 

𝐶𝐴(𝑏𝑏) = 𝐶𝐴(𝑒) = 3 ≥ [𝐶𝐴(𝑏) ∧ 𝐶𝐴(𝑏)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑏), 𝐶𝐴(𝑏)] = 𝑚𝑖𝑛[3,3] = 3 

𝐶𝐴(𝑎𝑐) = 𝐶𝐴(𝑏) = 3 ≥ [𝐶𝐴(𝑎) ∧ 𝐶𝐴(𝑐)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑎), 𝐶𝐴(𝑐)] = 𝑚𝑖𝑛[2,3] = 2 

𝐶𝐴(𝑐𝑐) = 𝐶𝐴(𝑒) = 3 ≥ [𝐶𝐴(𝑐) ∧ 𝐶𝐴(𝑐)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑐), 𝐶𝐴(𝑐)] = 𝑚𝑖𝑛[3,3] = 3 

𝐶𝐴(𝑎𝑏) = 𝐶𝐴(𝑐) = 2 ≥ [𝐶𝐴(𝑎) ∧ 𝐶𝐴(𝑏)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑎), 𝐶𝐴(𝑏)] = 𝑚𝑖𝑛[2,3] = 2 

𝐶𝐴(𝑒𝑏) = 𝐶𝐴(𝑏) = 3 ≥ [𝐶𝐴(𝑒) ∧ 𝐶𝐴(𝑏)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑒), 𝐶𝐴(𝑏)] = 𝑚𝑖𝑛[3,3] = 3 

𝐶𝐴(𝑒𝑐) = 𝐶𝐴(𝑐) = 2 ≥ [𝐶𝐴(𝑒) ∧ 𝐶𝐴(𝑐)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑒), 𝐶𝐴(𝑐)] = 𝑚𝑖𝑛[3,2] = 2 

𝐶𝐴(𝑒𝑒) = 𝐶𝐴(𝑒) = 3 ≥ [𝐶𝐴(𝑒) ∧ 𝐶𝐴(𝑒)]

= 𝑚𝑖𝑛[𝐶𝐴(𝑒), 𝐶𝐴(𝑒)] = 𝑚𝑖𝑛[3,3] = 3 

Thus 𝐶𝐴(𝑥𝑦) ≥ 𝐶𝐴(𝑥) ∧ 𝐶𝐴(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋. 

We denote the collection of all finite semi-mgroups over 𝑋 by 

SMG(X) 

Definition 3.1.3: Let  𝐴 ∈ 𝑆𝑀𝐺(𝑋) and let𝐵 be a submset 

of𝐴. Then 𝐵 can be said to be a sub semi-mgroup of 𝐴, if 𝐵 ∈

𝑆𝑀𝐺(𝑋). 

Proposition 3.1.4:𝑆𝑀𝐺(𝑋) ⊂ 𝑀𝐺𝑃(𝑋) 

Proof: Let 𝐴 ∈ 𝑆𝑀𝐺(𝑋). Then 𝐴 is an mgroupoid (since 𝑋 is 

a groupoid) 

In particular, 𝐴 ∈ 𝑀𝐺(𝑋). But not all mgroupoids are semi-

mgroupoids.  

Thus, 𝑆𝑀𝐺(𝑋) ⊂ 𝑀𝐺𝑃(𝑋). 

Proposition 3.1.5: Let 𝑋 be a semi-group and𝐴 ∈ 𝑆𝑀𝐺(𝑋). 

Then 

(i)𝐴∗is a sub semi-group of𝑋 and 

(ii) 𝐴∗ ∈ 𝑆𝑀𝐺(𝑋) 

Proof: (i) Supposing 𝐴 ∈ 𝑆𝑀𝐺(𝑋). Then 𝐴 ∈ 𝑀𝐺𝑃(𝑋) 

(proposition 3.1.4)  

and𝐴∗ is a subgroupoid of 𝑋[19]. 

 But 𝐴∗ ⊆ 𝑋 and 𝑋 is associative (by definition). 

 Thus 𝐴∗ is associativeand𝐴∗ is a sub semi-group 

(ii)Let 𝐴 ∈ 𝑆𝑀𝐺(𝑋). Then 𝐴 ∈ 𝑀𝐺(𝑋)(proposition 3.1.4) 

and 𝐴∗ ∈ 𝑀𝐺𝑃(𝑋)(Theorem 2.3.15). 

