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This study examines a discrete-time enzyme model with Caputo fractional order. We look into 

the existence and uniqueness of fixed points in the discrete dynamic model and discover para-

metric criteria for their local asymptotic stability. Additionally, it is demonstrated using bifurca-

tion theory that the system experiences Period-Doubling and Neimark-Sacker bifurcation in a 

constrained area around the singular positive fixed point and that an invariant circle would result. 

It has been determined that the parameter values and the initial conditions have a significant 

impact on the dynamical behavior of the fractional order enzyme model. Additionally, with the 

use of Matlab tools, numerical analysis is offered to illustrate the theoretical debates. Therefore, 

numerical simulations are used to support the key theoretical findings. 
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 1. INTRODUCTION 

Fractional calculus is a branch of mathematical analysis that 

studies the many definitions of real number powers or complex 

number powers of the differentiation operator. Fractional cal-

culus is a notion that has been around since the 17th century.  

Numerous epidemiological models with mathematical spec-

ifications have been created over time [1, 2], but the majority 

of these models are only compatible with differential equations 

of integer order (IDEs). Fractional-order differential equations 

have been successfully analyzed during the past 30 years in a 

variety of disciplines, including science, engineering, money 

and finance, economics, and epidemiology [3–7]. FDEs can be 

used to model some phenomena that IDEs are insufficient to 

capture [8]. Since biological systems inherently relate to 

memory-based systems, FDEs are commonly applied to them. 

The study of chaos in fractional-order dynamical systems is an 

intriguing and alluring subject [9-13].   

Michaelis and Menten [14] are credited with pioneering work 

in the realm of enzyme processes. They described a model that 

is thought to be the cornerstone for the research of enzyme ki-

netics. The steady-state approximation, which has been exten-

sively employed in the analysis of complicated biochemical net-

works [15], was used by Briggs and Haldane [16] to quantify 

the rate function of an enzyme one-substrate reaction. To deter-

mine the numerical solutions to the enzyme-substrate reaction 

model, Iqbal et al. [18] used the modified wavelets method. The 

PD and NS bifurcations was investigated in a 3D system in [18]. 

Curiosity about the numerous Caputo fractional order discrete 

systems has been sparked by the NS and PD bifurcations, stable 

orbits, and chaotic attractors [19,20]. 

 

The planar set of non-linear differential equations shown below governs a two-dimensional form of the enzyme model [17]: 

                                       𝑥̇  = −𝑥 + (𝛽 − 𝛼)𝑦 + 𝑥𝑦                                  (1) 

                       𝑦̇ =
1

𝛾
(𝑥 − 𝛽𝑦 − 𝑥𝑦) 

where  𝛼, 𝛽, 𝛾 are assumed to be three positive constants.  

  

The Caputo fractional derivative on the system (1) is used to provide the discretized form in this case. 

                                                               𝑥𝑛+1 = 𝑥𝑛 +
𝜌𝜗

Γ(1+𝜗)
(−𝑥𝑛 + (𝛽 − 𝛼)𝑦𝑛 + 𝑥𝑛𝑦𝑛), 

                                                𝑦𝑛+1 = 𝑦𝑛 +
𝜌𝜗

Γ(1+𝜗)
(

1

𝛾
(𝑥𝑛 − 𝛽𝑦𝑛 − 𝑥𝑛𝑦𝑛),                 (2) 

 

The remaining section of this paper is structured as follows: Sect. 2 investigates the topological divisions of fixed  
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points. In Section 3, we demonstrate analytically that, given a particular parametric condition, the system (2), suffers a 

PD or NS bifurcation. To support our analytical conclusions, in Section 4, we quantitatively illustrate system dynamics, 

including bifurcation diagrams and phase portraits. The conclusion was delivered in Section 5. 

 

2. STABILITY ANALYSIS 

The system(2)'s trivial equilibrium point is 𝑂 = (0, 0), which is the only solution to equation (2).  

