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In this paper we extended the study of S. Debnath and A. Debnath(Debnath and Debnath, (2019))
on the study of ring structure from multiset context. We study more of the operations of multiset

on the ring theory, where we discover that the raising to an arithmetic power of a multiring is
again a multiring. So also is the composition of multirings. We also critically analyze the rootsets
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of multirings and introduces the concept multiring with unity, multiring and zero divisor among
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1. INTRODUCTION

The theory of multiset is the generalization of the classical set
theory which has emerge by violating a basic property of
classical set that an element can belong to a set only once. This
term multiset(mset for short) as Knuth noted in [1] first
suggested by [2] in a private communication. Owing to its
aptness it has replace a variety of terms viz; list, heap, bunch,
bags, sample, weighted set, occurrence set and fireset (finitely
repeated element set) used in different context but conveying
synonymity with mset. The mset theory has various
applications in mathematics, computer science. Other
researchers study the mset theory from the perspective. For
example: Tella and Daniel in [5] study the group theory in the
perspective of mset, Nazmul et al in [6] extended the work of
Tella and Daniel by adding two axioms and studying other
aspect of the group theory.Ejegwa and lbrahim[15 and 17]
study the homomorphic nature of multigroups and the Abelian
fuzzy multi groups. Girish and John in [7] wrote no Multiset
Topology, where they lay a foundation of their studies on
defining the power multiset, power whole multisets among
others. S. Debnath and A. Debnath [18] introduces the study of
rings from the multiset perspective. This paper now seeks to
extend the research work on multirings. In addition to this
section, section two of this paper gives the preliminary
definitions and notations. Section three would contain the main
results of the work, while section four would summarize and
conclude.

2. PRELIMINARIES AND NOTATIONS

Definition 2.1[1]. A multiset(mset for short) A over the set X
can be defined as a function C,: X - N = {0,1,2, ... } where the
value C,(x) denote the number of times or multiplicity or count
function of x in A . For example, Let A = [x,x,x,y,y,v,2, 7],
then C4(x) =3,C4(y) =3,C,(2) = 2. [C4(x) =0 & x & A].
The mset M over the set X is said to be empty if Cp(x) =
0 forallx € X. We denote the empty mset by @. Then
Cp(x) =0,V x €X.if C4(x) > 0,then x € A. We denote the
class of all finite msets M over the set X by M(X) throughout
the study. Also, elements of mset A can belong exactly n many
times denoted as x €™ A. If C,(x) = n then the membership of
x in A can be denoted by x €™ A, meaning x belong to A exactly
n times.

Definition 2.2[1]: The cardinality of a msetM denoted |M| or
card(M) is the sum of all the multiplicities of its elements
given by the expression |M| = Y ex ca(x) .

Note 1: Presentation of mset on paper work became a
challenged as every researcher has his thought in that aspect .
However the use of square brackets was adopted in ([1],
[9],[11]) to represent an mset and ever since then it has become
a standard. For example if the multiplicity of elements x, y and
z inan mset M are 2,3 and 2 respectively, then the mset M can
be represented as M = [x,x,y,¥,, z, z, |, others may put it like
[x,y,2z],3, or [x2,y3,2%] or [x2,y3,2z2] or [2/x,3/y,2/z]
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depending on one’s taste or expediencies. But for conveniences
sake, curly bracket can be used instead of the square bracket.
Definition2.3[2]: Let M be an mset drawn from a set X. The
support set of M denoted byM™ is a subset of X given by M* =
{x € X: Cy(x) > 0} that is M* is an ordinary set. M* is also
called root set.

Definition 2.4[1]: Equal msets. Two msetsA4, B € M (X) are said
to be equal, denoted A = B if and only if for any objects x €
X, C4(x) = Cg(x). This is to say that A = B if the multiplicity
of every element in A is equal to its multiplicity in B and
conversely. Clearly, A = B=A* = B* , though the converse
need not hold. For example, let A = [a,a,b,b,c] and B =
[a,a,b.b,b,c,c] where A* = B* = {a, b,c} but A # B.
Definition 2.5[1]:Submultiset space. Let X be a set and let A
and B be msets over X. A is a submultiset(submset for short) of
B, denoted by A Bor B 2 A, if C4(x) < Cg(x) forall x €
X. Also if A € B and A # B, then A is called proper submset
of B denoted byA c B. In other words AcB if Ac
Band there exist at least one x € X such that C,(x) <
Cg(x). We assert that a mset B is called the parent mset in
relation to the mset A.

