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BED model (Biological Effective Dose) for Hyperfractionation TPO was optimized with 

Pareto-Multiobjective Genetic Algorithms (GA) software. Secondly, the NEffective (Effective 

Tumor Population Clonogens Number) model optimization for breast cancer clonogens 

parameters determination in TPO (Treatment Planning Optimization) is carried out with 3D 

Graphical and Interior Optimization methods. BED model (Biological Effective Dose) for 

Hyperfractionation TPO was optimized with Pareto-Multiobjective GA software. Results 

comprise imaging process series and numerical values of NEffective model for breast cancer 

parameters. Additional results demonstrate Pareto-Multiobjective GA BED model both with 

Pareto-Optimal Front graphics, charts and numerical dose fractionation datasets. For all these 

findings, supplementary new recent applications with 3D Isodoses TPO with AAA 

(Anisotropic Analytic Algorithm) model wedge filters dose delivery is shown. Modern RT 

treatment breast cancer, and tumors in general for Fractionation-dose protocols are explained. 

KEYWORDS: Pareto-Multiobjective Optimization (PMO), Mathematical Methods (MM), Biological Models (BM), 

Radiation Therapy (RT), Initial Tumor Clonogenes Number Population ( N0 ), Effective Tumor Population Clonogenes 

Number ( NEff ),  Linear Quadratic Model (LQM), Integral Equation (IE), Tumor Control Probability (TCP), Biological 

Effective model (BED), Tumor Control Cumulative Probability (TCCP) ,Radiation Photon-Dose (RPD), Nonlinear 

Optimization, Radiotherapy Treatment Planning Optimization (TPO), Source-Surface Distance (SSD), Software Engineering 

Methods, Radiation Photon-Dose, Attenuation Exponential Factor (AEF), Nonlinear Optimization, Radiotherapy Wedge Filter 

(WF), Anisotropic Analytic Model (AAA), Fluence Factor (FF), Omega Factor (OF), Treatment Planning Optimization 

(TPO), Breast Tumor (BT), Artificial Intelligence (AI) . 

I. INTRODUCTION 

The objective of this research is to apply Evolutionary 

Algorithms Pareto-Multiobjective Optimization on two 

radiotherapy BMs. Additionally, computational software to 

present new 3D Isodoses graphs with WF dose delivery in 

AAA model is shown. 

Evolutionary Algorithms constitute a fundamental base for 

Artificial Intelligence fundamentals in radiotherapy TPO. 

BMs provide with better experimentally-based accuracy for 

RT optimal treatment, in order to avoid excess of radiation 

on OARs and get the best NTCP [1-21,74-85]. Evolutionary 

Algorithms are similar, but different than Monte Carlo 

stochastic methods.    

For these purposes Nonlinear GA engineering software was 

designed in a number of programs. The 3D Graphical 

optimization programs and imaging processing techniques 

constitute an improvement from previous contributions 

[75,85]. 

The innovation of this article is to present and prove the GA 

utility to obtain optimal results for two BMs. First one, BED 

model for breast cancer RT treatment. Its  Hyperfractionation 

doses, treatment time with delays tolerance intervals, and 

optimal number of fractions were determined. The second 

model [75,85], corresponds to NEffective (Effective Tumor 

Population Clonogens Number) model,  [ Fowler, J, 1989- 

2010,83 ] . It is a review and innovation from [20,21,75,85].  

https://doi.org/10.47191/ijmcr/v11i1.02
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3D Graphical Optimization for NEffective rate with a range of 

N0 clonogens magnitude was shown in improved results 

from [20,21,75,85].  

GA findings are presented both in 2D graphics and dataset. 

Numerical results and applications to improve breast tumor 

RT treatment are detailed in Tables 2-3. Additionally, new 

3D Isodose graphics for TPO with AAA model in WF beam-

modification delivery, at isocenter depths [ z = 5,15 cm ], is 

proven and graphically detailed.  

Succintly, Nonlinear Pareto-Multiobjective GA optimization 

was performed for BED and NEffective models in breast cancer 

TPO. Further, 3D Graphical Optimization and 3D Isodoses 

are shown and demonstrated.  

    

II. MATHEMATICAL  METHODS AND SOFTWARE 

Two models have been optimized. The first one, Equation 1, 

is the most innovative, based on artificial intelligence basics 

of Evolutionary Algorithms. BEDEffective model implemented 

is the primary one, because refinements/variations were 

presented in literature later on [24].  

The second model constitutes an improvement for 

[20,75,85] publications. Its software and imaging processing 

perspectives were enriched, Eq. 2. 