The Variation matrix of system (2) evaluated at 𝑂(𝑥∗, 𝑦∗) are  

                     𝐽(𝑥∗, 𝑦∗) = (
1 + (−1 + 𝑦∗)

𝜌𝜗

Γ(1+𝜗)
(𝑥∗ + 𝛽 − 𝛼)

𝜌𝜗

Γ(1+𝜗)

(1−𝑦∗)

𝛾

𝜌𝜗

Γ(1+𝜗)
(1 − 𝑥∗2)

𝜌𝜗

Γ(1+𝜗)

)                           (3) 

Now at 𝑂(0,0)  

                        𝐽𝑂 = (
1 −

𝜌𝜗

Γ(1+𝜗)
(𝛽 − 𝛼)

𝜌𝜗

Γ(1+𝜗)

1

𝛾

𝜌𝜗

Γ(1+𝜗)
1 −

𝛽

𝛾

𝜌𝜗

Γ(1+𝜗)

)                                           (4) 

Additionally, the characteristic polynomial for the variational matrix 𝐽𝑂 is calculated in the manner described below:

                                  𝐹𝑎(𝜆) ≔ 𝜆2 − 𝑇𝑟(𝐽𝑂)𝜆 + 𝐷𝑒𝑡(𝐽𝑂) = 0                                  (5) 

where 𝑇𝑟(𝐽𝑂) and 𝐷𝑒𝑡(𝐽𝑂) are given by 

                                                     𝑇𝑟(𝐽𝑂) = 2 −
𝛽+𝛾

𝛾

𝜌𝜗

Γ(1+𝜗)
 

                                     𝐷𝑒𝑡(𝐽𝑂) = 1 −
𝛽+𝛾

𝛾

𝜌𝜗

Γ(1+𝜗)
+

𝛼

𝛾
(

𝜌𝜗

Γ(1+𝜗)
)

2

                               (6) 

You may express the eigenvalues of (6) as 𝜆1,2 =
𝑇𝑟(𝐽𝑂)±√(𝑇𝑟(𝐽𝑂))

2
−4𝐷𝑒𝑡(𝐽𝑂)

2
. 

Jury Criterion: The condition for reaching the equilibrium point 𝑂(𝑥∗, 𝑦∗) stability is given as follows 𝐹𝑎(1) > 0, 𝐹𝑎(−1) >

0, 𝐹𝑎(0) − 1 < 0. 

Let, 

𝑃𝐷𝐵𝑂 = {(𝛼, 𝛽, 𝛾, 𝜌, 𝜗): 𝜌 = (Γ(1 + 𝜗).
𝐵2𝑎

̈ ± √𝐿𝑎

𝐵1𝑎
̈

)

1

𝜗

= 𝜌±, 𝐿𝑎 ≥ 0}. 

where, 

                                          𝐵1𝑎
̈ = 𝛼;𝐵2𝑎

̈ =𝛽 + 𝛾;𝐵3𝑎
̈ = 4𝛾 

𝐿𝑎 = 𝐵2𝑎
̈ 2

− 𝐵3𝑎
̈ ∗ 𝐵1𝑎

̈  

The system (2) undergoes a PD bifurcation at 𝑂 when (𝛼, 𝛽, 𝛾, 𝜌, 𝜗) changes around  𝑃𝐷𝐵𝑂. 

Also let 

𝑁𝑆𝐵𝑂 = {(𝛼, 𝛽, 𝛾, 𝜌, 𝜗): 𝜌 = (Γ(1 + 𝜗).
𝐵2𝑎

̈

𝐵1𝑎
̈

)

1

𝜗

= 𝜌𝑁 , 𝐿𝑎 < 0} 

The system (2) undergoes a NS bifurcation at 𝑂 when (𝛼, 𝛽, 𝛾, 𝜌, 𝜗) changes around  𝑁𝑆𝐵𝑂. 

For the stability stipulation of the fixed point 𝑂, we offer the subsequent Lemma. 

Lemma 1. For any random selection of parameter values, the fixed point O is a 

sink if 

 (i) 𝐿𝑎 ≥ 0, 𝜌 < 𝜌−(𝑠𝑡𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒), 

 (ii) 𝐿𝑎 < 0, 𝜌 < 𝜌𝑁(𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑐𝑢𝑠), 

source if 

 (i) 𝐿𝑎 ≥ 0, 𝜌 < 𝜌+(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒), 

 (ii) 𝐿𝑎 < 0, 𝜌 > 𝜌𝑁(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑐𝑢𝑠), 

non-hyperbolic 

   (i) 𝐿𝑎 ≥ 0, 𝜌 = 𝜌− 𝑜𝑟  𝜌 = 𝜌+(𝑠𝑎𝑑𝑑𝑙𝑒 𝑤𝑖𝑡ℎ 𝑃𝐷), 

(ii) 𝐿𝑎 < 0, 𝜌 = 𝜌𝑁( 𝑓𝑜𝑐𝑢𝑠), 

saddle: otherwise 
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3. BIFURCATION ANALYSIS 

The presence, direction, and stability analysis of PD and NS bifurcations close to the fixed point 𝑂 will be investigated in this 

part using center-manifold and bifurcation theory. 