Note 2: That: For any two msets4,B € M(X), A =B if and
onlyifAS Band B 2 A.

Definition. 2.6 [1]: Regular or Constant mset: A msetA over
the set X is called regular or constant if all its elements are of
the same multiplicities, i.e for any x,y € A such that x #+
¥, Ca(x) = C, ().

Definition 2.7: [6]. The notations A and V: The notations A and
V denote the minimum and maximum operator respectively for
instance

CaCONC,(y) = min{Cy(x), C4(¥)} and C4(x)VC4(y) =
max{C,(x), C4(3)}.

Definition 2.8 [17](Power mset): Let A € M(X). The power
mset of A, denoted g (A), is defined as the mset of all submsets
of Aiep(A) ={m/p|p S Aandp €™ p(A)}. For instance
if A=[x,yl1=[xxyl] Then P(A) =

[0, {x3, {3, {xdo, ), €, 3, (6, 93, [, Y] 04 -

In this case the cardinality of g(A) is given by Card(p(A)) =
2¢ard(4) = 23 = g, for any mset A.

Forany N € M such that N # @.

Now N €% p(M) if and only if k =[], ('l’fv’l'z). Where [],, is
the product taken over distinct elements z of the mset N .
M|, =m iff z€™ Mand |[N|, =n iff z€™N.

Note that ('M|Z) = (™) =2

IN|z nl(m-n)!’
We denote the root set of go(M) by p*(M).
Definition 2.9[17](Power set of an mset): Let M € M(X), the
power set of M is just the root set g*(M).

Example 2.10: Let M = {6/x,3/y} be an mset and let (M)
denote the power mset, if {3/x} is a member of (M), then
{3/x} repeats k = (%) = 20 times. Also, if {4/x,2/y}is a
member of (M), then {4/x,2/y} repeats k = (5)() =
45 times.

Theorem 2.11[17](Cardinality of power set): Let M € M(X)
such that M=

(™2 xy s/ Y, then Card (" (M) = T2, (1 +
m;).
Definition 2.12[17](Whole submset): A submsetN of M is a
whole submset of M
if Cy(x)=Cy(x)Vx €N.
Definition 2.13[17](Partial Whole Submset): A submsetN of M
is a partial whole submset of M if there exist an element x € N
such that Cy(x) = Cy(x).
Definition 2.14[17](Full Submset): A submsetN of M is full
submset if M* = N*
Example 2.15: Let M ={2/x,3/y,5/z} be an mset. The
following are some of the submset which are whole submsets,
partial whole submset and full submets.
(@) A submset{2/x,3/y} is a whole submset and partial
whole submset of M but it is not full submset of M.
(b) Asubmset{1/x,3/y,2/z} is a partial whole submset
and full submset of M but it is not a whole submet of
M.
(c) Asubmset{1/x,3/y}is a partial whole submset of M
which is neither a whole submet nor full submset of
M.
Definition 2.16[17, 15] (Power whole mset): Let M € M(X) be
an mset. The power whole mset of M denoted by PW (M) is
defined as the set of all whole submsets of M. The cardinality
of the support set PW (M) is 2™ where n is the cardinality of the
supportset M*,i.en =| M* |.
Definition 2.17[17] (Power full mset): Let M € M(X) be an
mset. Then the power full mset of M denoted, PF(M), is
defined as the set of all full submsets of M. The cardinality of
PF (M) is the product of the counts of the elements in M.
Thatis PF(M) ={y/y < M}.
Examples 2.18: Let M ={2/x,3/y} be a mset. Then
PW (M) = {{2/x},{3/y}, M, 0} and PF(M) =
{{Z/x, 1/y3.42/x,2/y}{2/x,3/y}{1/x, 1/y},}
{1/x,2/y3,{1/x,3/y}, '
Definition 2.19 [9]: (A and V notations): The notations A and V
denote the minimum and maximum operator respectively, for
instance;
Ca()NC4(y) = min{C4(x), C4(y)} and C4(x)VC4(y) =
max{C4(x), C4(3)}.
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Operations on msets.

