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In this paper, we review two properties of completeness known as the Bourbaki-completeness 

and cofinal Bourbaki-completeness in the setting of metric spaces. These notions came from 

new classes of generalized Cauchy sequences appearing when  characterizing the so-called 

Bourbaki-boundedness in a similar way that Cauchy sequences characterize the totally 

boundedness. For the clustering of Bourbaki–Cauchy sequences and cofinally Bourbaki–

Cauchy sequences, we have respectively what is call Bourbaki-completeness and cofinal 

Bourbaki-completeness of metric spaces. The topological problem of metrizability by means of 

a Bourbaki-complete or a cofinally Bourbaki-complete metric has also been considered.  

Finally, we present detailed review of some relationships and mutual differences between these 

kinds of completeness. 
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1.  INTRODUCTION 

The concept of two new properties of completeness was 

introduced by M. Isabel Garrido and Ana S. Mero�̃�o (2014) 

and some classes of metric spaces satisfying stronger than 

completeness but weaker than compactness have been 

recently studied by many authors. A good reference for this 

topic is the nice paper by Beer (2008), entitled “Between 

compactness and completeness”. Examples of these 

properties are the bounded compactness, the uniform local 

compactness, the cofinal completeness, the strong cofinal 

completeness, recently introduced by Beer (2012), as well as 

the so-called UC-ness for metric spaces. The study of all these 

spaces have shown to be not only interesting by themselves 

but also in connection with some problems in Convex 

Analysis, in Optimization Theory and in the setting of 

Convergence Structures on Hyperspaces, see for instance 

Beer, G and S. Levi (2008). 

First of all, note that a way to achieve a property stronger than 

completeness for a metric space consists of asking for the 

clustering of all the sequences belonging to some class bigger 

than the class of Cauchy sequences. Thus, the class of 

Bourbaki–Cauchy sequences and the class of cofinally 

Bourbaki–Cauchy sequences have been defined. These 

sequences appear in a metric space when the so-called 

Bourbaki-bounded sets are cosidered. This notion of 

boundedness was introduced by Atsuji (1958) in order to 

exhibit metric spaces where every real-valued uniformly 

continuous function is bounded but they are not necessarily 

totally bounded. The name of Bourbaki-bounded cames from 

the book of Bourbaki (1966), where these subsets in uniform 

spaces is considered.The Bourbaki-bounded subsets of a 

metric space have been characterized in terms of sequences 

in the same way that Cauchy sequences characterize total 

boundedness. Thus, a new type of sequences appears that is 

call Bourbaki–Cauchy sequences. Next, studies have shown 

another class of sequences which are cofinal with respect to 

the previous ones, in the sense that the residuality of the 

indexes is replaced by the cofinality. Thus, we present a 

detailed review of both of these properties showing, in 

particular, that they are stronger than the usual completeness 

but weaker than compactness, and also that they are mutually 

different. The general aim of this paper is to review the 

relationships and mutual differences between the two 

properties of completeness in the context of metric spaces. 
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2. PRELIMINARIES 

Definition 1. Let (𝑋, 𝑑) be a metric space. A subset 𝐵 ⊂ 𝑋 is 

said to be bounded if it has finite diameter, 𝑑(𝐵) < ∞, that is 

, when it is contained in some open ball. 

Definition 2. Let (𝑋, 𝑑) be a metric space and let {𝑥𝑛} be a 

sequence in it. The sequence {𝑥𝑛} is said to be a Cauchy 

sequence if for every 𝜀 > 0 there exists a positive integer 𝑁 

such that 𝑑(𝑥𝑛 , 𝑥𝑚) < 𝜀 for all 𝑛, 𝑚 ≥ 𝑁. 

