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1. INTRODUCTION   

              In 1922, Banach, S.,  proved a contraction principle, which 

ensures the existence and uniqueness of a fixed point of a self 

map on complete metric space, under some appropriate 

conditions. This principle is known as ‘Banach Fixed Point 

Theorem’. This theorem states that ‘if f be a self-mapping of 

a complete metric space (X,d) and if there exist a number k, 

with 0 ≤ k < 1, such that d(Tx,Ty) ≤ cd(x,y) for all x, y  X, 

then f has a unique fixed point in X . During the last 80 years, 

this result was extended and generalize through a lot of fixed 

point and common fixed point theorems which have been 

established by many authors in different spaces by taking 

more general contractive conditions.  

                             In the year 1950, The notion of modular space, as a 

generalization of a metric space, was introduced by Nakano 

[21]. This interesting result have been extensively generalized 

and developed by Chistyakov,V.,[7, 8, 9], Yamamuro [31],  

Koshi and Shimogaki [15], Mongkolkeha at el. [16], 

Musielak [18] and others. The main idea behind this concept 

is the physical interpretation of the modular. Informally 

speaking whereas a metric on a set represents finite non-

negative distance between two points of the set, a module on 

a set attribute a non-negative (possibly, infinite valued) ‘field 

of (generalized) velocities’ such that to each ‘time’  > 0 (the 

absolute value of), an average velocity 𝜔(x, y) is associated 

in such way that in order to cover the ‘distance’ between 

points x, y  X, it takes time  to move from x to y with 

velocity 𝜔(x, y). Later in 1959, this concept was further 

redefined and generalized by Musielak and Orlicz [19]. Later 

in 2010 Chistyakov [8, 9] defined the notion of modular on 

an arbitrary set and develop the theory of modular metric 

spaces generated by modular and proved some fixed point 

theorems for maps which are related to contracting 

‘generalized average velocities’ rather than metric distances.  

                             In 1982, Sessa [29] generalized the notion of 

commutativity to that of pairwise weakly commutativity. 

Jungck [11] weakened the condition of weak commutativity 

to that of pairwise compatible and then [12] pairwise 

compatible maps. In 2006, Jungck and Rhoades [13] was 

introduced the concept of occasionally weakly compatible 

maps. This concept has been frequently employed to prove 

the existence of common fixed points. 

 

In 2002, Branciari [4] gave an analogue of Banach’s 

contraction principle for an integral type inequality, which is 

stated as follows :  

               Let (X, d) be a complete metric space, k  [0, 1), f : 

X  X  be a mapping such that for each x, y  X, 

                ∫ (𝑡)𝑑𝑡
𝑑(𝑓(𝑥)−𝑓(𝑦))

0
≤  𝑘 ∫ (𝑡)𝑑𝑡

𝑑(𝑥,𝑦)

0
,  

Where,  : R+R+ be a Lebesgue integrable mapping which 

is summable, non-negative and for all  > 0,  ∫ (𝑡)𝑑𝑡


0
> 0. 

Then f has a unique fixed point u  X, such that for each x 

X, lim
𝑛 →∞

𝑓𝑛𝑥 = u.  

              Recently, Rahimpoor et al. [26], establish some fixed 

point theorems in modular metric spaces for weakly 
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compatible mappings. Azadifar et al. [2] proved some fixed 

point results for compatible mappings of integral type in 

modular metric spaces. Rashwan and Hammad [28], Aklesh 

Pariya et al. [25] and Hanna at el. [10] proved some common 

fixed point results for integral type mappings in modular 

metric spaces.    In this paper we prove some common fixed 

point theorems for compatible, weakly compatible and 

occasionally weakly compatible pair of mappings of integral 

type in modular metric spaces. 

             We start with a brief recollection of basic definitions 

and facts in modular spaces and modular metric spaces from 

[2], [5], [7], [8], [9], [10], [14], [15], [19], [25] and [26]. 

                

2. PRELIMINARIES  

Definition 2.1.  Let X be a vector space over the field R (or C). A functional  : X  [0, ∞] is called a modular if for any arbitrary 

x and y in X, these three conditions are satisfied: 

(i) (x) = 0 if and only if x = 0, 

(ii) (x) = (x) for all scalar  with |∝| = 1, 

(iii) (x + y) ≤ (x) + (y), whenever ,   0 and  +  = 1. If one replaces (iii) by (iv)  

(iv)         (x + y) ≤ 𝑠(x) + 𝛽𝑠(y), for ,   0 and 𝑠+ 𝛽𝑠=1, where s  (0, 1] then, the modular  is 

                 called s–convex modular, and if s = 1, then  is called convex modular. 

                 If  is modular in X, then the set defined by  

(2.1.1)       X = {x X : (x)  0 as   0+} 

is called a modular space. Clearly, the modular space X is a subspace of space X.  

                  Let X be a non-empty set and   (0, ) for the sake of convenience, function  𝜔 :(0, )  X  X  [0,] will be written 

as 𝜔(x, y) instead of  𝜔(, x, y) for all  > 0 and x, y  X.  

Definition 2.2.  Let X be a non-empty set . A function 𝜔 : (0, )  X  X  [0, ] is said to be a metric modular on X if it satisfies 

the following axioms: 

(i) 𝜔 (x, y) = 0 if and only if x = y, for all  > 0 and x, y  X;  

(ii) 𝜔 (x, y) = 𝜔 (y, x), for all  > 0 and x, y  X; 

(iii) ω+𝜇(x, y) ≤  𝜔(x, z) + ω𝜇(z, y),  for all ,   > 0 and  x, y, z  X. If instead of (i), we only have the condition 

  (i)(a)     𝜔(x, x) = 0  for all  > 0 and  x  X , then 𝜔 is said to be a (metric) pseudo modular on X and if 𝜔  

satisfies (i)(a) and  

  (i)(b)   for  x, y in X,  if there exists  a number  > 0, possibly depending on x and y, such that 𝜔(x, y) = 0, then  

               x = y, with this condition 𝜔 is said to be a strict modular on X.  

