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The ordinary least squares (OLS) regression models only the conditional mean of the response and is 

computationally less expensive. Quantile regression on the other hand is more expensive and rigorous 

but capable of handling vectors of quantiles and outliers. Quantile regression does not assume a particular 

parametric distribution for the response, nor does it assume a constant variance for the response, unlike 

least squares regression. This paper examines the impact of various quantiles (tau vector) on the 

parameter estimates in the models generated by the quantile regression analysis. Two data sets, one with 

normal random error with non-constant variances and the other with a constant variance were simulated. 

It is observed that with heteroscedastic data the intercept estimate does not change much but the slopes 

steadily increase in the models as the quantile increase. Considering homoscedastic data, results reveal 

that most of the slope estimates fall within the OLS confidence interval bounds, only few quartiles are 

outside the upper bound of the OLS estimates. The hypothesis of quantile estimates equivalence is 

rejected, which shows that the OLS is not appropriate for heteroscedastic data, but the assumption is not 

rejected in the case of homoscedastic data at 5% level of significance, which clearly proved that the 

quantile regression is not necessary in a constant variance data. Using the following accuracy measures, 

mean absolute percentage error (MAPE), the median absolute deviation (MAD) and the mean squared 

deviation (MSD), the best model for the heteroscedastic data is obtained at the first quantile level (tau = 

0.10). 
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INTRODUCTION 

Standard linear regression techniques summarize the average 

relationship between a set of regressors and the outcome 

variable based on the conditional mean function E(y/x). This 

provides only a partial view of the relationship, as we might be 

interested in describing the relationship at different points in the 

conditional distribution of y. Quantile regression provides that 

capability. 

Analogous to the conditional mean function of linear 

regression, we may consider the relationship between the 

regressors and outcome using the conditional median function 

Q (y/x), where the median is the 50th percentile, or quantile 

 , of the empirical distribution. The quantile  (0, 1) is that 

y which splits the data into proportions  below and 1 -

above:  )(yF and )(1 
 Fy :for the median,   = 

0:5. The classic paper for quantile regression is Koenker and 

Bassett (1982). Koenker (2005) presents an extensive 

examination of the econometric theory related to a wide variety 

of quantile models. Some useful and accessible overviews of 

quantile regression analysis are presented in Buchinsky (1998) 

and Koenker and Hallock (2001). Buchinsky (1994, 1998) 

helped popularize the use of quantile regression analysis with 

highly influential papers on the distribution of wages. The 

approach has since been used quite extensively in labour 

economics. Some examples include Albrecht, Bjorklund, and 

Vroman (2003), Eide and Showalter (1999), Hartog, Pereira, 
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and Vieira (2001), and Machado and Mata (2005). Examples 

from urban economics include Carillo and Yezer (2009), Chen, 

Kuan, and Lin (2007), Cobb-Clark and Sinning (2011), Craig 

and Pin (2001), Deng, McMillen, and Sing (2012), and 

Gyourko and Tracy (1999). The robustness of quantile 

regression makes it an attractive alternative for modeling the 

heavy-tailed behaviour of portfolio returns. Xiao, Guo, and 

Lam (2015) discuss an approach that uses an AR(1)–ARCH(7) 

quantile regression model for the return rate at time t. This paper 

however examines the impact of various quantiles (tau vector) 

on the parameter estimates in the models generated by the 

quantile regression analysis. 

  

Methodology: Fitting Quantile Regression Models 

The standard regression model for the average response is  

  nixxyE ippii , . . . ,1        , . . .110    

And the s'j  are estimated by solving the least squares 

minimization problem 
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In contrast, the regression model for quantile level  of the 

response is 
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And the s)'( j  are estimated by solving the least squares 
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where )0 ,max()1()0 ,max()( rrr   . The 

function )(r is referred to as the check loss, because its 

shape resembles a check mark. 