Formulation for Pareto-Multiobjective GA BED Model 

Designed for Pareto-Multiobjective Optimization, the basic 

BEDEffective model was implemented, [24]. This BED model 

constitutes the fundamentals for fractionate radiotherapy. 

Therefore, the following algorithm was set [Sketch 1],  

 
 

Sketch 1.- PMO algorithm [ Casesnoves, 2021-2022 ] 

implemented in software, Figures 1-4. The intervals for 

optimization parameters in software are detailed.  

Formulation for NEffcetive Clonogens Model 

For determination of NEffective Clonogens population number, 

[75,85], a standard model was selected for [Fowler, J, 1989-

2010]. The experimental parameters for breast cancer RT 

treatment TPO protocol are shown in Table 1, based on  [20-

25,75,85].  This mathematical model for Effective Number 

of Clonogens population during RT treatment time, [ 

Fowler, J, 1989- 2010,83 ], whose equation was detailed 

from [ 23,24 ] reads, 

 
(2) 

 

where  

NEffective :  Number of tumor clonogens in function of RT 

treatment protocol time. 

N0 : Initial Clonogens Number at starting RT time. 

T : Total RT Treatment time. 

TDelay : Number of delay days after standard RT treatment 

time. 

TPotential : Potential Tumor Doubling Clonogens time. 

 

NEffective parameter is important for TPO with BMs. The 

implementation of this parameter into BMs provides with 

accuracy in TCP, BED, and NTCP essential determinations 

for TPO. Biomodels equations depending on N0 and NEffective  

are not very complicated, and based usually on exponential 

functions, statistical distributions [ Binomial or Poisson ] 

usually, and two radiosensitivity key parameters. Namely, [ 

α and β biological modelling parameters ], whose 

magnitudes intervals can be determined by in vitro or in 

vivo experimental. An Integral Equation Model (IEM) for 

TCCP, based on new Linear Quadratic Model and Statistical 

Binomial Distribution approximation was published in 

recent contributions [20,75,85]. The simplest Linear 

Quadratic model modified equation was published [75,85]. 

Dataset and approximations for breast cancer implemented 

into Eq.2 model is shown in Table 1, [20-25,75,85] .  
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Table 1.- The simultions were done with approximate 

numerical-experimental data from several authors. TPotential 

in breast cancer is taken 14 days. However, that figure is an 

approximation based on radiobiological experimental.  

Simulation dataset from [19,21-25,74,75,80,81,85] . 

 
 

III. RESULTS 

Figures 1-4 show PMO results. Table 2 details numerical 

PMO results. The most important to check the validity of 

results is Figure 1 that shows Pareto Front of the objective 

function of Equation 1. Average distance among generations 

is presented in Figure 2. Number of generations selected 

was 300-800. Score histograms, Figure 3, prove the validity 

of the software and PMO done. 

Results for Pareto-Multiobjective GA BED Model 

Imaging processing PMO results are presented in imaging 

processed chart commented, Figures 1-4. Brief of Numerical  

Results from software are included in Table 2. 

 

Figure 1.-This is the most important graph given by Matlab 

when PMO is performed to check the optimization accuracy. 

The fundamentals of Nonlinear PMO calculations are 

usually based on 2D PMO functions charts. In this study 

both f1  and f2 show low residuals. Therefore, results are 

acceptable. 

 

 

Figure 2.- This is the lined-marked inset graph showing the 

Pareto Front. The lower chart details the average distance 

among generations. Since the number of functions 

calculated is quite high, the points that show the distance 

vary significantly for 800 generations. The fundamentals of 

PMO calculations are usually based on 2D PMO functions 

charts. In this study both Objective f1 and f2 that show low 

residuals.  

 

 
Figure 3.-Complementary 2D graphs showing that 100% 

criteria is met and number of individuals paired-histograms. 

Objective f1 and f2 are differentiated by blue and yellow 

colors.  

   

 
Figure 4.- Complementary 2D graphs details showing 

number of children in function of individuals. 

 

Results and Review for NEffcetive Clonogens Model 

This section shows a review of NEffective model of Eq. (2). 

Figures 5-7 show 3D results od Eq, 2 for NEffective magnitude 

determination [ Z axis] in function of N0 and RT breast 

cancer parameters from [20,75,85]. Namely, treatment 

extension time for unexpected delays or weekends gaps, 

Tpotential, N0 standards, and total RT time-schedule. Figures, 
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6-7 are set with logarithmic scales. The gaps in RT 

treatment schedule could very because the weekends, 

holidays, patient secondary effects, psychological 

difficulties, hospital technical equipment/facilities, etc. 

 

 
Figure 5.- Matlab NEffective Rate  simulation 3D image for 

breast tumors. Analytic geometry for large clonogens 

magnitude trend is smooth exponential or parabolic. Image 

was set without any logarithmic scale. It is sharply seen that 

NEffective magnitude grows according to RT treatment delay 

time. Matrices for Image Processing have about [200-250 x 

200-250 ] elements.  