Definition 3. A metric space (𝑋, 𝑑) is said to be complete if 

every Cauchy sequence in it converges to an element of it 

Definition 4. Let (𝑋, 𝑑) be a metric space. A subset 𝐵 ⊂ 𝑋 is 

said to be totally bounded if, and only if , every sequence in 

𝐵 has a Cauchy subsequence 

Definition 5. A subset 𝐵 of  a metric space (𝑋, 𝑑) is said to 

be a Bourbaki – bounded subset of 𝑋 if for every 𝜀 > 0 there 

exist 𝑚 ∈ 𝑁 and a finite collection of points 𝑝1, . . . , 𝑝𝑘 ∈ 𝑋 

such that, 𝐵 ⊂ ⋃ 𝐵𝜀
𝑚(𝑝𝑖)𝑘

𝑖=1 . 

Note that the family 𝑩 of all Bourbaki- bounded subsets of 𝑋 

forms a bornology in 𝑋, that is , 𝐵 satistfies the following 

conditions: (i) for every 𝑥 ∈ 𝑋, the set {𝑥} ∈ 𝑩;  (ii) if 𝐵 ∈ 𝑩 

and 𝐴 ⊂ 𝐵, then 𝐴 ∈ 𝑩;  (iii)  if 𝐴, 𝐵 ∈ 𝑩 then 𝐴 ∪ 𝐵 ∈ 𝑩. 

Definition 6. A let (𝑋, 𝑑) be a metric space. A sequence 

(𝑥𝑛)𝑛∈𝑁 is said to be Bourbaki – Cauchy in 𝑋 if for every 𝜖 >

0 there exist 𝑚 ∈ 𝑁 and 𝑛0 ∈ 𝑁 such that for some 𝑝 ∈ 𝑋 we 

have that 𝑥𝑛 ∈ 𝐵𝜀
𝑚(𝑝), for every 𝑛 ≥ 𝑛0.  

Definition 7. A sequence (𝑥𝑛)𝑛𝜀𝑁 in a metric space (𝑋, 𝑑) is 

called cofinally Cauchy if for every ε > 0 there exists an 

infinite subset 𝑁𝜀  of 𝑵 such that for each 𝑖, 𝑗 ∈ 𝑁𝜀 we have 

𝑑 (𝑥𝑖 , 𝑥𝑗) < 𝜀.  

Definition 8. A let (𝑋, 𝑑) be a metric space. A sequence 

(𝑥𝑛)𝑛∈𝑁 is said to be cofinally Bourbaki – Cauchy in 𝑋 if for 

every 𝜖 > 0 there exist 𝑚 ∈ 𝑁 and an infinite subset 𝑁𝜀 ⊂ 𝑁 

such that for some 𝑝 ∈ 𝑋 we have that 𝑥𝑛 ∈ 𝐵𝜀
𝑚(𝑝), for every 

𝑛 ∈ 𝑁𝜀.  

Definition 9. A metric space (𝑋, 𝑑) is said to be Bourbaki – 

complete if every Bourbaki – Cauchy sequence in 𝑋 clusters 

( i.e., it has some convergent subsequence ). 

Definition 10. A metric space is said to be cofinally Bourbaki 

–complete if every cofinally Bourbaki – Cauchy sequence 

clusters. 

 

3. BOURBAKI – CAUCHY AND COFINALLY 

BOURBAKI – CAUCHY SEQUENCES 

Recall that in a metric space a subset is said to be (metric) 

bounded if it has finite diameter, that is, when it is contained 

in some open ball. This notion of boundedness is quite natural 

but it has some inconvenience. Namely, to be metric bounded 

is not a uniform invariant, that is, it is not preserved under 

uniform homeomorphisms. However, in the setting of 

normed spaces metric boundedness is a uniform property and 

in fact the bounded subsets can be characterized by means of 

uniformly continuous functions. Indeed, it is easy to see that 

a subset 𝐵 of a normed space 𝑋 is bounded by the norm if, 

and only if, for every real-valued uniformly continuous 

function f on X, we have that 𝑓(𝐵) is bounded in 𝑅 endowed 

with its usual metric. As we have said in the introduction, it 

was Atsuji who introduced in (1958) the notion of Bourbaki-

bounded metric space (under the name of finitely-chainable 

metric space) and he showed that they are just the metric 

spaces having bounded image under every real-valued 

uniformly continuous function defined on it. These spaces 

were also considered in the frame of uniform spaces by 

Hejcman in (1959) who called them simply as bounded. 

