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In this Paper we will investigate some fixed point and common fixed point theorem for multivalued
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1. INTRODUCTION
Let E be a non-empty compact Convex. subset of uniformal
convex Banach Space X and T is a self map
Then T: E — E is called multivalued non-expansive mapping
If

ITs —Tell <l s, tll VS, tE€EE
Since X is a unifomaly conver then every non-expansive
mapping
T:E — E has a fixed point (see Browder [5] Kirk [1] [6]
[7]gives the Comprehensive survey Concerning. A fixed
point theorem for non-expainsive mappings.
and (Dwivedi, Bhardwaj, Shrivastava [13]) worked for
Common fixed theorems in Banach space.
Here N is a set of all positive integers and F(T) is a set of all
fixed point of a mapping T.

Then F(T) ={S € E:Tg = S} and if S, € E then {S,} in E
defined as
Spe1 = (A = an)TSn + anTyn
th =1 =B lu, + ,BnTun
U, = (1= 68,)S, + 6,75,
Where {a,}, {,,} and {5,,} are sequence in (0,1)
we write some definitions Before start the main result.

2. PRELIMINARIES
Definition 2.1: A multivalued mapping T: F - CB(E)
is Called non-expansive if

H(T, T)<IS—tl-VS,t€E
Definition 2.2: A sequence {S,}:n € N in X is Called fejér
monotone w.r. to subset E of X if

1Spe1 =PI < IS, —plIVpEEandn > 1

Example 2.3: Suppose E is a hon-empty subset of X then
T:E — E is a quasi-non expansive mapping then the
sequence {S, } defined of S,.,; = T, is fejér monotone w.r.
to F(I)
Definition 2.4: Let E is a non-empty subset of X. {S,} is
a fejér monotone sequence w.r. to E then -

(1) The sequence {S,,} is Bounded
(ii) And for every S € E{llS,, — SlI} is converges.
Definition 2. 5: [3] A Banach space X is satisfy the condition
if For any sequence {S,} in X S, - S = lim,_, sup
IS, — Sl < limy,osup IS, —tIIVt € Ewitht # S
Definition 2. 6: [15] Let E is a subset of X and A multivalued
non-expansive mapping
T:E — CB(E) is satisfy the condition If 3 a non decreasing
function.
F:[0,0) — [0,) with f(0) =0
f(r)>0Vre|[0,»)
Such that D(X, Ts) = f(D(X,F(T))VS € E
Lemma 2.7:[15] Suppose that X be a unifarmaly convex
Banach space and
0<p=<x,<q<1Vn€eN
{S,,} and {t,,} are two sequences of X
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Then
lim suplIS,ll < r
n—oo

lim suplit,ll < r
n—oo

and also lim,,_,, 1%, S,, + (1 —x)t,ll =rvr >0
Then

lim 1S, — t, I=0

X—00

3. MAIN RESULT

Let X be a Normed Banach space and E be a non-empty
closed and convex subset of X and T is. sef mapping

Then T: E — P(E) is multivalued mapping

Let {S,,} is a sequence in P(E) defined as

Sps1 = a- an)xn + anYn
th = (1 - ﬁn)an + :BnZn
Un = (1 - 6n)5n + é‘nxn

Where x, € Ty ,y, €T, and z, € T, and {a,}, {8}, {6}
are sequences in (0,1)
Theorem 3.1. Let X be a uniformaly convex Banach space
and E be a non-empty Closed Convex subset of X and T is a
self map.
Then T: E = p(E) be a multivalued mapping.
such that F(T) # 1 and P; be a nonexpansive mapping
PP ={P}VPe€F()
The sequence {S,,} defined in (3.1) Now we have to prove
H‘;D(S"; Ts,) =0
Proof: By using definition 2.2
lim,,_, IS, — pll exist for p € F(T)
Let
Tlli_r){)loIISn -pl=c=0

ife=0

D(Sn,Tgn) S ISh = xpll < 1S, — pll + lIx, — pll
< IS, — pll + H(P;Sy; PrP)
D(Sy,Ts,) < ISy = Pl + IS, — plI
<@ IS, —npl
- 0asn—> o
Thenc=0ifc=0
From (3.1)

(2.1)

(3.1)

1Sn+1 — 2l = I(1 — @p)x, + any, — pl 3.2)
After solving (3.2)
< (A = a)lx, —pll + aplly, —pll
< (1 — an)H(PrSp, Prp) + anH(Prty, Prp)
< (1 = a)lS, — pll + anlit, —pll
Using (2.1) we get
ISn+1 — Pl < It — Pl (3.3)
Similarl from (3.1)
lt, —pll < llu, —pli 3.4)
and
lu, —pll < 1S, —pll (3.5)
(a). Taking sup lim on both side (3.5) we get
rllgl;losup||un -pll<c (3.6)

(b). Taking sup lim on both side (3.4) we get

1lli_r)rolosup||tn -pll < Ailgosupllun -pllgc 3.7)
Now lim supllx,, — pll < lim sup H(P;S,, Prp)
n—-oo n—-oo . (3. 8)
< limsupllS, — pll
n—oo
lim supllx, —pll < C (3.9)
n—oo
and using (3.7) we have
lim suplly, —pll < lim supllh, — pll
lim suplly, — pll < lim sup H(Prty, Prp) (3.10)
< limsupll¢t, —pll < C
n—oo
Since we know that
lirnn—wo ”an(xn - pl) + (1 - an)()’n - p)”
= lim, e IS,+1 — Pl = c.
It follows Lemma (2.7) we have
Tllifc}o"S" —t,ll=0 (3.11)
From 3.2 we have
”Sn+1 - p” = ”(1 - an)xn + AnYn — p"
1S, — pll = 1Sh+1 — 2l 3.12
= S, —pll=— s Fle,—p1 G1D
n
Taking inf lim on both side 3.12 we get
Sp = pll = IISps1 —
lim inf 1| Sy_py = lim inf or PN B 221 o)
n—-oo n—-oo n
e < liminflt, — pll (3.13)
n—oo
From (3.7) and (3.13) we get
rllil?o"t“ -pl=c
It follows Lemma 2.7 we have
lim |lu, — z,ll =0 (3.14)
n—oo
Since |It, —pll = I(1 — B )tn + Bnzn — Pl
< (1 - .Bn)"un - p” + ,Bn”Zn - un"
Applying (3.14) we get
It —pll < llu, —pll (3.15)
Taking inf lim on both side (2.15) we get
lim,,_, . infllit, — pll < lim,_, infllu, —pll
c< 711112 inf [lu, —pll (3.16)
From (3.6) and (3.16)
Aijgollun -pll=C
It follows Lemma 2.7 we have
lim [|S, — x,|l =0
n—-oo
Since
D(Sn, Ts,) < 1S, — xl
Hence
limyeo D(Sy, Ty, ) = 0 3.17)

(3.17) is the proved of our theorem.
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