A modular (pseudo modular, strict modular) 𝜔 is said to be convex if the condition (iii) is replaced by the condition  

(iv) ω+𝜇(x, y) =   


 + 
ω(x, z) + 



 + 
ω𝜇(z, y),  for all ,   > 0 and  x, y, z  X. 

Clearly, if 𝜔 is a strict modular, then 𝜔 is a modular, which is turn implies 𝜔 is a pseudo modular on X, and similar implications 

hold for convex modular 𝜔.  

                 The essential property of a (pseudo) modular 𝜔 on a set X is, for x, y in X and  > 0, the function               𝜔(x, y)  

[0, ] is non-increasing on (0, ). In fact, if 0 <  < , then (iii), (i)(a) and (i)(b) implies that 

(2.2.1)       ω(x, y) ≤  ω−𝜇(x, x) + ω𝜇(x, y) = ω𝜇(x, y) for all  > 0 and x, y  X; 

It follows that at each  > 0 both the limits, the right-hand limit ω+0(x, y) = lim
𝑠→0+

ω+𝑠(x, y) and the left-hand limit ω−0(x, y) = 

lim
𝑠→+0

ω−𝑠(x, y) exists in [0, ] and the following inequality holds:  

(2.2.2)       ω+0(x, y) ≤   ω(x, y) ≤ ω−0(x, y). 

From (2.2.1) and (2.2.2), we know that if x0 X, the set  

                    Xω = {x  X : lim
→

ω(x, x0)= 0}  be a metric space, called a modular metric space. with metric given by  

                  𝑑𝜔
0 (𝑥, 𝑦) = inf { > 0 : ω(x, x0) ≤ } for all x, y  Xω 

Moreover, if 𝜔 is convex, the modular set Xω is equal to the set  

                𝑋𝜔
∗  = inf {x  X :   = (x) > 0 such that ω(x, x0) ≤ } 

and metrizable by  

                 𝑑𝜔
∗ (𝑥, 𝑦)  = inf{ > 0 : ω(x, y) ≤ 1} for all x, y  𝑋𝜔

∗  

We know that if X is a real linear space,  : X  [0, ] and  

(2.2.3)      ω(x, y) = 𝜌 (
𝑥−𝑦


) for all  > 0 and  x, y  X. 

Then  is modular (convex modular) on X in the sense of conditions (i), (ii), (iii) and (iv) of the definition 2.1, if and only if 𝜔 is 

metric modular (convex metric modular) on X. 

On the other hand, if 𝜔 satisfy the following two conditions :  
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(i) ω(x, 0) = ω

𝜇

(x, 0) for all ,  > 0 and x  X. 

(ii) ω(x + z, y + z) = ω(x, y) for all  > 0 and x, y, z  X. 

If we set, 

                 (x) = ω1(x, 0) for x  X 

(I)  X = Xω is a linear subspace of X and the functional ‖𝑥‖𝜌 =  𝑑𝜔
0 (𝑥, 0),  x X, is an F- norm on  X, and 

(II)  If 𝜔 is convex, 𝑋
∗ = 𝑋𝜔

∗ (0) = X be a linear subspace and the functional ‖𝑥‖𝜌 =  𝑑𝜔
∗ (𝑥, 0),  x 𝑋

∗, be a norm on  𝑋
∗. 

Similar assertions hold if we replace the word modular by pseudo modular. If 𝜔 metric modular in X, the set   Xω is said to be a 

modular metric space. 

Definition 2.3.[21] Let Xω be a modular metric space. Then 

 The sequence {xn}nN is said to be convergent to xXω, if ω(𝑥𝑛 , x)  0 as n  ∞ for all  > 0. 

(i) The sequence {xn}nN in Xω is said to be Cauchy, if ω(𝑥𝑚 , 𝑥𝑛)  0, as m, n  ∞ for all  > 0. 

(ii) A subset S of Xω is said to be complete, if each Cauchy sequence in S is convergent in S. 

Now, we recall the following definitions in metric spaces. 

Definition 2.4.   Let (X,d) be a metric space, then two self-maps  S and T on X  are called compatible, if d(STxn – TSxn)  0, as n 

∞, whenever {xn}nN be a sequence in X, such that Sxn z and Txn z for some  z  X.    

Definition 2.5.  Let X be a non-empty set and S, T : X  X. Then a point xX is said to be a coincidence point of S and T if and 

only if Sx = Tx. If u = Sx = Tx, then u is called a point of coincidence of S and T.  

Definition 2.6.  Let X be a non-empty set and S, T : X  X. Then S and T are said to be weakly compatible if they commute at 

coincidence point. 

Definition 2.7. [11]  Let X be a non-empty set and S, T : X  X. Then S and T are said to be occasionally weakly compatible (owc) 

if and only if there is a point xX which is coincidence point of S and T at which S and T commute. 

Lemma 2.1. [11] Let X be a non-empty set and S, T : X  X are occasionally weakly compatible (OWC) maps. If, S and T have a 

unique point of coincidence u = Sx = Tx, then u be a unique fixed point of S and T.  

In the modular metric space, above definitions are defined as follows: 

Definition 2.8. [25] Let Xω be a modular metric space induced by metric modular 𝜔. Two mappings S, T : Xω   Xω  are said to be 

𝜔 –compatible, if ω(ST𝑥𝑛, TS𝑥𝑛)  0, as n ∞, whenever {xn}nN be a sequence in Xω, such that Sxn z and Txn z for some  

z  Xω.    