 

Theorem 1. Let (𝑋, 𝑑) be a metric space, the following 

statements are equivalent: 

(1) 𝑋 is a Bourbaki-bounded metric space. 

(2) (Atsuji) For every real uniformly continuous function 𝑓 

on 𝑋, 𝑓(𝑋) is bounded in 𝑅. 

(3) (Hejcman) 𝑋 is 𝑑′-bounded, for every metric 𝑑′ uniformly 

equivalent to 𝑑. 

(4) (Njastad) Every star-finite uniform cover of 𝑋 is finite. 

Theorem 2. For a metric space (𝑋, 𝑑) and 𝐵 ⊂ 𝑋, the 

following statements are equivalent: 

(1) 𝐵 is a Bourbaki-bounded subset in 𝑋. 

(2) Every countable subset of 𝐵 is a 𝐵ourbaki-bounded 

subset in 𝑋. 

(3) Every sequence in 𝐵 cofinally Bourbaki-Cauchy in 

𝑋. 

(4) Every sequence in 𝐵 is cofinally Bourbaki-Cauchy 

in 𝑋. 

 

Proof. (1) ⇒ (2) By definition it is clear that every subset of a 

Bourbaki-bounded subset of 𝑋 is also a Bourbaki- bounded 

subset in 𝑋. 

(2) ⇒ (3) Let (𝑥𝑛)𝑛∈𝑁 be a sequence in 𝐵. By the hypothesis, 

the set {𝑥𝑛: 𝑛 ∈ 𝑵} is Bourbaki-bounded in 𝑋, and then for 

𝜖 = 1 there exist 𝑚1 ∈ 𝑁 and some points 𝑝1
1, …  , 𝑝𝑗1

1 ∈ 𝑋  

such that, 

                            {𝑥𝑛: 𝑛 ∈ 𝑁} ⊂ ⋃{𝐵1
𝑚1(𝑝𝑖

1): 𝑖 = 1, … , 𝑗1}. 

 

Since the family {𝐵1
𝑚1(𝑝𝑖

1): 𝑖 = 1, … , 𝑗1}. is finite, then some 

𝐵1
𝑚1(𝑝𝑖1

1 ) contains infinite terms of the sequence. Therefore, 

there exists a subsequence (𝑥𝑛
1)𝑛∈𝑁 of  (𝑥𝑛)𝑛∈𝑁  inside to 

𝐵1
𝑚1(𝑝𝑖1

1 ). 

       Repeating this process we have that, for every 𝑘 ≥ 2 and 

𝜀 =
1

𝑘
, there exist some 𝑚𝑘 ∈ 𝑵 and points 𝑝1

𝑘, …  , 𝑝𝑗𝑘

𝑘 ∈ 𝑋, 

such that  {𝐵1
𝑘⁄

𝑚𝑘(𝑝𝑖
𝑘): 𝑖 = 1, … , 𝑗𝑘}. Is a finite cover of 

{𝑥𝑛
𝑘−1: 𝑛 ∈ 𝑵}. Then there exist some 𝐵1

𝑘⁄

𝑚𝑘(𝑝𝑖𝑘

𝑘 ) containing 

some subsequence  (𝑥𝑛
𝑘)𝑛∈𝑁 of  (𝑥𝑛

𝑘−1)𝑛∈𝑁   
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      Finally, choosing the standard diagonal subsequence 

(𝑥𝑛
𝑘)𝑛∈𝑁  we can check, in an easy way, that it is the required 

Bourbaki–Cauchy subsequence of (𝑥𝑛)𝑛∈𝑁. 

(3) ⇒ (4) Trivial. 