3.1 PD Bifurcation 

PD bifurcation in the system (2) can be worked out by defining the parameters lie in 𝑃𝐷𝐵𝑂 .  

Let, 

𝜌 = (Γ(1 + 𝜗).
𝐵2𝑎̈ −√𝐿𝑎

𝐵1𝑎̈
)

1

𝜗
= 𝜌−, 𝐿𝑎 ≥ 0. 

Also the eigenvalues are   

𝜆1 = −1 and 𝜆2 = 1 + 𝐵2𝑎
̈ 𝜌− 

    For |𝜆2| ≠ 1 gives 𝐵2𝑎
̈ 𝜌− ≠ 0, −2                                                          (7) 

Utilizing the transformation 𝑥̂ = 𝑥 − 𝑥+, 𝑦̂ = 𝑦 − 𝑦+ and set 𝐴(𝜌)  =  𝐽(𝑥∗, 𝑦∗). So, the system (2) rewritten as 

              (
𝑥̂
𝑦̂

) → 𝐴(𝜌−) (
𝑥̂
𝑦̂

) + (
𝐹1(𝑥̂, 𝑦̂, 𝜌−)
𝐹2(𝑥̂, 𝑦̂, 𝜌−)

)                                    (8) 

where 𝑋 = (𝑥̂, 𝑦̂)𝑇 and 

                            𝐹1(𝑥̂, 𝑦̂, 𝜌−) = 𝑥̂𝑦̂𝜌− 

                            𝐹2(𝑥̂, 𝑦̂, 𝜌−) = −
𝑥𝑦̂𝜌−

𝛾
                                            (9) 

So (8) becomes 

𝑋𝑛+1 = 𝐴𝑋𝑛 +
1

2
𝐵(𝑋𝑛, 𝑋𝑛) +

1

6
𝐶(𝑋𝑛 , 𝑋𝑛, 𝑋𝑛) + 𝑂(‖𝑋𝑛‖4) 

where 𝐵(𝑥, 𝑦) = (
𝐵1(𝑥, 𝑦)
𝐵2(𝑥, 𝑦

) and 𝐶(𝑥, 𝑦, 𝑣) = (
𝐶1(𝑥, 𝑦, 𝑣)
𝐶2(𝑥, 𝑦, 𝑣)

)are multi-linear vector functions of 𝑥, 𝑦, 𝑣 ∈ ℝ2 that are symmetric 

and defined as follows: 

𝐵1(𝑥, 𝑦) = ∑
𝛿2𝐹1(𝜀, 𝜌)

𝛿𝜀𝑗𝛿𝜀𝑘

2

𝑗,𝑘=1

|

𝜀=0

𝑥𝑗𝑦𝑘 = (𝑥2𝑦1 + 𝑥1𝑦2)𝜌− 

𝐵2(𝑥, 𝑦) = ∑
𝛿2𝐹2(𝜀, 𝜌)

𝛿𝜀𝑗𝛿𝜀𝑘

2

𝑗,𝑘=1

|

𝜀=0

𝑥𝑗𝑦𝑘 =
−(𝑥2𝑦1 + 𝑥1𝑦2)𝜌−

𝛾
 

and  

𝐶1(𝑥, 𝑦, 𝑣) = ∑
𝛿2𝐹1(𝜀, 𝜌)

𝛿𝜀𝑗𝛿𝜀𝑘𝛿𝜀𝑙

2

𝑗,𝑘,𝑙=1

|

𝜀=0

𝑥𝑗𝑦𝑘𝑣𝑙 = 0 

𝐶2(𝑥, 𝑦, 𝑣) = ∑
𝛿2𝐹1(𝜀, 𝜌)

𝛿𝜀𝑗𝛿𝜀𝑘𝛿𝜀𝑙

2

𝑗,𝑘,𝑙=1

|

𝜀=0

𝑥𝑗𝑦𝑘𝑣𝑙 = 0 

Let, the  two eigenvectors of A and 𝐴𝑇 for eigenvalue 𝜆1(𝜌−)  =  −1 be 𝑠1, 𝑠2 ∈ ℝ2 such that  

𝐴(𝜌−)𝑠1 = −𝑠1 and 𝐴𝑇(𝜌−)𝑠2 = −𝑠2. 