Definition 2.20[9]: Union (U) of msets. Let A,B € M(X). The
union of A and B denoted by A U Bis the mset defined by
Caup (%) = max{C4(x), Cg(x)},

That is if object x occurrs a times in A and b times in B.
Then it occurs aVb times in A U B, (maximum should exist for
all finite msets).

Definition 2.21[9]: Intersection (n) of msets. Letd,B €
M (X).The intersection of two mset A and B denoted by ANB,
is the mset for which

Cang(x) = min{C,(x), Cg(x)}forall x € X.

In other words, ANB is the smallest mset which is contained in
both A and B. That is an objects x occurring a times in A and b
times in B, occurs aAb timesin AN B.

Definition 2.22[9]: Addition or sum ofmset. Let A, B € M(X).
The direct sum or arithmetic addition of A and B denoted by
A+B or AyB is the mset defined by

Carp(x) = Co(x) + Cg(x) forall x € X.

That is, an object x occurring a times in A and b times in B,
occurs a + b times in AuB.

Note[9]: That |[AWB|= |AUB| + |ANBI.

Definition 2.23[9]: Difference of msets. Let A, B € M (X), then
the difference of B from A, denoted by A — B is the mset such
that C4_p(x) = max{C,(x) — Cz(x),0}for all x € X. If B <
A, then Cy_g(x) = C4(x) — Cz(x).

It is sometimes called the arithmetic difference of B from
A. If B € A this definition still holds. It follows that the deletion
of an elementx from an mset A give riseto anew msetA’ = A —
x such that €, (x) = max{C,(x) — 1,0}.

Definition 2.24[8]: Symmetric Difference. Let X be a set and

A, B € M(X)Then the symmetric difference, denoted AAB, is

defined by Cypp(x) = |C4(x) — Cx(x)].

Note 3:: That it can easily be proved that AAB = (A—B) U

(B —A4).

Definition 2.25[8]: Complement in msets: Let G = {4,,4,, ...}
be a family of finite msets generated from the set X.
Then, the maximum mset Z is defined by C,(x) =
maxye;Cy(x) for all A€eG and x€X. The
Complement of an mset A, denoted by A4, and defined
by

A=7Z—Aand Cz(x) = {C;(x) — C4(x), for all x € X}

where Z is a universal mset.

Note that A; € Z for all i.

Definition 2.26[8]: Multiplication by Scalar. Let A, B € M (X)),

then the scalar multiplication denoted by b.A is defined as

Cpa(x) =b.Cy(x), and b = {1,2,3,...}.

Definition 2.27[8]: Arithmetic Multiplication. Let A,B €

M(X), then the Arithmetic Multiplication denoted by A.B is

defined as C4 5(x) = C4(x).Cx(x) Vx € X.

Definition 2.28[7]: Raising to an Arithmetic Power. Let A €
M (X), then A raised to power n denoted by A™is defined:
Can(x) = (C4(x))" forn ={0,1,2,3,...} and C,(x) > 0.
Proposition 2.29[19]: Let X be a setand let A € M(X). Then
AT = A%
Note 4:: That A" A™ =A™ and
A™ .B™ foranyn,m = {0,1,2, ...}
Theorem 2.30 [11]: Let M,N e M(X), M S N = M* < N*
Definition 2.31[6]; Composition of msets. Let A, B € MG (X),
then we call
(i) Ao B as the composition between two msets
defined as
Caos(X) = VICA() N Cp(2):y,z € X 3 yz = x}
Definition 2.32[19]: Let X be a non empty set and let A,B €
M(X). We defined the mset function f:A —» B as just the
function f:A* - B* such that for any x € X, Cr0)(f(x)) =
C,(x). The image of anmset A € M(X) under an mset function
fdenoted by f(A) is given by