(4) ⇒ (1) Suppose that 𝐵 is not a Bourbaki-bounded subset of 

𝑋. Then, there exists 𝜀0 > 0 such that, for every 𝑚 ∈ 𝑵, the 

family {𝐵𝜀0
𝑚(𝑥): 𝑥 ∈ 𝑋} does not contain any finite subcover 

of 𝐵. Fix 𝑥0 ∈ 𝑋 and for every 𝑚 ∈ 𝑵choose 𝑥𝑚 ∈ 𝐵 such 

that 𝑥𝑚 ∉ 𝐵𝜀0
𝑚(𝑥𝑖), 𝑖 = 0, …  , 𝑚 − 1. Then, the sequence  

(𝑥𝑚)𝑚∈𝑁 constructed in this way is not a cofinally Bourbaki–

Cauchy sequence in X. Otherwise, for this 𝜀0 there must exist 

𝑚0 ∈ 𝑵 and an infinite subset 𝑵𝜺𝟎 ⊂ 𝑵 such that for some 

𝑝0 ∈ 𝑋 we have that 𝑥𝑛 ∈ 𝐵𝜀0

𝑚0(𝑝0), for every 𝑛 ∈ 𝑁𝜀0
. Then 

taking 𝑛0 ∈ 𝑁𝜀0
, we have that there are infinitely many terms 

of the sequence  (𝑥𝑚)𝑚∈𝑁 in 𝐵𝜀0

2𝑚0 (𝑥𝑛0
), which is a 

contradiction. ∎ 

 

4. BOURBAKI-COMPLETENESS AND COFINAL 

BOURBAKI-COMPLETENESS 

Theorem 3. The following statements are equivalent for a 

metric space (𝑋, 𝑑): 

(1) 𝑋 is compact. 

(2) 𝑋 is totally bounded and complete. 

(3) 𝑋 is Bourbaki-bounded and Bourbaki-complete. 

 

Proof. It is well known the equivalence between (1) and (2)  

On the other hand, as we said before, if 𝑋 is compact then it 

is Bourbaki-complete. And since every compact space is 

totally bounded then it is also Bourbaki-bounded, and hence 

(1) implies (3). Conversely, in order to see that (3) imply (1), 

take any sequence of 𝑋. By Bourbaki-boundedness this 

sequence has a Bourbaki–Cauchy subsequence and by 

Bourbaki-completeness this subsequence clusters. Therefore 

every sequence in 𝑋 clusters and then 𝑋 is compact. ∎ 

 Another useful relation between compactness and 

Bourbaki-completeness is the following.                                                                                          

Theorem 4. A metric space is Bourbaki-complete if, and only 

if, the closure of every Bourbaki-bounded subset is compact. 

Proof. First of all, note that the closure �̅�, of a Bourbaki-

bounded set 𝐵 is also Bourbaki-bounded. Indeed, for every 

𝜀 > 0 there exist 𝑚 ∈ 𝑁 and some points𝑝1 , … , 𝑝𝑘 ∈ 𝑋 such 

that 𝐵 ⊂ ⋃ 𝐵𝜀
𝑚𝑘

𝑖=1 (𝑝𝑖). Since �̅� ⊂ ⋃ 𝐵𝜀
𝑚+1𝑘

𝑖=1 (𝑝𝑖), we 

follows that �̅� is also Bourbaki-bounded in 𝑋. Now, let (𝑋, 

𝑑) be Bourbaki-complete and 𝐵 a Bourbaki-bounded subset 

of 𝑋. In order to see that �̅� is compact, let (𝑥𝑛)𝑛∈𝑁 be a 

sequence of �̅�. Then, according to Theorem 2, (𝑥𝑛)𝑛∈𝑁 has a 

Bourbaki–Cauchy subsequence in 𝑋. Then by Bourbaki-

completeness this subsequence clusters in 𝑋. But, �̅� is closed 

and then  (𝑥𝑛)𝑛∈𝑁 clusters in �̅�. Therefore �̅� is compact. 

 Conversely, let  (𝑥𝑛)𝑛∈𝑁 be a Bourbaki–Cauchy 

sequence of 𝑋 then {𝑥𝑛: 𝑛 ∈ 𝑁} is a Bourbaki-bounded subset 

of 𝑋, and by hypothesis  {𝑥𝑛: 𝑛 ∈ 𝑁}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is compact. Hence 

(𝑥𝑛)𝑛∈𝑁 clusters, and therefore (𝑋, 𝑑) is Bourbaki-complete. 