Since 𝑋 is a semi-group, we have 𝐴∗ ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) 

Proposition 3.1.6:Let 𝑋 be a semi-group and  𝐴 ∈ 𝑆𝑀𝐺(𝑋). 

Then  𝐴0 ∈ 𝑆𝑀𝐺(𝑋) 

Proof: The prove follows from theorem 2.3.15(i) and 

propositions 3.1.4,3.1.5(ii) 

Proposition 3.1.7: Let 𝑋 be a semi-group and let 𝐴, 𝐵 ∈

𝑆𝑀𝐺(𝑋), Then 

(i)𝐴 ∩ 𝐵 ∈ 𝑆𝑀𝐺(𝑋). 

(ii) 𝑘. 𝐴 ∈ 𝑆𝑀𝐺(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) 𝐴. 𝐵 ∈ 𝑆𝑀𝐺(𝑋) 
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(iv)𝐴𝑛 ∈ 𝑆𝑀𝐺(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) 𝐴𝜊𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

Proof: 

(i)  Let 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋). Then 𝐴, 𝐵 ∈ 𝑀𝐺𝑃(𝑋) (Proposition 

3.1.4) 

and𝐴 ∩ 𝐵 ∈ 𝑀𝐺𝑃(𝑋) (Theorem 2.3.16(i)). 

 Since 𝑋 is a semi-group, then 𝐴 ∩ 𝐵 ∈ 𝑆𝑀𝐺(𝑋). 

(ii) Since 𝐴 ∈ 𝑆𝑀𝐺(𝑋), then 𝐴 ∈ 𝑀𝐺𝑃(𝑋)(Proposition3.1.4) 

and 

𝑘. 𝐴 ∈ 𝑀𝐺𝑃(𝑋), 𝑘 ∈ {1,2 … . } (Theorem 2.3.15(iii)) 

Since 𝑋 is a semi-group, then𝑘. 𝐴 ∈ 𝑆𝑀𝐺(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) Since 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋), Then 𝐴, 𝐵 ∈ 𝑀𝐺𝑃(𝑋) 

(Proposition 3.1.4) and  

𝐴. 𝐵 ∈ 𝑀𝐺𝑃(𝑋)  (Theorem2.3.16(ii) 

Since 𝑋 is a semi-group, then 𝐴. 𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

(iv) Since 𝐴 ∈ 𝑆𝑀𝐺(𝑋), then 𝐴 ∈ 𝑀𝐺𝑃(𝑋) 

(Proposition3.1.4) and 

𝐴𝑛 ∈ 𝑀𝐺𝑃(𝑋), 𝑛 ∈ {0,1,2, … }(Theorem2.3.15(ii))  

Since 𝑋 is a semi-group, then𝐴𝑛 ∈ 𝑆𝑀𝐺(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) Let 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋). Then 𝐴, 𝐵 ∈ 𝑀𝐺𝑃(𝑋) (Proposition 

3.1.4) and 

𝐴𝜊𝐵 ∈ 𝑀𝐺𝑃(𝑋) (Theorem 2.3.16(iii) 

Since 𝑋 is a semi-group, then 𝐴𝜊𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

Note that 𝐴 ∪ 𝐵, 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴∆𝐵, and Â need not be semi-

mgroups since  

𝐴 ∪ 𝐵, 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴∆𝐵, and Â need not bemgroupoids 

Definition 3.1.8:Let 𝐴 ∈ 𝑆𝑀𝐺(𝑋), then 𝐴 is said to be a 

commutative semi-mgroup if it is a commutative mgroupoid 

Commutative semi- mgroup can also be called Abelian semi-

mgroup. 

Example:3.1.9:Let  𝑋 = {𝑒, 𝑎, 𝑏, 𝑐}, with 𝑎2 = 𝑏2 = 𝑐2 =

𝑒2 = 𝑒 𝑎𝑛𝑑 𝑎𝑏 = 𝑏𝑎 = 𝑐, 

𝑎𝑐 = 𝑐𝑎 = 𝑏, 𝑏𝑐 = 𝑐𝑏 = 𝑎. Where 𝑒 is the identity 

element.If 𝐴 = {𝑒, 𝑎, 𝑏, 𝑐}3,2,3,2  is an mset over X.Clearly 𝐴 

is a commutative semi-mgroup. 