F@) = {75 x €4 mi = Gy (f(x)) = Cax)}:
Definition 2.32[18]: Let X be a ring. A mset A over X is said to
be a multiring over X if the count function of A i.e C, satisfies
the following condition:

(i) Calx +y) =

min{C, (x), C4(»)} and Cy(x.y) =
min{C,(x), C,(»)}Vx,y € X

(i) Cu(=x)=2Ci(x)VxeX
The set of all multiring over Xis denoted as MR (X).
Definition 2.33[18]: Let A € MR(X), then A is said to be
commutative iff C,(x.y) = C4(y.x)
Note 5: Non commutative ring may be commutative under
multiring.
Theorem 2.34[18]: Let A € MR(X), then

(i) C0)=Cx)VxeX

(i) Ci(nx) 2 Cix)VxeX

(iii) Ci(—x)=C4(x)Vx€eX
Theorem 2.35[18]: Let A € MR(X). If C,(x) < C4(y) for some
x,y € Xthen Cy(x +y) = C4(x).
Theorem 2.36[18] Let A € MR(X), then Cu(x—y)=0
implies C4(x) = C,(y).
Theorem 2.37[18] Let A be a mset. Then A € MR(X) iff
Calx —y) =2 min{C4(x), C4(¥)} and Calx.y) =
min{C, (x), Ca(3)}.
Theorem 2.38[18]: Let A € MR(X), then A,,,n € N are subring
of X, where 4,, = {x € X,C,(x) = n,n € N}.
Theorem 2.39[18]: If A,,n € N are subrings of X, then the
mset is A is a mring over X.
Theorem 2.40[18] Let A,B € MR(X),then AN B € MR(X).
Theorem 2.41[18] Let A,B € MR(X), then AU B € MR(X).

(A.B)" =
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Remark 1: If A;,i € I be family of mrimg over X, then their
intersection N;¢; A;is mring.

3. RELATED RESULTS
Some mset operations on mring
Proposition 3.1: Let 4, B € MR(X), then A + B € MR(X).
Proof: Since A and B are multiring then A satisfies
Ca(x —y) = min{C4(x), C4(¥)} and Cy(x.y) =
min{C,(x),C,(y)}Vx,y € X and B saisfies Cgz(x —y) =
min{Cy(x), Cz(y)} and Cp(x.y) =
min{Cp (x), Cg(¥)}Vx,y € X
NowCy,p(x —y) = C4(x —y) + Cg(x — y) by hypothesis
> Cy(x) A Cy(y) + C(x) A Cg(y) by definition
= [Ca() ACg(X)] + [Ca(y) A Cp (V)]
= Cayp(X) A Cay5(¥)
And Cyyp(x.y) = Co(x.y) + Cz(x.y) by hypothesis
> Ca(x) AN Cy(y) + Cx(x) A Cg(y) by definition
= [CaG) ACp(X)] + [Ca(y) A C (V)]
= Carp(x) A Cyyp(y)
Hence A + B € MR(X)
Remark 2: Let A,B € MR(X), then A — B ¢ MR(X).
Example 3.2.7:For example: Let X = {e, a, b, c} be a groupoid
with a?=b*=c?=e’=eandab=ba=c,ac =ca =
b,bc =cb = a.
IfA=1{eab,c}s3,,andB ={e,a,b,c}3,,,. TheNA — B =
{e,a,b,c}z101-
Now
Ca—plac) = C4_p(b) = 0 £ C4_g(a)\Cy_p(c)
= min{C,_g(a), C4_g(c)} = min{2.1}
=1
Showing that A — B & MGP(X).
Proposition 3.2: Let A, B € MR(X), then A.B € MR(X).
Proof: Since A and B are multiring then A satisfies
Ca(x —y) = min{Cy(x), C4(¥)} and Cy(x.y) =
min{C,(x),C,(¥)}Vx,y € X and B saisfies Cgz(x —y) =
min{Cg(x), C5(y)} and Cz(x.y) =
min{Cz (x), Cs(»)} Vx,y € X
Now Cyg(x —y) = C4(x — y).Cg(x —y) by hypothesis
> Cu(x) A C4(y).Cg(x) A Cg(y) by definition
= [Ca(x) A Cp (D] [Ca(¥) A Cp(1)]
= Cap(X) N Cip(y)
And C, 5 (x.y) = C4(x.y).Cg(x.y) by hypothesis
> Cu(x) ACy(y).Cg(x) A Cg(y) by definition
= [Ca(x) A C5 (D] [Ca(¥) A Ca(1)]
= Cap(X) N Cip(y)
Hence A.B € MR(X).
Proposition 3.3: Let A € MR(X) then the scalar multiplication
b.A € MR(X),b > 0.
Proof: Since A and B are multiring then A satisfies