Definition 2.9. [25] Let Xω be a modular metric space and S, T : Xω  Xω. Then a point xXω is said to be a coincidence point of 

S and T iff Sx = Tx. If u = Sx = Tx, then u is called a point of coincidence of S and T.  

Definition 2.10. [25]   Let Xω be a modular metric space and S, T : Xω  Xω. Then S and T are said to be weakly compatible if they 

commute at coincidence point. 

Definition 2.11. [25] Let Xω be a modular metric space and S, T : Xω  Xω. Then S and T are said to be occasionally weakly 

compatible (owc) if and only if there is a point x  Xω which is coincidence point of S and T at which S and T commute. 

Definition 2.12.[24] A function  : 𝑅+ 𝑅+ is said to be a comparison function if it satisfies the following conditions:  

(i) is monotone increasing, (t) < t for some t > 0, 

(ii)  (0) = 0, 

(iii) lim
𝑛→∞

𝑛(𝑡) = 0 for all t > 0. 

Lemma 2.2. [25]  Let Xω be a modular metric space and S, T : X  X are occasionally weakly compatible (owc) maps. If, S and T 

have a unique point of coincidence u = Sx = Tx, then u be a unique fixed point of S and T. 

 

3. MAIN RESULT 

Theorem 3.1.  Let 𝑋𝜔 be a complete modular space and f, g, S, T : 𝑋𝜔  𝑋𝜔 are mappings satisfying the conditions  

(3.1.1)   S(𝑋𝜔)  g(𝑋𝜔)  and  T(𝑋𝜔)  f(𝑋𝜔) 

(3.1.2)  If  : R+R+  be a non-decreasing right continuous function, (0) = 0 and 𝑛(𝑡) < t for every t > 0, such that for all x, y  

𝑋𝜔  

         ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑥,   𝑇𝑦)

0
≤   ∫ (𝑡)𝑑𝑡

𝑚(𝑥,𝑦)

0
  for all x, y X 

Where,  

           

m(x,y) = max{𝜔(𝑓𝑥, 𝑔𝑦), 𝜔(𝑓𝑥, 𝑆𝑥), 𝜔(𝑔𝑦, 𝑇𝑦),
𝜔(𝑔𝑦,𝑆𝑥) + 𝜔2(𝑓𝑥,𝑇𝑦)

2
,                                                                             



“Common Fixed Point Theorems for Pair of Maps of Integral Type in Modular Metric Spaces” 

3150 A. S. Saluja, IJMCR Volume 11 Issue 01 January 2023 

 

                                                                       
𝜔(𝑔𝑦,𝑆𝑥,)[1+ 𝜔(𝑓𝑥,𝑇𝑦)],

1+𝜔(𝑓𝑥,𝑔𝑦)
,  

𝜔(𝑔𝑦,𝑇𝑦)[1+ 𝜔(𝑓𝑥,𝑆𝑥)]

1+ 𝜔(𝑓𝑥,𝑔𝑦)
} 

Where,  > 0 and  : R+R+  be a Lebesgue integrable mapping which is summable, non-negative and  

        ∫ (𝑡)𝑑𝑡
𝑐

0
 > 0,   for all c > 0. 

If the pair (f, S) is compatible and (g, T) is weakly compatible on 𝑋𝜔 and if one of the mappings f or S is continuous, then f, g, S 

and T have a unique common fixed point in 𝑋𝜔. 

Proof : Let x0 be an arbitrary point in 𝑋𝜔.  

Since S(𝑋𝜔)  g(𝑋𝜔), we choose a point x1  𝑋𝜔 such that S𝑥0 = g𝑥1 and since T(𝑋𝜔)  f(𝑋𝜔), let x2 be a point in 𝑋𝜔 such that 

T𝑥1 = f𝑥2. 

Continuing in this manner, we construct a sequence {yn} in 𝑋𝜔 such that  

S𝑥𝑛 = g𝑥𝑛+1 = 𝑦𝑛  and T𝑥𝑛+1 = f𝑥𝑛+2 = 𝑦𝑛+1, for all n  0. 

Now, we have from (3.1.2), on taking x = 𝑥𝑛 and y = 𝑥𝑛+1 

 (3.1.3)    ∫ (𝑡)𝑑𝑡
𝜔(𝑦𝑛, 𝑦𝑛+1)

0
=  ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑥𝑛 ,𝑇𝑥𝑛+1)

0
≤  ∫ (𝑡)𝑑𝑡

𝑚(𝑥𝑛,   𝑥𝑛+1 )

0
, 

Where,  

m(𝑥𝑛, 𝑥𝑛+1) =  max{𝜔(𝑓𝑥𝑛 , 𝑔𝑥𝑛+1), 𝜔(𝑓𝑥𝑛 , 𝑆𝑥𝑛), 𝜔(𝑔𝑥𝑛+1, 𝑇𝑥𝑛+1),
𝜔(𝑔𝑥𝑛+1,𝑆𝑥𝑛) + 𝜔2(𝑓𝑥𝑛,𝑇𝑥𝑛+1)

2
,                                                                             

                                                                  
𝜔(𝑔𝑥𝑛+1,𝑆𝑥𝑛)[1+ 𝜔(𝑓𝑥𝑛 ,𝑇𝑥𝑛+1)]

1+𝜔(𝑓𝑥𝑛,   𝑔𝑥𝑛+1)
,  

𝜔(𝑔𝑥𝑛+1,   𝑇𝑥𝑛+1)[1+ 𝜔(𝑓𝑥𝑛,𝑆𝑥𝑛)]

1+ 𝜔(𝑓𝑥𝑛 ,𝑔𝑥𝑛+1)
} 

                     = max{𝜔(𝑦𝑛−1, 𝑦𝑛), 𝜔(𝑦𝑛−1, 𝑦𝑛), 𝜔(𝑦𝑛 , 𝑦𝑛+1),
𝜔(𝑦𝑛,   𝑦𝑛) + 𝜔2(𝑦𝑛−1,   𝑦𝑛+1)