3.2 Commutative and cancellative Expressions 

Proposition 3.2.1: Let 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) such that 𝐴 and 𝐵 are 

commutative. Then the followingexpressions are 

commutative: 

(i) 𝐴 ∩ 𝐵 

(ii) 𝐴 ∪ 𝐵 

(iii) 𝐴 + 𝐵 

(iv)𝐴 − 𝐵 

(v) 𝐴∆𝐵 

(vi)𝐴 ∙ 𝐵 

(vii) 𝑘𝐴, 𝑘 ∈ {1,2,3, … } 

(viii) 𝐴𝑛 , 𝑛 ∈ {0,1,2, … } 

(ix) 𝐴𝑜𝐵 

 

Proof: 

(i) Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴∩𝐵(𝑥𝑦) = 𝐶𝐴∩𝐵(𝑦𝑥) 

Now 𝐶𝐴∩𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦)⋀𝐶𝐵(𝑥𝑦) (by definition)                             

(1) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) and 𝐶𝐵(𝑥𝑦) = 𝐶𝐵(𝑦𝑥) (by hypothesis)         

(2) 

substituting (2) in (1) above, we have: 

𝐶𝐴∩𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦)⋀𝐶𝐵(𝑥𝑦) = 𝐶𝐴(𝑦𝑥)⋀𝐶𝐵(𝑦𝑥)

= 𝐶𝐴∩𝐵(𝑦𝑥) 

(ii)  Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴∪𝐵(𝑥𝑦) = 𝐶𝐴∪𝐵(𝑦𝑥) 

Now 𝐶𝐴∪𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦)⋁𝐶𝐵(𝑥𝑦) (by definition)                             

(3) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) and 𝐶𝐵(𝑥𝑦) = 𝐶𝐵(𝑦𝑥) (by hypothesis)                

(4) 

substituting (4) in (3) above, we have: 

𝐶𝐴∪𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦)⋁𝐶𝐵(𝑥𝑦) = 𝐶𝐴(𝑦𝑥)⋁𝐶𝐵(𝑦𝑥)

= 𝐶𝐴∪𝐵(𝑦𝑥) 

(iii) Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴+𝐵(𝑥𝑦) = 𝐶𝐴+𝐵(𝑦𝑥) 

Now 𝐶𝐴+𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦) + 𝐶𝐵(𝑥𝑦) (by definition)                             

(5) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) and 𝐶𝐵(𝑥𝑦) = 𝐶𝐵(𝑦𝑥) (by hypothesis)             

(6) 

substituting (6) in (5) above, we have: 

𝐶𝐴+𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦) + 𝐶𝐵(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) + 𝐶𝐵(𝑦𝑥)

= 𝐶𝐴+𝐵(𝑦𝑥) 

(iv) Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴−𝐵(𝑥𝑦) = 𝐶𝐴−𝐵(𝑦𝑥) 

Now 𝐶𝐴−𝐵(𝑥𝑦) = (𝐶𝐴(𝑥𝑦) − 𝐶𝐵(𝑥𝑦))⋁0 (by definition)                             

(7) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) and 𝐶𝐵(𝑥𝑦) = 𝐶𝐵(𝑦𝑥) (by hypothesis)                     

(8) 

substituting (8) in (7) above, we have: 

𝐶𝐴−𝐵(𝑥𝑦) = (𝐶𝐴(𝑥𝑦) − 𝐶𝐵(𝑥𝑦))⋁0

= (𝐶𝐴(𝑦𝑥) − 𝐶𝐵(𝑦𝑥))⋁0 = 𝐶𝐴−𝐵(𝑦𝑥) 

(v) Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴∆𝐵(𝑥𝑦) = 𝐶𝐴∆𝐵(𝑦𝑥) 

Now 𝐶𝐴∆𝐵(𝑥𝑦) = |𝐶𝐴(𝑥𝑦) − 𝐶𝐵(𝑥𝑦)|                                        (9) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) and 𝐶𝐵(𝑥𝑦) = 𝐶𝐵(𝑦𝑥) (by hypothesis)                   