 

 
Figure 6.- Matlab NEffective Rate  simulation 3D image for 

breast tumors. At Z and X axes, logarithmic scale. It is 

sharply seen that NEffective magnitude grows according to RT 

treatment delay time. Matrices for Image Processing have 

about [200-250 x 200-250 ] elements.  

 

 
Figure 7.- Matlab NEffective Rate  simulation 3D image for 

breast tumors. Analytic geometry is shown with arrow at 

high magnitude clonogens. At X axis, logarithmic scale. It is 

sharply seen that NEffective magnitude grows according to RT 

treatment delay time. The peak is better seen with this 

double logarithmic scale. Matrices for Image Processing 

have about [200-250 x 200-250 ] elements. At figure, inset, 

axes interval modifications explained. 

 

Brief of Numerical Results 

Numerical results resume is detailed in Table 2. Chebyshev 

norms were set for [ 60 , 70 ] Gy interval. Dose fraction 

magnitude should be less than 2 Gy approximately. 

Numerical Results for NEffective model are developed and 

reviewed from the innovation from [20,21,75,85].   

 

Table 2.-Brief of PMO optimization numerical results. 

 
 

IV. 3D ISODOSES APPLICATIONS 

Primary demonstration of new 3D Isodoses Treatment 

Planning System, [Casesnoves invention, 2022], were 

explained and published previously [85]. There are three 3D 

Isodoses types. Namely, Type 1 [ Vertical 3D Isodoses, 

Figure 8 ], Type 2 [ Horizontal 3D Isodoses, Figure 9 ], and 

Type 3 [ Combination of Vertical and Horizontal 3D 

Isodoses, according to requirements of the planning systems, 

an dthe geometry of the tumor for imaging guided RT] in 

contrast to classical 2D Isodoses. 3D Isodoses radiotherapy 

simulations software was presented through a 3D graphics 

series engineering software [85]. Figures 8-9 show 

improved 3D Isodoses image processing for 18 Mev with [ 

z= 5,15 cm ] AAA model dose-deposition isocenter depths 

[1-20,83-85]. These depths are convenient for TPO in 

mammary glands size ranges, from small glands to bigger 

ones. 
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Figure 8.- [ Grayscale imaging processing software ] . For 

future implementation of BMs, a new 3D isodoses 

perspective in imaging-software developed from [85]. It is a 

Type I lateral-oblique imaging perspective of 3D Isodoses 

for z=5 cm [first], and z=15 cm [upper, scaled +0.25]. It is 

clear the height dose difference related to depth absorbed 

dose deposition. This Type I lateral imaging perspective of 

3D Isodoses for z=15 cm [upper, scaled +0.25], and z=5 cm 

[lower] demonstrate the utility and innovation, [84], for 

TPO modern systems [Casesnoves, 2022]. It is sharp the 

dose difference magnitudes that can be get related to depth 

absorbed dose deposition. Dosimetry calculations,TPO, and 

photon-dose approximations can be carried out with these 

3D Isodoses charts. 

 

 
Figure 9.- [ Grayscale imaging processing software ] .For 

future implementation of BMs, a new 3D isodoses 

perspective in imaging-software developed from [85]. It is a 

Type II lateral imaging perspective of 3D Isodoses for z=5 

cm [left], and z=15 cm [right, scaled +30]. It is clear the 

height dose difference related to depth absorbed dose 

deposition. 

 

V. RADIOTHERAPY MEDICAL PHYSICS 

APPLICATIONS 

Table 3 shows main applications for TPO in breast tumors 

derived from the study. The most important utility is the 

efficacious precision of time, dose and fractions RT 

treatment.  

 

 

 

 

 

 

Table 3.- Radiotherapy medical physics basic applications 

to improve the quality of RT breast tumors treatment. 

 
 

VI. DISCUSSION AND CONCLUSIONS 

The objective of the study was to optimize BED model for 

Hyperfractionation TPO with Artificial Intelligence Pareto-

Multiobjective Genetic Algorithms (GA) new software. The 

second optimization-modelling purpose was the NEffective 

algorithms(s) optimization for breast cancer clonogens 

parameters determination with 3D Graphical and Interior 

Optimization methods. Complementary, new recent 

applications with 3D Isodoses TPO with AAA (Anisotropic 
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Analytic Algorithm) model wedge filters dose delivery were 

improved/developed. 