2
,                                                                             

                                                                  
𝜔(𝑦𝑛,   𝑦𝑛)[1+ 𝜔(𝑦𝑛−1,   𝑦𝑛+1)]

1+𝜔(𝑦𝑛−1,   𝑦𝑛)
,  

𝜔(𝑦𝑛, 𝑦𝑛+1)[1+ 𝜔(𝑦𝑛−1,,   𝑦𝑛)]

1+ 𝜔(𝑦𝑛−1,  𝑦𝑛)
} 

                     = max{𝜔(𝑦𝑛−1, 𝑦𝑛), 𝜔(𝑦𝑛, 𝑦𝑛+1),
𝜔(𝑦𝑛−1,   𝑦𝑛) + 𝜔(𝑦𝑛,   𝑦𝑛+1)

2
}                                                                             

                     = max{𝜔(𝑦𝑛−1, 𝑦𝑛), 𝜔(𝑦𝑛, 𝑦𝑛+1)}  

So that from (3.1.3)                                                                             

              ∫ (𝑡)𝑑𝑡
𝜔(𝑦𝑛, 𝑦𝑛+1)

0
≤  ∫ (𝑡)𝑑𝑡

𝜔(𝑦𝑛−1,𝑦𝑛)

0
   

By induction, we have  

              ∫ (𝑡)𝑑𝑡
𝜔(𝑦𝑛, 𝑦𝑛+1)

0
≤  ∫ (𝑡)𝑑𝑡

𝜔(𝑦𝑛−1,𝑦𝑛)

0
   

                                               ≤  2 ∫ (𝑡)𝑑𝑡
𝜔(𝑦𝑛−2,𝑦𝑛−1)

0
 

                                                      …      …     …                                

(3.1.4)   ∫ (𝑡)𝑑𝑡
𝜔(𝑦𝑛, 𝑦𝑛+1)

0
  ≤  𝑛 ∫ (𝑡)𝑑𝑡

𝜔(𝑦0,𝑦1)

0
 

On taking the limit 𝑛 → ∞, and using the definition of ,  we get 

                𝑛 ∫ (𝑡)𝑑𝑡
𝜔(𝑦0,𝑦1)

0
  0.    

Hence, {𝑦𝑛} be a Cauchy sequence in 𝑋𝜔. 

By the completeness of 𝑋𝜔, there exists a point z  𝑋𝜔 such that the sequence {𝑦𝑛} and its subsequences {𝑦𝑛+1} and {𝑦𝑛+2} are 

converges to z in 𝑋𝜔. 

Now, on assuming the continuity of f, we have 

                 𝑓2𝑥𝑛  fz and 𝑓𝑆𝑥𝑛  fz. 

Also, in view of compatibility of the pair (f, S),  

                𝑆𝑓𝑥𝑛  fz  

From (3.1.2), we have 

(3.1.5)     ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑓𝑥𝑛 ,𝑇𝑥𝑛+1)

0
≤  ∫ (𝑡)𝑑𝑡

𝑚(𝑓𝑥𝑛 ,   𝑥𝑛+1 )

0
    

Where,  

m(f𝑥𝑛, 𝑥𝑛+1) = max{𝜔(𝑓2𝑥𝑛 , 𝑔𝑥𝑛+1), 𝜔(𝑓2𝑥𝑛 , 𝑆𝑓𝑥𝑛), 𝜔(𝑔𝑥𝑛+1, 𝑇𝑥𝑛+1),
𝜔(𝑔𝑥𝑛+1,𝑆𝑓𝑥𝑛) + 𝜔2(𝑓2𝑥𝑛,𝑇𝑥𝑛+1)

2
,                                                                             

                                                                  
𝜔(𝑔𝑥𝑛+1,𝑆𝑓𝑥𝑛)[1+ 𝜔(𝑓2𝑥𝑛,𝑇𝑥𝑛+1)]

1+𝜔(𝑓2𝑥𝑛,   𝑔𝑥𝑛+1)
,  

𝜔(𝑔𝑥𝑛+1,   𝑇𝑥𝑛+1)[1+ 𝜔(𝑓2𝑥𝑛,𝑆𝑓𝑥𝑛)]

1+ 𝜔(𝑓2𝑥𝑛,𝑔𝑥𝑛+1)
} 

On taking the limit 𝑛 → ∞,we get 

lim
𝑛→∞

m(f𝑥𝑛 , 𝑥𝑛+1)  = max{𝜔(𝑓𝑧, 𝑧), 𝜔(𝑓𝑧, 𝑓𝑧), 𝜔(𝑧, 𝑧),
𝜔(𝑧,𝑓𝑧) + 𝜔2(𝑓𝑧,𝑧)

2
,                                                                             

                                                                  
𝜔(𝑧,𝑓𝑧)[1+ 𝜔(𝑓𝑧,𝑧)]

1+𝜔(𝑓𝑧,𝑧)
,  

𝜔(𝑧,𝑧)[1+ 𝜔(𝑓𝑧,𝑓𝑧)]

1+ 𝜔(𝑓𝑧,𝑧)
} 
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                               = max{𝜔(𝑓𝑧, 𝑧), 0,0,
𝜔(𝑧,𝑓𝑧) + 𝜔2(𝑓𝑧,𝑧)

2
,    𝜔(𝑓𝑧, 𝑧), 0}   

Therefore, from (3.1.5) on taking the limit 𝑛 → ∞,we get 

   ∫ (𝑡)𝑑𝑡
𝜔(𝑓𝑧,𝑧)

0
≤  ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑧,𝑧)

0
 <  ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑧,𝑧)

0
. 