∎ 

 

Then last result says that a metric space is Bourbaki-complete 

if, and only if, 

every closed and Bourbaki-bounded subset is compact. 

According to this fact, we are going to see that only finite 

dimensional Banach spaces can be Bourbaki-complete. In 

particular, that means that in some sense completeness and 

Bourbaki-completeness are very far from one another. Recall 

that an analogous result exists for cofinal completeness (see 

Beer ). 

Corollary 1. A Banach space is Bourbaki-complete if, and 

only if, it is finite 

dimensional. 

Proof. It is clear that every finite dimensional Banach space 

is Bourbaki-complete since every closed and bounded subset 

is compact. Conversely, if the Banach space is a Bourbaki-

complete metric space, then according last result, its unit 

closed ball must be compact since in normed spaces bounded 

subsets are also Bourbaki-bounded. Finally, if the unit ball of 

a normed space is compact, then it is well known that it must 

have finite dimension. ∎ 

Theorem 5. The following statements are equivalent for a 

metric space (X, d): 

(1) X is compact. 

(2) X is totally bounded and cofinally complete. 

(3) X is Bourbaki-bounded and cofinally Bourbaki-complete. 

 Recall that the equivalence between (1) and (2) was 

pointed by Beer. On the other hand, according to Theorem 3, 

it is clear that in above condition (3) cofinal Bourbaki-

completeness should be paired with a weaker boundedness 

notion corresponding to the property that each sequence has 

a cofinally Bourbaki–Cauchy subsequence. But note that, this 

weaker notion would be again Bourbaki-boundedness, as we 

can deduce easily from Theorem 2. 

 Now, it is interesting to see that the completeness 

properties are not only weaker than compactness but also 

weaker that uniform local compactness. Recall that a metric 

space (𝑋, 𝑑) is said to be uniformly locally compact whenever 

there exists some 𝛿 > 0 such that the set 𝐵𝛿(𝑥)̅̅ ̅̅ ̅̅ ̅̅  is compact, 

for every 𝑥 ∈ 𝑋. 

Proposition 1. Every uniformly locally compact metric space 

is cofinally Bour- 

baki-complete. 

Proof. Firstly, let 𝛿 > 0 such that, for every 𝑥 ∈ 𝑋, 𝐵𝛿(𝑥)̅̅ ̅̅ ̅̅ ̅̅   is 

compact. We can see that if 𝐾 ⊂ 𝑋 is compact, then 𝐾
𝛿

2⁄̅̅ ̅̅ ̅̅
 is 

also compact. Indeed, from the open cover of 𝐾 ⊂ 

⋃ 𝐵𝛿
2⁄

(𝑦)𝑦∈𝐾 , we can take a finite subcover 𝐾 ⊂

⋃ 𝐵𝛿
2⁄

(𝑦𝑖)𝑛
𝑖=1 . Since  
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     𝐾
𝛿

2⁄ ⊂ ⋃ (𝐵𝛿
2⁄

(𝑦𝑖))

𝛿
2⁄

⊂𝑛
𝑖=1 ⋃ 𝐵𝛿(𝑦𝑖)̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖=1   and 

⋃ 𝐵𝛿(𝑦𝑖)̅̅ ̅̅ ̅̅ ̅̅𝑛
𝑖=1  

 

is compact, it follows that 𝐾
𝛿

2⁄̅̅ ̅̅ ̅̅
  is compact, as  wanted. And 

that means that, in particular, for every 𝑥 ∈ 𝑋 and every m ∈

𝑁, the set 𝐵𝛿
2⁄

𝑚 (𝑦𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is compact. 

 Now, if  (𝑥𝑛)𝑛∈𝑁  is a cofinally Bourbaki–Cauchy 

sequence, then there exist 𝑥 ∈ 𝑋 and 𝑚 ∈ 𝑁 such that 

{𝑥𝑛: 𝑛 ∈ 𝑁} is cofinally contained in 𝐵𝛿
2⁄

𝑚 (𝑦𝑖).Therefore, by 

compactness of 𝐵𝛿
2⁄

𝑚 (𝑦𝑖), we have that (𝑥𝑛)𝑛∈𝑁 clusters. ∎ 

 According to the above, we have the following 

diagram: 

uniformly locally compact =⇒ cofinally Bourbaki-complete 

=⇒ cofinally complete 

Theorem 6. For a metric space (𝑋, 𝑑) the following 

statements are equivalent: 

(1) 𝑋 is uniformly locally compact. 