For each quantile level  , the solution to the minimization 

problem yields a distinct set of regression coefficients. Note 

that  = 0.5 corresponds to median regression and )(2 5.0 r is 

the absolute value function. 

Simulation of data 

The intuition behind quantile regression is easy to illustrate 

using a simple simulated data set. The raw data are shown in 

fig. 1.  To make the graphs easier to read, the single explanatory 

variable, x, is limited to the set of integers from 1 to 100. Each 

integer occurs at least one time in the simulated data set, leading 

to 200 observations in total. Normal random error with non-

constant variances were generated for the first case while a 

constant variance was used for the second case. 

 

DATA AND DATA ANALYSIS  

Heteroskedastic data: Quantile regression becomes more 

interesting when the errors are not homoskedastic.  For this 

paper, the data used was obtained through simulation. All data 

simulation and analyses were done using R - 3.5.2 and Minitab 

18.  

 
Fig.1: Simulated non-constant variance data set 
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Fig.2: Plot of the fitted line with confidence interval for non-constant variance 

  

 
Fig.3: The intercept estimate and the steadily increasing slopes 

 

The intercept estimate doesn’t change much but the slopes steadily increase. 
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Table 1: Summary of models with various quantiles (tau) in heteroskedastic data 

tau parameter coef. 

std. 

error p-value lower bound upper bound 

0.1             

 constant 7.7019 0.19382 0.0000 7.3337 7.8654 

 slope 0.0216 0.00468 0.0000 0.0163 0.0313 

0.2       

 constant 7.9378 0.15631 0.0000 7.7504 8.1423 

 slope 0.0306 0.00479 0.0000 0.0234 0.0359 

0.3       

 constant 8.0836 0.14606 0.0000 7.7713 8.1808 

 slope 0.0336 0.00407 0.0000 0.0294 0.0419 

0.4       

 constant 8.0777 0.11032 0.0000 7.9229 8.1741 

 slope 0.0409 0.00333 0.0000 0.0369 0.0443 

0.5       

 constant 8.1562 0.12948 0.0000 8.0138 8.3581 

 slope 0.0445 0.00322 0.0000 0.0393 0.0493 

0.6       

 constant 8.3376 0.15183 0.0000 8.0918 8.4967 

 slope 0.0464 0.00546 0.0000 0.0425 0.0557 

0.7       

 constant 8.3165 0.11039 0.0000 8.1475 8.4650 

 slope 0.0567 0.00386 0.0000 0.0503 0.0611 

0.8       

 constant 8.2872 0.11517 0.0000 8.1596 8.4228 

 slope 0.0671 0.00591 0.0000 0.0580 0.0730 

0.9       

 constant 8.4039 0.18047 0.0000 8.2278 8.6533 

 slope 0.0791 0.00571 0.0000 0.0704 0.0846 

OLS R-square 0.4778     

 constant 8.1039 0.2060 0.0000 7.6977 8.5101 

  slope 0.0482 0.0036 0.0000 0.0412 0.0552 
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Fig.4: (a) OLS and quantile estimated intercepts for heteroskedastic data. (b) OLS and quantile estimated slopes for 

heteroskedastic data 

 

The plots visualize the change in quantile coefficients along 

with confidence intervals. The intercept estimate does not 

change much but the slopes steadily increase. Each black dot is 

the slope coefficient for the quantile indicated on the x axis. The 

red lines are the least squares estimates and its confidence 

interval. It can be seen that the lower and upper quartiles are 

well beyond the least squares estimate. This shows that the OLS 

may not be appropriate for establishing the relationship 

between x and y. 

Testing for the equivalence of quantile estimates for 

heteroscedastic data 

We can also formally test the equivalence of the quantile 

estimates across quantiles, which allows us to estimate the 

model for each of several quantiles in a single model, allowing 

for cross-equation hypothesis tests. 