This implies that, fz = z. 

Again from (3.1.2), we have 

(3.1.6)   ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧 ,𝑇𝑥𝑛+1)

0
≤  ∫ (𝑡)𝑑𝑡

𝑚(𝑧,   𝑥𝑛+1 )

0
    

Where,  

m(z, 𝑥𝑛+1) = max{𝜔(𝑓𝑧, 𝑔𝑥𝑛+1), 𝜔(𝑓𝑧, 𝑆𝑧), 𝜔(𝑔𝑥𝑛+1, 𝑇𝑥𝑛+1),
𝜔(𝑔𝑥𝑛+1,𝑆𝑧) + 𝜔2(𝑓𝑧,𝑇𝑥𝑛+1)

2
,                                                                             

                                                                  
𝜔(𝑔𝑥𝑛+1,𝑆𝑧)[1+ 𝜔(𝑓𝑧,𝑇𝑥𝑛+1)]

1+𝜔(𝑓𝑧,𝑔𝑥𝑛+1)
,  

𝜔(𝑔𝑥𝑛+1,   𝑇𝑥𝑛+1)[1+ 𝜔(𝑓𝑧,𝑆𝑧)]

1+ 𝜔(𝑓𝑧,𝑔𝑥𝑛+1)
} 

On taking the limit 𝑛 → ∞,we get from (3.1.6) 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧 ,𝑧)

0
≤ ∫ (𝑡)𝑑𝑡

max {𝜔(𝑧,𝑧),𝜔(𝑧,𝑆𝑧),𝜔(𝑧,𝑧),
𝜔(𝑧,𝑆𝑧) + 𝜔2(𝑧,𝑧)

2
,
𝜔(𝑧,𝑆𝑧)[1+ 𝜔(𝑧,𝑧)]

1+𝜔(𝑧,𝑧)
,
𝜔(𝑧,𝑧)[1+ 𝜔(𝑧,𝑆𝑧)]

1+ 𝜔(𝑧,𝑧)
}

0
    

Hence, 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧 ,𝑧)

0
≤ ∫ (𝑡)𝑑𝑡

 𝜔(𝑧,𝑆𝑧)

0
  < ∫ (𝑡)𝑑𝑡

 𝜔(𝑧,𝑆𝑧)

0
  

This implies that, Sz = z. 

Now, since S(𝑋𝜔)  g(𝑋𝜔), then there exists another point u in 𝑋𝜔 such that 

z = Sz = gu. 

Now we prove that Tu = z.  

From (3.1.2), we have 

∫ (𝑡)𝑑𝑡
𝜔(𝑧 ,𝑇𝑢)

0
=  ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧 ,𝑇𝑢)

0
≤  ∫ (𝑡)𝑑𝑡

𝑚(𝑧,u )

0
    

Where,  

m (z, 𝑢) = max {𝜔(𝑓𝑧, 𝑔𝑢), 𝜔(𝑓𝑧, 𝑆𝑧), 𝜔(𝑔𝑢, 𝑇𝑢),
𝜔(𝑔𝑢,𝑆𝑧) + 𝜔2(𝑓𝑧,𝑇𝑢)

2
,                                                                             

                                                                  
𝜔(𝑔𝑢,𝑆𝑧)[1+ 𝜔(𝑓𝑧,𝑇𝑢)]

1+𝜔(𝑓𝑧,𝑔𝑢)
,  

𝜔(𝑔𝑢,𝑇𝑢)[1+ 𝜔(𝑓𝑧,𝑆𝑧)]

1+ 𝜔(𝑓𝑧,𝑔𝑢)
} 

 

               = max {𝜔(𝑧, 𝑧), 𝜔(𝑧, 𝑧), 𝜔(𝑧, 𝑇𝑢),
𝜔(𝑧,𝑧) + 𝜔2(𝑧,𝑇𝑢)

2
, 

𝜔(𝑧,𝑧)[1+ 𝜔(𝑧,𝑇𝑢)]

1+𝜔(𝑧,𝑧)
,  

𝜔(𝑧,𝑇𝑢)[1+ 𝜔(𝑧,𝑧)]

1+ 𝜔(𝑧,𝑧)
} 

Hence, 

∫ (𝑡)𝑑𝑡
𝜔(𝑧 ,𝑇𝑢)

0
≤ ∫ (𝑡)𝑑𝑡

 𝜔(𝑧,𝑇𝑧)

0
  < ∫ (𝑡)𝑑𝑡

 𝜔(𝑧,𝑇𝑧)

0
  

This implies that, Tu = z. 

Since, the pair (g, T) is weakly compatible on 𝑋𝜔 and Tu = gu = z, so that  

Tgu = gTu and Tz = Tgu = gTu = gz, 

From (3.1.2), we have 

(3.1.7)   ∫ (𝑡)𝑑𝑡
𝜔(𝑧 ,𝑔𝑧)

0
=  ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧 ,𝑇𝑧)

0
≤  ∫ (𝑡)𝑑𝑡

𝑚(𝑧,z)

0
    

Where,  

m(z, 𝑧)  =  max {𝜔(𝑓𝑧, 𝑔𝑧), 𝜔(𝑓𝑧, 𝑆𝑧), 𝜔(𝑔𝑧, 𝑇𝑧),
𝜔(𝑔𝑧,𝑆𝑧) + 𝜔2(𝑓𝑧,𝑇𝑧)

2
,                                                                             

                                                                  
𝜔(𝑔𝑧,𝑆𝑧)[1+ 𝜔(𝑓𝑧,𝑇𝑧)]

1+𝜔(𝑓𝑧,𝑔𝑧)
,  

𝜔(𝑔𝑧,𝑇𝑧)[1+ 𝜔(𝑓𝑧,𝑆𝑧)]