Calx —y) = min{Cy(x), C4(y)} and Cy(x.y)
> min{C,(x),C,(y)}Vx,y € X
Let x,y € X and b € N (the set of natural numbers). Let A €
MR (X). We want to show that b. A € MR (X).
Now
Cpalx —y) =b.Cy(x —y)
> b.[C4(x)AC4(y)] (by hypothesis)
= Cpa(NCpa(y)
Thus Cp 4(xy) = Coa(INCp 4 (¥)
Cp.a(xy) = b.Cy(xy)
> b.[C4(x)NC4(y)] (by hypothesis)
= Cpa(INCp 4 (¥)

Thus Cp 4(xy) = Coa(INCp 4 (¥)
Hence b.A € MR(X).
Proposition 3.4: Let X be a semi-group and let A € MR(X),
then A™ € MR(X) For any
nef{123,..}.
Proof: Since A and B are multiring then A satisfies
Ca(x —y) = min{Cy(x), C4,(¥)} and Cy(x.y) =
min{C,(x),C,(¥)}Vx,y € X and B saisfies Cz(x —y) =
min{Cp (x), C5(y)} and Cz(x.y) =
min{Cg(x), Cs(¥)}Vx,y € X.
Let x,y € X and let A € MR(X). We want to show that A™ €

MR(X).
Since Can(x —y) = (Cax — y)™ = [C4(DAC, ]
= [C4(I*ALC,()]"
= Cyn(X)NCpn(y)

Thus Cyn(xy) = Can(xX)ACyn(y).
Can(xy) = (Ca(xy))" = [CA(DNC,N]"
= [CaGI"A[CaN]™
= Can(X)NCyn(y)
Thus Cyn(xy) = Can(xX)ACyn(y).
Hence A™ € MR(X).
Proposition 3.5: Let A,B € MR(X). Then the direct product or
the Cartesian product A X B € MR(X X X),V (x,y) € (X X
X).
Proof: Since A and B are multiring then A satisfies
Ca(x —y) =2 min{Cy(x),C4(y)} and Cy(x.y) =
min{C,(x),C,(y)}Vx,y € X and B saisfies Cgz(x —y) =
min{Cg (x), C5(y)} and Cg(x.y) =
min{Cgz(x), Cs(¥)}Vx,y € X
LetA,B € MR(X X X).Ifx = (a,b),y = (c,d) where a,c €
Aand b,d € B, such that the pair can be express as xy =
(a,b)(c,d) = (ac, bd) (by definition).
Now, Cyxg(x — y) = Caxpl(a, b) — (c,d)] = Cuxgla —c,b —
dl =Cs(a—c).Cg(b—d)
> [Ca(a)\ Ca(O)]. [Cp(D)A Cp(d)]
= [C4(a). Cg(D)]A[C4(C). Cp(d)]
= [Caxp(a, b)NCpxp(c, d)]
= [Caxg ()NCasz (V)]
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And Caxs(xy) = Caxgl(a, b)(c, )] = Cyxplac, bd] =
C,(ac).Cgx(bd)
= [Ca(a)A\ Ca ()] [Cp(D)A Cp(d)]
= [C4(@). Cg(D)]A[C4(c). Cp(d)]
= [Caxp (@, b)NCyxp(c,d)]
= [Caxs () N\Cax(¥)]
Thus Cuxp(xy) = [Caxp(X)ACaxp (V)]
Hence A X B € MR(X X X).
Proposition 3.6: Let A, e MGP(X XXX --XX)n-—
times, for i = 1,...,n. Then raising to the direct power (X
A" € MR(X X X X -+ X X),n — times.
Proof: Since A and B are multiring then A satisfies
Ca(x — y) = min{Cy(x), C4(¥)} and Cy(x.y) =
min{C,(x), C,(¥)}Vx,y € X and B saisfies
Cp(x —y) =2 min{Cz(x), Cy(y)} and Cp(x.y)
= min{Cg(x), Cg(¥)}Vx,y € X
And since Ciygyn(x —y) = [C(XA) (x — y)]n by hypothesis.
> [C(XA) (O Cixay (y)]nby definition
= [Cxayn (A Cieayn ()]
= [( Ca(x1). Ca(x3)., ---:-CA(xn))/\ (CA(}’1)-CA(Y2)-, ---;-CA(Yn))]
Vx,y;€Ai=1..,n
AlsoC xayn(xy) =
[C(XA) (xy)]n by hypothesis.
> [C(XA) (O Cixay (y)]nby definition
= [Cixmn A Cixayn (0]
= [( Ca(x1). Ca(x)., ---I'CA(xn))/\ (CA(}’1)-CA(3/2)-, ---;-CA(Yn))]
Vx,y;€Ai=1..,n
Hence (X A)™ € MR(X).
Proposition 3.7: Let x,y € X. Let A € MR(X). Then A™. A™ =
A™™ € MR(X), for n,m € N.