Using a rigorous calculation, we get, 

𝑠1 = (𝛽 − 𝛾 − √𝐿𝑎

1
) = (

𝑠11

1
); 

𝑠2 = (
𝛾 − 𝛽 + √𝐿𝑎

2𝛼𝛾 − 2𝛽𝛾
1

) = (
𝑠21

1
) 

In order to get, < 𝑠1, 𝑠2 > = 1, where < 𝑠1, 𝑠2 > = 𝑠11𝑠21 + 𝑠12𝑠22, use of the normalized vector is required as 𝑠2 = 𝛾𝐹𝑠2, with 

𝛾𝐹 =
1

1+𝑠11𝑠21
. 

The coefficient 𝑙1(𝜌𝐹) must not be zero in order for the system (2) to undergo Period-Doubling bifurcation. The coefficient is 

        𝑙1(𝜌−) =
1

6
< 𝑠2, 𝐶(𝑠1, 𝑠1, 𝑠1) > −

1

2
< 𝑠2, 𝐵(𝑠2, (𝐴 − 𝐼)−1𝐵(𝑠1, 𝑠1)) >                             (10) 

As a result, the following theorem concerning Period-Doubling bifurcation exists: 

Theorem 1. System (2) will experience PD bifurcation at fixed point O if 𝜌 changes its value in a small region around 𝑃𝐷𝐵𝑂  

with (7) is true and 𝑙1(𝜌−) ≠ 0. Additionally, a smooth closed invariant curve that bifurcates from the equation O exists and is 

attractive (or repulsive), and the bifurcation is sub-critical (or super-critical) if 𝑙1(𝜌−) < 0(resp. 𝑙1(𝜌−) > 0). 
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3.2 Neimark-Sacker Bifurcation 

NS bifurcation in the system (2) can be worked out by defining the parameters lie in 𝑁𝑆𝐵𝑂 .  

Let,                                          𝜌 = 𝜌𝑁 = (Γ(1 + 𝜗).
𝐵2𝑎̈

𝐵1𝑎̈
)

1

𝜗
 

Also, 

                                        
𝑑|𝜆𝑖(𝜌)|

𝑑𝜌
|
𝜌=𝜌𝑁𝑆

=  
𝐵2𝑎̈

2𝐵3𝑎̈
≠ 0 

                   −(𝑇𝑟(𝐽𝑂))|𝜌=𝜌𝑁
≠ 0 ⇒

𝐵2𝑎̈
2

𝐵1𝑎̈ 𝐵3𝑎̈
≠ 2,3                                                 (11) 

 

Suppose the two eigenvectors 𝑠1, 𝑠2 ∈ ℂ2 satisfy the following conditions 

𝐴(𝜌𝑁)𝑠1 = 𝜆(𝜌𝑁)𝑠1, 𝐴(𝜌𝑁)𝑠1 = 𝜆̅(𝜌𝑁)𝑠1 

And 

                         𝐴𝑇(𝜌𝑁)𝑠2 = 𝜆̅(𝜌𝑁)𝑠2, 𝐴𝑇(𝜌𝑁)𝑠2 = 𝜆(𝜌𝑁)𝑠2                                 (12) 

We construe 𝑊 ∈ ℝ2as 𝑊 = 𝑣𝑠1 + 𝑣̅𝑠1̅ by choosing 𝜌 vary near to 𝜌𝑁 and for 𝑣 ∈ ℂ. Then 𝑣 is 𝑣 = ⟨𝑠2, 𝑊⟩. Consequently,  

                            𝑣 → 𝜆(𝜌)𝑣 + 𝑘̂(𝑣, 𝑣̅, 𝜌)                                                      (13) 

where 𝜆(𝜌) = (1 + 𝜏(𝜌))𝑒𝑖𝜃𝜌 with 𝜏(𝜌𝑁) = 0 and 𝑘̂(𝑣, 𝑣̅, 𝜌)is a smooth function of complex value.  

Using Taylor expansion to 𝑘̂, we get 

𝑘̂(𝑣, 𝑣̅, 𝜌) = ∑
1

𝑗!𝑙!
𝑘𝑗𝑙̂(𝜌)𝑣𝑗𝑣−𝑙

𝑗+𝑙≥2 , with 𝑘𝑗𝑙̂ ∈ ℂ, 𝑗, 𝑙 = 0,1, … 

The coefficients 𝑘𝑗𝑙are 

𝑘20̂(𝜌𝑁) = ⟨𝑠2, 𝐵(𝑠1, 𝑠1)⟩, 𝑘11̂(𝜌𝑁) = ⟨𝑠2, 𝐵(𝑠1, 𝑠1̅)⟩ 

                         𝑘02̂(𝜌𝑁) = ⟨𝑠2, 𝐵(𝑠1̅, 𝑠1̅)⟩, 𝑘21̂(𝜌𝑁) = ⟨𝑠2, 𝐶(𝑠1, 𝑠1, 𝑠1̅)⟩                          (14) 