1+ 𝜔(𝑓𝑧,𝑔𝑧)
} 

 

              = max {𝜔(𝑧, 𝑔𝑧), 𝜔(𝑧, 𝑧), 𝜔(𝑔𝑧, 𝑔𝑧),
𝜔(𝑔𝑧,𝑧) + 𝜔2(𝑧,𝑔𝑧)

2
, 

𝜔(𝑔𝑧,𝑧)[1+ 𝜔(𝑧,𝑔𝑧)]

1+𝜔(𝑧,𝑔𝑧)
,  

𝜔(𝑔𝑧,𝑔𝑧)[1+ 𝜔(𝑧,𝑧)]

1+ 𝜔(𝑧,𝑔𝑧)
} 

Hence, from (3.1.7) 

∫ (𝑡)𝑑𝑡
𝜔(𝑧 ,𝑔𝑧)

0
≤ ∫ (𝑡)𝑑𝑡

 𝜔(𝑧,𝑔𝑧)

0
  < ∫ (𝑡)𝑑𝑡

 𝜔(𝑧,𝑔𝑧)

0
  

This implies that, z = gz. 

Thus, z is a common fixed point of f, g, S and T. 

To prove the uniqueness, let w  z be another common fixed point of f, g, S and T. 

From (3.1.2), we have 

(3.1.8)    ∫ (𝑡)𝑑𝑡
𝜔(𝑤 ,𝑧)

0
=  ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑤 ,𝑇𝑧)

0
≤  ∫ (𝑡)𝑑𝑡

𝑚(𝑤,𝑧)

0
    

Where,  
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m (w, z) = max {𝜔(𝑓𝑤, 𝑔𝑧), 𝜔(𝑓𝑤, 𝑆𝑤), 𝜔(𝑔𝑧, 𝑇𝑧),
𝜔(𝑔𝑧,𝑆𝑤) + 𝜔2(𝑓𝑤,𝑇𝑧)

2
,                                                                             

                                                                  
𝜔(𝑔𝑧,𝑆𝑤)[1+ 𝜔(𝑓𝑤,𝑇𝑧)]

1+𝜔(𝑓𝑤,𝑔𝑧)
,  

𝜔(𝑔𝑧,𝑇𝑧)[1+ 𝜔(𝑓𝑤,𝑆𝑤)]

1+ 𝜔(𝑓𝑤,𝑔𝑧)
} 

 

              = max {𝜔(𝑤, 𝑧), 𝜔(𝑤, 𝑤), 𝜔(𝑧, 𝑧),
𝜔(𝑧,𝑤) + 𝜔2(𝑤,𝑧)

2
, 

𝜔(𝑧,𝑤)[1+ 𝜔(𝑤,𝑧)]

1+𝜔(𝑤,𝑧)
,  

𝜔(𝑧,𝑧)[1+ 𝜔(𝑤,𝑤)]

1+ 𝜔(𝑤,𝑧)
} 

Hence, from (3.1.8) 

∫ (𝑡)𝑑𝑡
𝜔(𝑤 ,𝑧)

0
≤  ∫ (𝑡)𝑑𝑡

 𝜔(𝑤,𝑧)

0
  < ∫ (𝑡)𝑑𝑡

 𝜔(𝑤,𝑧)

0
  

Which is a contradiction. Hence z is a unique common fixed point of f, g, S and T in 𝑋𝜔. 

Theorem 3.2.  Let 𝑋𝜔 be a complete modular space and f, g, S, T : 𝑋𝜔  𝑋𝜔 are mappings such that  S(𝑋𝜔)  g(𝑋𝜔) and T(𝑋𝜔)  

f(𝑋𝜔) and one of the spaces f(𝑋𝜔) or g(𝑋𝜔) be a 𝜔-complete subspace of 𝑋𝜔. Suppose there exists numbers 𝑎1, 𝑎2,  . . . 𝑎6  [0,1) 

with at least one of 𝑎𝑖 > 0 (i = 1,2, . . . 6) such that for all x, y  𝑋𝜔 and  > 0, the following assertion hold:  

(3.2.1)     𝑎1+ 2𝑎4+ 𝑎5 < 1 for all 0 ≤ 𝑎1, 𝑎2, 𝑎3 𝑎4, 𝑎5, 𝑎6 < 1.   

(3.2.2)    ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑥,𝑇𝑦)

0
≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑥,𝑔𝑦)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑥,𝑆𝑥)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑦,𝑇𝑦)

0
 

              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑔𝑦,𝑆𝑥) + 𝜔2(𝑓𝑥,𝑇𝑦)

0
  +  𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑦,𝑆𝑥,)[1+ 𝜔(𝑓𝑥,𝑇𝑦)]

1+𝜔(𝑓𝑥,𝑔𝑦)

0
 + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑦,𝑇𝑦)[1+ 𝜔(𝑓𝑥,𝑆𝑥)]

1+ 𝜔(𝑓𝑥,𝑔𝑦)
}

0
  

(3.2.3)   𝜔(𝑆𝑥, 𝑇𝑦) <  

Then f, g, S and T have a coincidence point. If the pairs (f, S) and (g, T) are occasionally weakly compatible then f, g, S and T have 

a common fixed point in 𝑋𝜔.  