Proof: SinceCyn ym(x — y) = Cpnem(x —y) = [Co(x —
V)™ (by definition)
> [C4()N Cu()]™*™ (by hypothesis)
= Cn+m(X)NC gn+m (y)
Also, Congm(xy) = Cynim(xy) =

[C,(xy) ™™ (by definition)
> [C4()N Cu()]™*™ (by hypothesis)

= CAn+m (x)/\CAn+m (y)
So Cyn gm (xy) = CAn+m (x)/\CAn+m (y)
Thus A" A™ = A™*™ € MR(X).
Proposition 3.8: Let x,y € X. Let A,B € MR(X). Then
(A.B)" = A".B™ € MR(X), for n € N.
Proof: Since A and B are multiring then A satisfies
Ca(x —y) = min{Cy(x), C4(»)} and Cy(x.y) =
min{C,(x), C,(y)} Vx,y € X and B saisfies

Cp(x —y) = min{Cp(x), Cg(y)} and Cp(x.y)
> min{Cp(x), Cyg(¥)} Vx,y € X

So, Caupn(x —y) = [Caup(x =" = [[C4(x — ¥)]. [C5(x —
21
= [Calx =M™ [Cs(x = W)™
= [C4aINCA ] [Ca (INCE()]™
= Cyn(X)NCgn(x). Cgn(Y)NCpn(y)
= [Can()ACpr(x)]. [Can (W) ACpn ()]
= Cynpn(x)ACynpn(y)
i.eCapn(x —y) = Cynpn(X)NCgn pn(y)
Also, Cypyn(xy) = [Cap(xy)]™ = [[Ca(xy)]- [Ca Cep)]]™
= [CaGey)]™. [Cp(xy)]"
2 [CaCINC, ] [Ca(x)ACE (]
= Cyn(X)NCgn(x). Cgn(Y)NCpn(y)
= [C4on()NCn ()] [Can(PIACpn (V)]
= Cynpn(x)ACynpn(y)
Thus, Ceapyn(x —y) = Cgn pn(x)ACgn pn(y)
Hence (A.B)" = A™.B™ € MR(X)
Proposition 3.9: Let A,B € MR(X), then Ao B € MR(X)
Proof: Since A and B are multiring then A satisfies
Ca(x —y) = min{Cy(x), C,(¥)} and Cy(x.y) =
min{C,(x), C,(¥)}Vx,y € X and B saisfies
Cp(x —y) = min{Cp(x), Cx(y)} and Cp(x.y)
= min{Cp(x), Cg(¥)}Vx,y € X
And so, let x,y € X. Let A,B € MR(X). We show that AoB €
MR(X).
Now, Cuop(x —y) = VI[Ci(a — b)ANCg(c —d);a,b,c,d €
X, (ac)(bd) = x + y]
= V[[CA(@NAC,(D)]A[Cp()ACE(A)]; @, b, ¢, d € X, (ac) (bd)
= xy]
= V[[C4(@)ACs(c)]; a,c € X, (ac)
= x]A[C4(D)ACg(d)]; b, d € X, (bd) = y]]
= [V[C4(@)ACs(c)]; a,c € X, (ac)
= x]A[V[C,(b)AC5(d)]; b, d € X, (bd)
=yl
= Caop (N Caop(¥)
Thus Chop(x —y) = Caop (XA Chop ().
Also,Cy,5(xy) = V[C,(ab)A\Cx(cd); a,b,c,d €
X, (ac)(bd) = xy]
= V[[CA(@NAC,(D)]A[CE()ACE(A)]; @, b, ¢, d € X, (ac) (bd)
= xy]
= V[[C4(@)ACs(c)]; a,c € X, (ac)
= x]A[C4(D)ACs(A)]; b, d € X, (bd) = y]]
= [V[C4(a)ACg(c)]; a,c € X, (ac)
= x]A[V[C,(b)AC5(d)]; b, d € X, (bd)
=yl
= Caop (N Caop(¥)