Quantile Regression Analysis of Deviance Table 

Model: y ~ x 

Joint Test of Equality of Slopes: tau in {0.1 0.25 0.5 0.75 0.9} 

  Df Resid Df  F-value   P-value    

  4   9    96  12.0690   0.0000 

The hypothesis of equality is obviously rejected of the 

estimated coefficients for the five quartiles in each case. This 

shows that the slopes in the quantile regression models are not 

the same, therefore the OLS is not appropriate for 

heteroscedastic data. 

 

 

 

 

 

 

0.2 0.4 0.6 0.8

7
.4

7
.8

8
.2

8
.6

(Intercept)

0.2 0.4 0.6 0.8

0
.0

2
0

.0
5

0
.0

8

x



“Measuring the Impact of Tau vector on Parameter Estimates in the Presence of Heteroscedastic data in Quantile 

Regression Analysis” 

3225 Ajao, I. O.1, IJMCR Volume 11 Issue 01 January 2023 

 

Table 2: Summary of models with various quantiles (tau) in homoskedastic data 

tau parameter coef. 

std. 

error p-value lower bound  upper bound  

0.1             

 constant 7.5538 0.1326 0.0000 7.2945 7.7071 

 slope 0.0474 0.0020 0.0000 0.0452 0.0518 

0.2       

 constant 7.7999 0.0958 0.0000 7.6559 7.8737 

 slope 0.0472 0.0016 0.0000 0.0455 0.0499 

0.3       

 constant 7.8868 0.0957 0.0000 7.6872 8.0190 

 slope 0.0475 0.0017 0.0000 0.0449 0.0505 

0.4       

 constant 7.9960 0.0704 0.0000 7.8653 8.0856 

 slope 0.0479 0.0014 0.0000 0.0454 0.0494 

0.5       

 constant 8.0657 0.0960 0.0000 7.9824 8.2551 

 slope 0.0484 0.0016 0.0000 0.0455 0.0500 

0.6       

 constant 8.2533 0.0806 0.0000 8.0921 8.3388 

 slope 0.0468 0.0017 0.0000 0.0459 0.0505 

0.7       

 constant 8.3074 0.0681 0.0000 8.1943 8.4077 

 slope 0.0489 0.0015 0.0000 0.0464 0.0510 

0.8       

 constant 8.3743 0.0673 0.0000 8.2823 8.4783 

 slope 0.0504 0.0017 0.0000 0.0475 0.0527 

0.9       

 constant 8.5503 0.1388 0.0000 8.4309 8.7821 

 slope 0.0517 0.0028 0.0000 0.0471 0.0552 

OLS R-square 0.9037     

 constant 8.0703 0.0655 0.0000 7.9411 8.1994 

  slope 0.0490 0.0011 0.0000 0.0467 0.0512 
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Fig.5: (a) OLS and quantile estimated intercepts for homoskedastic data. (b) OLS and quantile estimated slopes for 

homoskedastic data 

 

The graph in  fig. 5  illustrates how the effect of the predictor x, 

varies over quantiles, and how the magnitude of the effects at 

various quantiles differ considerably from the OLS coefficient, 

even in terms of the confidence intervals around each 

coefficient. 

It can be deduced from table 2 that OLS is better for an 

homoskedastic data, most of the slope estimates fall within the 

OLS confidence interval bounds, only few quartiles are outside 

the upper bound of the OLS estimates. 

Testing for the equivalence of quantile estimates for 

homoscedastic data 

Formal test for the equality of the quantile estimates across 

quantiles for the several models arising from the tau vector is 

also performed for homoscedastic data. 

Quantile Regression Analysis of Deviance Table 

Model: y ~ x 

Joint Test of Equality of Slopes: tau in {0.1 0.25 0.5 0.75 0.9} 

 Df  Resid  Df  F-value  Pr(>F) 

 4     9    96  0.7824   0.5367 

The estimates clearly do not reject the hypothesis of equality of 

the estimated coefficients for the five quartiles in each case. 