(10) 

substituting (10) in (9) above, we have: 

𝐶𝐴∆𝐵(𝑥𝑦) = |𝐶𝐴(𝑥𝑦) − 𝐶𝐵(𝑥𝑦)| = |𝐶𝐴(𝑦𝑥) − 𝐶𝐵(𝑦𝑥)|

= 𝐶𝐴∆𝐵(𝑦𝑥) 

(vi) Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴∙𝐵(𝑥𝑦) = 𝐶𝐴∙𝐵(𝑦𝑥) 

Now 𝐶𝐴∙𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦)𝐶𝐵(𝑥𝑦) (by definition)                  (11) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) and 𝐶𝐵(𝑥𝑦) = 𝐶𝐵(𝑦𝑥) (by hypothesis)                   

(12) 

substituting (12) in (11) above, we have: 

𝐶𝐴∙𝐵(𝑥𝑦) = 𝐶𝐴(𝑥𝑦)𝐶𝐵(𝑥𝑦) = 𝐶𝐴(𝑦𝑥)𝐶𝐵(𝑦𝑥) = 𝐶𝐴∙𝐵(𝑦𝑥) 

(vii) Let 𝑥, 𝑦 ∈ 𝑋 and 𝑘 ∈ {1,2,3, … }.We show that 

𝐶𝑘𝐴(𝑥𝑦) = 𝐶𝑘𝐴(𝑦𝑥) 

Now 𝐶𝑘𝐴(𝑥𝑦) = 𝑘𝐶𝐴(𝑥𝑦) (by definition)                             (13) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) (by hypothesis)                                      (14) 

substituting (14) in (13) above, we have: 

𝐶𝑘𝐴(𝑥𝑦) = 𝑘𝐶𝐴(𝑥𝑦) = 𝑘𝐶𝐴(𝑦𝑥) = 𝐶𝑘𝐴(𝑦𝑥) 

(viii) Let 𝑥, 𝑦 ∈ 𝑋and 𝑛 ∈ {0,1,2, … }. We show that 

𝐶𝐴𝑛(𝑥𝑦) = 𝐶𝐴𝑛(𝑦𝑥) 

Now 𝐶𝐴𝑛(𝑥𝑦) = (𝐶𝐴(𝑥𝑦))𝑛 (by definition)                          (15) 

But 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) (by hypothesis)                                    (16) 

substituting (16) in (15) above, we have: 

𝐶𝐴𝑛(𝑥𝑦) = (𝐶𝐴(𝑥𝑦))𝑛 = (𝐶𝐴(𝑦𝑥))𝑛 = 𝐶𝐴𝑛(𝑦𝑥) 
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(ix) Let 𝑥, 𝑦 ∈ 𝑋. We show that 𝐶𝐴𝑜𝐵(𝑥𝑦) = 𝐶𝐴𝑜𝐵(𝑦𝑥) 

Now 𝐶𝐴∘𝐵(𝑥𝑦) = ⋁{𝐶𝐴(𝑤) ∧ 𝐶𝐵(𝑧): 𝑦, 𝑧 ∈ 𝑋 ∋ 𝑤𝑧 = 𝑥𝑦}                  

(17) 

Let 𝑤 = 𝑎𝑏 and 𝑧 = 𝑐𝑑𝑎, 𝑏, 𝑐, 𝑑 ∈ X. From (17) we have 

𝐶𝐴∘𝐵(𝑥𝑦) = ⋁{𝐶𝐴(𝑎𝑏) ∧ 𝐶𝐵(𝑐𝑑): 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋 ∋

(𝑎𝑏)(𝑐𝑑) = 𝑥𝑦}     (18) 

But 𝐶𝐴(𝑎𝑏) = 𝐶𝐴(𝑏𝑎) and 𝐶𝐵(𝑐𝑑) = 𝐶𝐵(𝑑𝑐) (by hypothesis)            

(19) 

substituting (19) in (18) above, we have: 

𝐶𝐴∘𝐵(𝑥𝑦) = ⋁{𝐶𝐴(𝑎𝑏) ∧ 𝐶𝐵(𝑐𝑑): 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋 ∋ (𝑎𝑏)(𝑐𝑑)