Results comprise acceptable Pareto-Multiobjective Genetic 

Algorithms (GA) 2D imaging charts and numerical dataset 

for breast cancer Hyperfractionation protocol, Table 2. 3D 

Isodose graphics for TPO with AAA model in WF beam-

modification delivery, at isocenter depths [ z = 5, 15 cm ], 

were shown and graphically demonstrated. 

Advantages of Artificial Intelligence GA method are the 

acceptable optimal results, both in 2D Pareto-Front with low 

residuals and numerical data. Inconvenients of GA method 

is the rather longer running time compared, for example, to 

Inverse Least Squares method [1-21].  This difficulty 

becomes evident from 250-300 generations figures are 

implemented into the programming design [ from 2.5 

minutes on ]. The running time for the NEffective algorithms(s) 

3D optimization charts and 3D Isodoses vary at [ 1 , 4 ] 

minutes interval depending on the imaging processing tiles 

number and selected Matlab subroutine. 

Grosso modo, Pareto-Multiobjective GA optimization was 

performed for BED and NEffective models in breast cancer 

TPO. 3D Graphical Optimization and 3D Isodoses are 

proven and displayed.  

 

VII. SCIENTIFIC ETHICS STANDARDS 

GA Artificial intelligence software was developed originally 

by Dr Casesnoves on September2022. All initial modelling 

equations were developed from previous researchers 

contributions [22-25]. The NS initial formulation and 

integral Tumor Control Cumulative Probability, (TCCP), 

were published in [22-25]. From those equations, all the 

mathematical development implementation is original from 

the author [1-21,75]. This article has previous papers 

mathematical techniques, [1-21, 75], whose use was 

essential to make model numerical solutions and 

approximations. Equation 2 and NEffective model are 

developed and reviewed from [20,21,75,85], essential for 

study understanding. Some information of [20,2175,85] was 

presented for results clarification. The number of Dr 

Casesnoves publications at references is intended also for 

reader’s learning. This study was carried out, and their 

contents are done according to the European Union 

Technology and Science Ethics and International Scientific 

Ethics norms [38,43-45]. This research was completely done 

by the author, the calculations, images, mathematical 

propositions and statements, reference citations, and text is 

original from the author. When a mathematical statement, 

proposition or theorem is presented, demonstration is always 

included. If any results inconsistency is found after 

publication, it is clarified in subsequent contributions. When 

a citation such as [Casesnoves, ‘year’] appears, there is not 

vanity or intention to brag. The article is exclusively 

scientific, without any commercial, institutional, academic, 

religious, religious-similar, non-scientific theories, personal 

opinions, friends and/or relatives favours, political ideas, or 

economical influences. When anything is taken from a 

source, it is adequately recognized. Ideas and some text 

expressions/sentences from previous publications were 

emphasized due to a clarification aim [38,43-45]. 
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APPENDIX 
This Appendix shows the most important Figures to demonstrate the results sharply. 

 

Figure 1 [enhanced].-This is the most important graph given by Matlab when PMO is performed to check the optimization 

accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this study both f1  

and f2 show low residuals. Therefore, results are acceptable. 

 

 
 

Figure 2 [enhanced].- This is the lined-marked inset graph showing the Pareto Front. The lower chart details the average distance 

among generations. Since the number of functions calculated is quite high, the points that show the distance vary significantly for 

800 generations. The fundamentals of PMO calculations are usually based on 2D PMO functions charts. In this study both 

Objective f1 and f2 that show low residuals. Enhanced in Appendix. 
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Figure 7 [enhanced].- Matlab NEffective Rate  simulation 3D image for breast tumors. Analytic geometry is shown with arrow at 

high magnitude clonogens. At X axis, logarithmic scale. It is sharply seen that NEffective magnitude grows according to RT 

treatment delay time. The peak is better seen with this double logarithmic scale. Matrices for Image Processing have about [200-

250 x 200-250 ] elements. At figure, inset, axes interval modifications explained. Enhanced in Appendix. 

 

 

Figure 8 [enhanced].- [ Grayscale imaging processing software ] . For future implementation of BMs, a new 3D isodoses 

perspective in imaging-software developed from [85]. It is a Type I lateral-oblique imaging perspective of 3D Isodoses for z=5 cm 

[first], and z=15 cm [upper, scaled +0.25]. It is clear the height dose difference related to depth absorbed dose deposition. This 

Type I lateral imaging perspective of 3D Isodoses for z=15 cm [upper, scaled +0.25], and z=5 cm [lower] demonstrate the utility 

and innovation, [84], for TPO modern systems [Casesnoves, 2022]. It is sharp the dose difference magnitudes that can be get 

related to depth absorbed dose deposition. Dosimetry calculations,TPO, and photon-dose approximations can be carried out with 

these 3D Isodoses charts. Enhanced in Appendix. 

 

 