Proof: Since the pairs (f, S) and (g, T) are occasionally weakly compatible then there exists points u and v in 𝑋𝜔, such that 

(3.2.4)   Su = fu and gv = Tv 

Now, from (3.2.2) we have 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑢,𝑇𝑣)

0
 ≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑢,𝑔𝑣)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑢,𝑆𝑢)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑇𝑣)

0
 

                                                        + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑔𝑣,𝑆𝑢) + 𝜔2(𝑓𝑢,𝑇𝑣)

0
 + 𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑆𝑢,)[1+ 𝜔(𝑓𝑢,𝑇𝑣)]

1+𝜔(𝑓𝑢,𝑔𝑣)

0
   

                                                         + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑇𝑣)[1+ 𝜔(𝑓𝑢,𝑆𝑢)]

1+ 𝜔(𝑓𝑢,𝑔𝑣)
}

0
    

 

                                = 𝑎1 ∫ (𝑡)𝑑𝑡
𝜔(𝑓𝑢,𝑔𝑣)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑢,𝑓𝑢)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑔𝑣)

0
 

                                              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑔𝑣,𝑓𝑢) + 𝜔2(𝑓𝑢,𝑔𝑣)

0
 + 𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑓𝑢,)[1+ 𝜔(𝑓𝑢,𝑔𝑣)]

1+𝜔(𝑓𝑢,𝑔𝑣)

0
   

                                               + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑔𝑣)[1+ 𝜔(𝑓𝑢,𝑓𝑢)]

1+ 𝜔(𝑓𝑢,𝑔𝑣)
}

0
    

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑢,𝑇𝑣)

0
≤  (𝑎1 + 𝑎5) ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑢,𝑔𝑣)

0
 + 𝑎4 [∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑓𝑢)

0
 + ∫ (𝑡)𝑑𝑡

 𝜔2(𝑓𝑢,𝑔𝑣)

0
] 

By the definition of metric modular and the inequality (2.2.1), we have 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑢,𝑇𝑣)

0
≤  (𝑎1 + 𝑎4 + 𝑎5) ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑢,𝑔𝑣)

0
 + 𝑎4 ∫ (𝑡)𝑑𝑡

 𝜔2(𝑓𝑢,𝑔𝑣)

0
 

                              =  (𝑎1 + 𝑎4 +  𝑎5) ∫ (𝑡)𝑑𝑡
𝜔(𝑓𝑢,𝑔𝑣)

0
 + 𝑎4[∫ (𝑡)𝑑𝑡

 𝜔(𝑓𝑢,𝑓𝑢)

0
 + ∫ (𝑡)𝑑𝑡

 𝜔(𝑓𝑢,𝑔𝑣)

0
] 

                              =  (𝑎1 + 2𝑎4 +  𝑎5) ∫ (𝑡)𝑑𝑡
𝜔(𝑓𝑢,𝑔𝑣)

0
  

(1-𝑎1 − 2𝑎4 − 𝑎5) ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑢,𝑇𝑣)

0
 ≤ 0 

Hence, Su = Tv  

So that  

(3.2.5)    Su = fu = Tv = gv 

Moreover, let z be another point of coincidence of f and S in 𝑋𝜔,  i.e., fz = Sz. 

Now, from (3.2.2), we have 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑧,𝑔𝑣)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑧,𝑆𝑧)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑇𝑣)

0
 

                                              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑔𝑣,𝑆𝑧) + 𝜔2(𝑓𝑧,𝑇𝑣)

0
 + 𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑆𝑧,)[1+ 𝜔(𝑓𝑧,𝑇𝑣)]

1+𝜔(𝑓𝑧,𝑔𝑣)

0
   

                                               + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑇𝑣)[1+ 𝜔(𝑓𝑧,𝑆𝑧)]

1+ 𝜔(𝑓𝑧,𝑔𝑣)

0
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∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
 ≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧,𝑇𝑣)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧,𝑆𝑧)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑇𝑣,𝑇𝑣)

0
 

                              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑇𝑣,𝑆𝑧) + 𝜔2(𝑆𝑧,𝑇𝑣)

0
 + 𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑇𝑣,𝑆𝑧,)[1+ 𝜔(𝑆𝑧,𝑇𝑣)]

1+𝜔(𝑆𝑧,𝑇𝑣)

0
   

                                               + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑇𝑣,𝑇𝑣)[1+ 𝜔(𝑆𝑧,𝑆𝑧)]

1+ 𝜔(𝑆𝑧,𝑇𝑣)

0
    

 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧,𝑇𝑣)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧,𝑆𝑧)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑇𝑣,𝑇𝑣)

0
 

                                              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑇𝑣,𝑆𝑧) + 𝜔2(𝑆𝑧,𝑇𝑣)

0
 + 𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑇𝑣,𝑆𝑧,)[1+ 𝜔(𝑆𝑧,𝑇𝑣)]

1+𝜔(𝑆𝑧,𝑇𝑣)

0
   

                                               + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑇𝑣,𝑇𝑣)[1+ 𝜔(𝑆𝑧,𝑆𝑧)]

1+ 𝜔(𝑆𝑧,𝑇𝑣)

0
    

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
≤  (𝑎1 + 𝑎4 +  𝑎5) ∫ (𝑡)𝑑𝑡

𝜔(𝑆𝑧,𝑇𝑣)

0
 + 𝑎4 ∫ (𝑡)𝑑𝑡

 𝜔2(𝑆𝑧,𝑇𝑣)

0
 

 

                              =  (𝑎1 + 𝑎4 +  𝑎5) ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
 + 𝑎4[∫ (𝑡)𝑑𝑡

 𝜔(𝑆𝑧,𝑆𝑧)

0
 + ∫ (𝑡)𝑑𝑡

 𝜔(𝑆𝑧,𝑇𝑣)

0
] 

                              =  (𝑎1 + 2𝑎4 +  𝑎5) ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
  

(1-𝑎1 − 2𝑎4 − 𝑎5) ∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
 ≤ 0 

Hence, Sz = Tv. 

So that,  

(3.2.6)   Sz = fz = Tv = gv 

Therefore, from (3.2.5) and (3.2.6) we have  

Sz = Su 

This implies that z = u. 

Thus, z = fu = Su  is the coincidence point of f and S. 

Then by Lemma 2.2, z be the unique common fixed point of f and S. 

Similarly, there is another fixed point v in 𝑋𝜔, such that v = gv = Tv. 