= 𝑥𝑦} 

= ⋁{𝐶𝐴(𝑏𝑎) ∧ 𝐶𝐵(𝑑𝑐): 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋 ∋ (𝑏𝑎)(𝑑𝑐) = 𝑥𝑦} 

But (𝑎𝑏)(𝑐𝑑) = 𝑥𝑦 and (𝑏𝑎)(𝑑𝑐) = 𝑥𝑦 implies that 𝑎𝑏 =

𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝑋 

In particular, 𝑥𝑦 = 𝑦𝑥                                                                   (20) 

Substituting (20) in (18) and hence (17) we have: 

𝐶𝐴∘𝐵(𝑥𝑦) = ⋁{𝐶𝐴(𝑤) ∧ 𝐶𝐵(𝑧): 𝑦, 𝑧 ∈ 𝑋 ∋ 𝑤𝑧 = 𝑥𝑦 = 𝑦𝑥}

= 𝐶𝐴∘𝐵(𝑦𝑥) 

Proposition 3.2.2: Let 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) such that 𝐴 and 𝐵 are 

cancellable. Then the following expressions  are cancellable: 

(i) 𝐴 ∩ 𝐵 

(ii) 𝐴 ∪ 𝐵 

(iii) 𝐴 + 𝐵 

(iv)𝐴 − 𝐵 

(v) 𝐴∆𝐵 

(vi)𝐴 ∙ 𝐵 

(vii) 𝑘𝐴, 𝑘 ∈ {1,2,3, … } 

(viii) 𝐴𝑛 , 𝑛 ∈ {0,1,2, … } 

(ix) 𝐴𝑜𝐵 

Proof: Since 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) are cancellable, then 𝐴, 𝐵 ∈

𝑆𝑀𝐺(𝑋) are commutative 

 (Proposition 2.3.22) 

Thus all the above expressions are commutative (Proposition 

3.2.1) 

and cancellable (Proposition 2.3.22). 

We denote the class of finite cancellable semi-mgroupas 

ℂ𝑆𝑀𝐺(𝑋). That is, 

ℂ𝑆𝑀𝐺(𝑋) = {𝐴 ∈ 𝑆𝑀𝐺(𝑋)|𝐴 is cancellable} 

Proposition 3.2.3: Let 𝐴, 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋). Then  

(i) (i)𝐴 ∩ 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋). 

(ii) 𝑘. 𝐴 ∈ ℂ𝑆𝑀𝐺(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) 𝐴. 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) 

(iv)𝐴𝑛 ∈ ℂ𝑆𝑀𝐺(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) 𝐴𝜊𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) 

Proof: 

(i) Since 𝐴, 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) and  

𝐴 ∩ 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (i)) 

But 𝐴 ∩ 𝐵 is cancellable  (Proposition 3.2.2) 

Thus 𝐴 ∩ 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) 

(ii) Since 𝐴 ∈ ℂ𝑆𝑀𝐺(𝑋), then 𝐴 ∈ 𝑆𝑀𝐺(𝑋) (by definition) 

and  

𝑘𝐴 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (ii)) 

But 𝑘𝐴 is cancellable  (Proposition 3.2.2) 

Thus 𝑘. 𝐴 ∈ ℂ𝑆𝑀𝐺(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) Since 𝐴, 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) and  

𝐴. 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (iii)) 

But 𝐴. 𝐵 is cancellable  (Proposition 3.2.2) 

Thus 𝐴. 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) 

(iv) Since 𝐴 ∈ ℂ𝑆𝑀𝐺(𝑋), then 𝐴 ∈ 𝑆𝑀𝐺(𝑋) (by definition) 

and  

𝐴𝑛 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (iv)) 

But 𝐴𝑛 is cancellable  (Proposition 3.2.2) 

Thus 𝐴𝑛 ∈ ℂ𝑆𝑀𝐺(𝑋), 𝑛 ∈ {0,1,2 … . } 

(v) Since 𝐴, 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) and  

𝐴𝜊𝐵 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (v)) 

But  𝐴𝜊𝐵 is cancellable  (Proposition 3.2.2) 

Thus  𝐴𝜊𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) 

We denote the class of finite commutative semi-mgroupsas 

𝐶𝑆𝑀𝐺(𝑋). That is, 

𝐶𝑆𝑀𝐺(𝑋) = {𝐴 ∈ 𝑆𝑀𝐺(𝑋)|𝐴 is commutative} 

Proposition 3.2.4: Let 𝐴, 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋). Then  

(i) (i)𝐴 ∩ 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋). 