Since there is no significant difference in the quantile slopes of 

the several models, it can be concluded that the OLS can be 

used for the homoscedastic data. 

Detecting the best predicting quantile model in an 

heteroscedastic data 

It is of necessity to detect the best predicting model out of the 

numerous quantile models. Using the simulated data, only five 

models were formulated, that is when tau = 0.1, 0.25, 0.50, 0.75, 

and 0.90, the last one is the normal OLS model. The graph 

below displays the various predicted values as generated from 

the models and predicted values were obtained from different 

quantile levels. 

0.2 0.4 0.6 0.8

7.
5

8.
0

8.
5

(Intercept)

0.2 0.4 0.6 0.8

0.
04

6
0.

05
0

0.
05

4

x



“Measuring the Impact of Tau vector on Parameter Estimates in the Presence of Heteroscedastic data in Quantile 

Regression Analysis” 

3227 Ajao, I. O.1, IJMCR Volume 11 Issue 01 January 2023 

 

 
Fig. 6: Regression Models for Quantile Levels with heteroscedastic data 

 
Fig. 7: Regression Models for Quantile Levels with homoscedastic data 

 

In fig. 7, the median regression model (tau = 0.5) coincides with 

the OLS model. This means that either of them has the best fit 

for the homoscedastic data. 

Using the measure of accuracy to determine the best model 

in a heteroscedastic data 

The models obtained from the various quantile levels were used 

to make predictions. Metrics of Accuracy measures employed 

in this paper are the mean absolute percentage error (MAPE), 

the median absolute deviation (MAD) and the mean squared 

deviation (MSD) were then carried out on each predicted 

values. The model with the least accuracy measure values is the 

best.  
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Table 3: Summary of models with various quantiles (tau) in homoskedastic data 

  OLS tau = 0.10 tau = 0.25 tau = 0.50 tau = 0.75 tau = 0.90 

MAPE 0.2340 0.1241 0.1687 0.2181 0.2659 0.3319 

MAD 0.0242 0.0109 0.0161 0.0223 0.0295 0.0397 

MSD 0.0006 0.0001 0.0003 0.0005 0.0009 0.0016 

 

It is obvious from table 3 that the best model that establishes 

relationship between the response variable y and the predictor 

x and for a reliable prediction is when tau = 0.10, having the 

least values in the accuracy measures.  

 

SUMMARY OF RESULTS 

It can be seen from fig. 3 and table 1 and table 2 that in 

heteroscedastic data the intercept estimate does not change 

much but the slopes increase consistently in the models as the 

quantiles increase. On the other hand using homoscedastic data, 

results show that most of the slope estimates fall within the 

confidence interval bounds of the OLS, few quantiles are 

outside the upper bound of the estimates. The hypothesis that 

the quantile estimates are equal is rejected at 95% confidence 

level, which shows that the OLS is not appropriate for 

heteroscedastic data, however, the assumption is not rejected in 

the case of homoscedastic data at 95% confidence level, which 

shows that the quantile regression is not necessary in a constant 

variance data. The best model for the heteroscedastic data is 

obtained at the first quantile level (tau = 0.10), this is obtained 

using the accuracy measures: mean absolute percentage error 

(MAPE), the median absolute deviation (MAD) and the mean 

squared deviation (MSD). 

 

CONCLUSION AND RECOMMENDATION 

Quantile regression differs from conventional linear regression 

in its emphasis on issue related to the distribution of a 

dependent variable. The Monte Carlo study is a good 

representative of a situation in which OLS estimation can give 

misleading results. Since varying values of quantiles determine 

to a large extent the outcome of estimates, quantile regression 

is therefore recommended whenever non-constant variance is 

detected in data for reliable model and predictions, it is also 

robust to data having outliers. Although quantile regression 

methods are usually applied to continuous-response data, it is 

possible to utilize them in the context of count data, such as 

would appear in a Poisson or negative binomial model.  
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