Thus Caop(xy) = Caop(X)N Caop (¥).
Hence AoB € MGR(X).

Definition 3.10: Multiring with unity.
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Let A € MR(X). We defined A to be a mring with unity if A* is
a ring with unity.
Definition 3.11: Zero divisor of mring.
Let A € MR(X). We defined A to be a mring with zero divisor
if A is a ring with a zero divisor.
Proposition 3.12: Let A € MR(X). Then A" is a sub ring of X.
Proof: Supposing A € MGP(X). Let x,y€ A", then
C,(x),C4(x) > 0(by definition 2.3).
In particular C,(x)AC,(y) > 0. But A € MR(X) implies
Ca(xy) = C4()NCy(y) > 0 and Cy(x —y)
> CoINC, (V)Y x,y € X
Thus C4(xy) and C4(x —y) >0i.e xyandx —y € A"
In particular A* is a sub subring of X (since 4™ € X)
Proposition 3.13: For any A € MR(X), A* € MR(X).
Proof: Let x,y € A*. We want to show that
Car(xy) = Cp(INCy+(y), YV x, ¥y €X
(*)
Cor(x —y) 2 Co(NCy(y),Vx,y €X
(*+)
From the following possibilities:
(M x,y € A" = xy € A" (from proposition 3.12)
(ii) x € A"andy € A" = xy € A’orxy ¢ A”
(iii) x € A'andy € A" = xy € A’orxy ¢ A”
(iv) x ¢ A'andy € A" = xy € A"orxy ¢ A* and

(v) X,y € A" = x —y € A" (from proposition 3.12)
(vi) x€Aandy g A" =>x—y€EAorx—y A
(vii) x¢Aandy EA" =2 x—y€EAorx—y ¢A”
(viii) xg¢Aandyg@A" =>x—y€EAorx—y&A”
the inequality (*) and () is valid, from (i) - (viii) above.
Thus Cp(xy) = Ci«()NC4+(y) and Cy=(x — y) =
Car(ONC () Vx,y €X
In particular, A* € MGP(X).
Proposition 3.14: Let A € MR(X), then Let A~ = A and —
A=A
Proof: Since C4-1(x) = C4(x)™* = C4(x). Thus A™* = A. And
C_a(x) = C4(—x) = C4(x) thatis —A = A.

4. CONCLUSION

We have extended the work of S. Debnath and A. Debnath
(Debnath and Debnath, (2019)) on the study of ring structure
from multiset context. In the study, we have established the
closure of some multiset operations (over the class of finite
mring). Such as union, intersection, arithmetic multiplication,
scalar multiplication, raising to an arithmetic power among
others. We have established that the root set of an mring is a
subring and sub mring. Multi ring with unity and multi ring with
zero divisor is introduced and studied.

Further Directions: Other aspect of the ring theory such as the
integral domain, theory of field can be exploited among so
many others.
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