(ii) 𝑘. 𝐴 ∈ 𝐶𝑆𝑀𝐺(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) 𝐴. 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋) 

(iv)𝐴𝑛 ∈ 𝐶𝑆𝑀𝐺(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) 𝐴𝜊𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋) 

Proof: 

(i) Since 𝐴, 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) and  

𝐴 ∩ 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (i)) 

But 𝐴 ∩ 𝐵 is commutative  (Proposition 3.2.1) 

Thus 𝐴 ∩ 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋) 

(ii) Since 𝐴 ∈ 𝐶𝑆𝑀𝐺(𝑋), then 𝐴 ∈ 𝑆𝑀𝐺(𝑋) (by definition) 

and  

𝑘𝐴 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (ii)) 

But 𝑘𝐴 is commutative  (Proposition 3.2.1) 

Thus 𝑘. 𝐴 ∈ 𝐶𝑆𝑀𝐺(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) Since 𝐴, 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) and  

𝐴. 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (iii)) 

But 𝐴. 𝐵 is commutative  (Proposition 3.2.1) 

Thus 𝐴. 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋) 

(iv) Since 𝐴 ∈ 𝐶𝑆𝑀𝐺(𝑋), then 𝐴 ∈ 𝑆𝑀𝐺(𝑋) (by definition) 

and  

𝐴𝑛 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (iv)) 

But 𝐴𝑛 is commutative  (Proposition 3.2.1) 

Thus 𝐴𝑛 ∈ 𝐶𝑆𝑀𝐺(𝑋), 𝑛 ∈ {0,1,2 … . } 

(v) Since 𝐴, 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (by 

definition) and  

𝐴𝜊𝐵 ∈ 𝑆𝑀𝐺(𝑋) (Proposition3.1.7 (v)) 

But  𝐴𝜊𝐵 is commutative  (Proposition 3.2.1) 

Thus  𝐴𝜊𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋). 

Proposition 3.2.5: ℂ𝑆𝑀𝐺(𝑋) = 𝐶𝑆𝑀𝐺(𝑋). 

Proof: We show that ℂ𝑆𝑀𝐺(𝑋) ⊆ 𝐶𝑆𝑀𝐺(𝑋)and 

ℂ𝑆𝑀𝐺(𝑋) ⊇ 𝐶𝑆𝑀𝐺(𝑋). 
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Now let 𝐴 ∈ ℂ𝑆𝑀𝐺(𝑋). Then 𝐴 is cancellable and 

commutative.Thus 𝐴 ∈ 𝐶𝑆𝑀𝐺(𝑋).(proposition 3,2,1). 

In particular,ℂ𝑆𝑀𝐺(𝑋) ⊆ 𝐶𝑆𝑀𝐺(𝑋)   (1) 

Let 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋). Then 𝐵 is commutative and 

cancellable.Thus 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋).(proposition 3,2,1). 

In particular,𝐶𝑆𝑀𝐺(𝑋) ⊆ ℂ𝑆𝑀𝐺(𝑋)   (2) 

Compairing (1) and (2) above.we have 

ℂ𝑆𝑀𝐺(𝑋) = 𝐶𝑆𝑀𝐺(𝑋). 

 

4.0 CONCLUSION 

We have introduced and studied the concepts of  semi-

mgroup. In the study,we have established the closure of some 

msetoperations  over the class of finite semi-mgroups such as 

;mset intersection, arithmetic multiplication, raising to 

arithmetic power, scalar multiplication and composition of 

semi-mgroups.. Cancellation law was introduced and studied 

and we established that a semi-mgroup is cancellable if and 

only if is commutative.We also studied the commutativity 

and cancellability of all expressions involving mset 

operations and established that these expressions are 

commutative and cancellable..Then the closure properties of 

commutative and cancellativesemi-mgroups.onmset 

operations were studied. We established that the 

msetopertions such as intersection, arithmetic multiplication, 

raising to arithmetic power, scalar multiplication and 

composition of semi-mgroups. were closed under the 

commutative and cancellativeproperties of semi-mgroups. 
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