Suppose, v  z, then by (3.2.2), we have 

∫ (𝑡)𝑑𝑡
𝜔(𝑆𝑧,𝑇𝑣)

0
≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑧,𝑔𝑣)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑧,𝑆𝑧)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑇𝑣)

0
 

                                              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑔𝑣,𝑆𝑧) + 𝜔2(𝑓𝑧,𝑇𝑣)

0
 + 𝑎5 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑆𝑧,)[1+ 𝜔(𝑓𝑧,𝑇𝑣)]

1+𝜔(𝑓𝑧,𝑔𝑣)

0
   

                                               + 𝑎6 ∫ (𝑡)𝑑𝑡

𝜔(𝑔𝑣,𝑇𝑣)[1+ 𝜔(𝑓𝑧,𝑆𝑧)]

1+ 𝜔(𝑓𝑧,𝑔𝑣)

0
    

∫ (𝑡)𝑑𝑡
𝜔(𝑧,   𝑣)

0
≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑧,𝑣)

0
 + 𝑎4[∫ (𝑡)𝑑𝑡

𝜔(𝑣,𝑧)

0
 + ∫ (𝑡)𝑑𝑡

𝜔2(𝑧,𝑣)

0
] + 𝑎5[∫ (𝑡)𝑑𝑡

𝜔(𝑣,𝑧)

0
   

 

∫ (𝑡)𝑑𝑡
𝜔(𝑧,𝑣)

0
≤  (𝑎1 + 2𝑎4 + 𝑎5) ∫ (𝑡)𝑑𝑡

𝜔(𝑧,𝑣)

0
 . 

Which is a contradiction. 

Hence, z = v. 

Thus, z is a unique common fixed point of f, g, S and T in 𝑋𝜔.   

Remark 3.1. Theorem 3.2 remains true, if we take (𝑡) =1. Hence, we have the following corollary: 

Corollary 3.3.  Let 𝑋𝜔 be a complete modular space and f, g, S, T : 𝑋𝜔  𝑋𝜔 are mappings such that  S(𝑋𝜔)  g(𝑋𝜔) and T(𝑋𝜔)  

f(𝑋𝜔) and one of the spaces f(𝑋𝜔) or g(𝑋𝜔) be a 𝜔-complete subspace of 𝑋𝜔. Suppose there exists numbers 𝑎1, 𝑎2,  . . . 𝑎6  [0,1) 

with at least one of 𝑎𝑖 > 0 (i = 1,2, . . . 6) such that for all x, y  𝑋𝜔 and  > 0, the following assertion hold:  

(3.3.1)     𝑎1+ 2𝑎2+ 𝑎5 < 1 for all 0 ≤ 𝑎1, 𝑎2, 𝑎3 𝑎4, 𝑎5, 𝑎6 < 1.   

(3.3.2)  𝜔(𝑆𝑥, 𝑇𝑦) ≤  𝑎1𝜔(𝑓𝑥, 𝑔𝑦) + 𝑎2𝜔(𝑓𝑥, 𝑆𝑥) + 𝑎3𝜔(𝑔𝑦, 𝑇𝑦) +𝑎4[𝜔(𝑔𝑦, 𝑆𝑥) + 𝜔2(𝑓𝑥, 𝑇𝑦)]  

                                + 𝑎5 
𝜔(𝑔𝑦,𝑆𝑥,)[1+ 𝜔(𝑓𝑥,𝑇𝑦)]

1+𝜔(𝑓𝑥,𝑔𝑦)
  +   𝑎6

𝜔(𝑔𝑦,𝑇𝑦)[1+ 𝜔(𝑓𝑥,𝑆𝑥)]

1+ 𝜔(𝑓𝑥,𝑔𝑦)
 

  (3.3.3)   𝜔(𝑆𝑥, 𝑇𝑦) <  

Then f, g, S and T have a coincidence point. If the pairs (f, S) and (g, T) are occasionally weakly compatible then f, g, S and T have 

a common fixed point in 𝑋𝜔.  

Remark 3.2. If we put S = T = I𝑥𝜔, where I𝑥𝜔 be an identity mapping on 𝑋𝜔 in the theorem 3.2, then we have the following 

corollary: 
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Corollary 3.4.  Let 𝑋𝜔 be a complete modular space and f, g : 𝑋𝜔  𝑋𝜔 are mappings such that  g(𝑋𝜔)  f(𝑋𝜔) and one of the 

spaces f(𝑋𝜔) or g(𝑋𝜔) be a 𝜔-complete subspace of 𝑋𝜔. Suppose there exists numbers 𝑎1, 𝑎2, 𝑎3, 𝑎4  [0,1) with at least one of 

𝑎𝑖 > 0 (i = 1,2, 3,4) such that for all x, y  𝑋𝜔 and  > 0, the following assertion hold:  

(3.4.1)     𝑎1+ 2𝑎2 < 1 for all 0 ≤ 𝑎1, 𝑎2, 𝑎3, 𝑎4 < 1.   

(3.4.2)    ∫ (𝑡)𝑑𝑡
𝜔(𝑔𝑥,𝑔𝑦)

0
≤  𝑎1 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑥,𝑓𝑦)

0
 + 𝑎2 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑥,𝑔𝑥)

0
 + 𝑎3 ∫ (𝑡)𝑑𝑡

𝜔(𝑓𝑦,𝑔𝑦)

0
 

                                              + 𝑎4 ∫ (𝑡)𝑑𝑡
𝜔(𝑓𝑥,𝑔𝑦) + 𝜔2(𝑓𝑥,𝑔𝑦)

0
  

(3.4.3)   𝜔(𝑓𝑥, 𝑔𝑦) <  

Then f and g have a coincidence point. If the pair (f, g) is occasionally weakly compatible then f and g have a common fixed point 

in 𝑋𝜔.  
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