(2) 𝑋 is locally totally bounded and cofinally complete. 

(3) 𝑋 is locally Bourbaki-bounded and cofinally Bourbaki-

complete. 

Proof. That (1) ⇒ (3) follows at once from Proposition 13. 

(3) ⇒ (2) This implication can be obtained easily taking into 

account that, in particular, condition (3) implies that 𝑋 is in 

addition locally compact. Indeed, let 𝑥 ∈ 𝑋 and let 𝑉 be a 

Bourbaki-bounded neighborhood of 𝑥. Take 𝐵 any closed 

ball around x contained in 𝑉 . Now it is easy to check that 𝐵 

is both Bourbakibounded 

(since this property is hereditary) and cofinally Bourbaki-

complete (since this property is inherited by closed sets). 

Then, from Theorem 5, 𝐵 is a compact neighborhood of 𝑥. 

(2) ⇒ (1) Firstly note that, as in the above implication, we can 

see that (2) implies also the local compactness of 𝑋. Next, 

suppose by contradiction that 𝑋 is not uniformly compact, 

then for every 𝑛 ∈ 𝑁, there exists  such that 𝑥𝑛 ∈ 𝑋 𝐵1
𝑛⁄ (𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

is not compact. Then, by local compactness of 𝑋, we can 

assert that the sequence (𝑥𝑛)𝑛∈𝑁 does not cluster. Now, for 

every 𝑛 ∈ 𝑁, let (𝑦𝑘
𝑛)𝑘∈𝑁 be a sequence in 𝐵1

𝑛⁄ (𝑥𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ without 

cluster points. Next, consider a partition of 𝑁 into a countable 

family of infinite subsets {𝑀𝑛, 𝑛 ∈ 𝑁}. Finally, defining the 

sequence 𝑍𝑘=𝑦𝑘
𝑛 , if 𝑘 ∈ 𝑀𝑛 it is easy to check that (𝑧𝑘)𝑘∈𝑁 is 

a cofinally Cauchy sequence which does not cluster. ∎  

 

Proposition 2. Every UC metric space is cofinally Bourbaki-

complete. 

Proof. Let (𝑥𝑛)𝑛 be a cofinally Bourbaki–Cauchy sequence, 

that we can suppose has no constant subsequence. According 

to the above characterization by Hueber, we are going to see 

that (𝑥𝑛)𝑛 has a subsequence along which the isolation 

functional goes to zero. Indeed, for every 𝑗 ∈ 𝑁 there exist 

𝑀𝐽 ∈ 𝑁 and 𝑝𝑗 ∈ 𝑋 such that {𝑥𝑛: 𝑛 ∈ 𝑁} is cofinally 

contained in 𝐵1
𝑗⁄

𝑚𝑗
(𝑝𝑗). Since every 𝑥 ∈  𝐵1

𝑗⁄

𝑚𝑗
(𝑝𝑗) satisfies 

𝐼(𝑥) < 1
𝑗⁄ , then we can construct a subsequence (𝑥𝑛𝑗

)
𝑗
 such 

that lim
𝑗→∞

𝐼 (𝑥𝑛𝑗
) = 0, as wanted. ∎ 

 

5. CONCLUSION 

We finish this review just linking Bourbaki and cofinal 

Bourbaki-completeness with the well known class of UC-

spaces. In  this line, we have seen that every UC metric space 

is cofinally Bourbaki-complete, and hence Bourbaki-

complete. Recall that a metric space (𝑋, 𝑑) is called UC or 

Atsuji when every real continuous function on 𝑋 is uniformly 

continuous. There are several characterizations of these 

spaces, as we can see in the nice paper by Jain and Kundu 

(2006) 
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