The coefficient 𝑙2(𝜌𝑁) must not be zero in order for the system (2) to undergo Neimark-Sacker bifurcation. The coefficient is 

                        𝑙2(𝜌𝑁) = 𝑅𝑒 (
𝜆2𝑘21̂

2
) − 𝑅𝑒 (

(1−2𝜆1)𝜆2
2𝑘20̂𝑘11̂

2(1−𝜆1)
) −

1

2
|𝑘11̂|

2
−

1

2
|𝑘02̂|

2
                 (15) 

As a result, the following theorem concerning NS bifurcation exists: 

Theorem 2. System (2) will experience NS bifurcation at fixed point O if 𝜌 changes its value in a small region around 𝑃𝐷𝐵𝑂 

with (11) is true and 𝑙2(𝜌𝑁) ≠ 0. Additionally, a smooth closed invariant curve that bifurcates from the equation O exists and is 

attractive (or repulsive), and the bifurcation is sub-critical (or super-critical) if 𝑙2(𝜌𝑁) < 0(resp. 𝑙2(𝜌𝑁) > 0). 

 

4. NUMERICAL SIMULATIONS 

Utilizing Mathematica and MATLAB, the theoretical findings in this part are shown with graphics. These numerical simulations 

will feature phase portraits and bifurcation diagrams. 

Example 1: The fixed parameter values are 𝛼 = 2.45, 𝛽 = 6.5, 𝛾 = 3.5, 𝜗 = 0.4896 and , 𝜌 fluctuates in 0.35 ≤ 𝜌 ≤ 1.15. 

The coexistence's idealized positive equilibrium is (0.0002, 0.0002) and 𝜌𝐹 = 0.4618. The eigenvalues are 𝜆1,2 = −1,0.790733. 

The eigenvectors are 

𝑠1~(−0.931108, 0.364743)𝑇 and 𝑠2~(−0.177239, 0.984168)𝑇 

To obtain < 𝑠1, 𝑠2 > = 1, the normalized vector are 𝛾𝐹 = 1.98041.  

The crucial portion is calculated from (17) as 𝑙1(𝜌𝐹) = 0.837982 > 0. A subcritical PD bifurcation consequently takes place. 

Figure.1 display the system (2)'s bifurcation diagram. Different values of 𝜌 are used to draw phase portraits in Figure.2. 

Example 2: Consider the system with the following parameters 𝛼 = 3.33, 𝛽 = 1.8, 𝛾 = 0.4, 𝜗 = 0.483 and , 𝜌 fluctuates in 

0.125 ≤ 𝜌 ≤ 0.42. The coexistence's idealized positive equilibrium is (0.0002, 0.0002). 

Also, 

𝑑|𝜆𝑖(𝜌)|

𝑑𝜌
|

𝜌=𝜌𝑁

= 2.75 ≠ 0 

                                   −(𝑇𝑟(𝐽𝑂))|𝜌=𝜌𝑁
≠ 0 ⇒ 1.667 ≠ 2,3                           

 

 The eigenvalues are 𝜆, 𝜆̅ = −0.833334 ± 0.55277𝑖. The eigenvectors are 

𝑠1~(0.553399 + 0.262202𝑖, 0.790569)𝑇 and 𝑠2~(0.790569, −0.553399 − 0.262202𝑖)𝑇 

To obtain < 𝑠1, 𝑠2 > = 1, the normalized vector are 𝛾𝑁 = 2.41209𝑖.  
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(a)                                               (b) 

Figure 1. PD Bifurcation diagram by varying 𝛒. 

 

 
 

 
 

 
 

 
 

 
Figure 2. Phase portrait by varying  𝛒. 

 
 

 

Also, 

𝐾20̂ = 0.527046 − 3.49603𝑖 

                                               𝑘11̂ = −0.922331 − 3.05903𝑖 

𝑘02̂ = −2.37171 − 2.62202𝑖 

                                               𝑘21̂ = 26.0416 + 1.25632𝑖 

 

The crucial portion is calculated from (15) as 𝑙2(𝜌𝑁) = −13.6285 < 0. A supercritical NS bifurcation consequently takes place at 

𝜌𝑁 = 0.336 . Figure.3 display the system (2)'s bifurcation diagram. Different values of 𝜌 are used to draw phase portraits in Fig-

ure.4. 

 
(a) 

 
(b) 

Figure 3. NS Bifurcation diagram by varying 𝛒. 
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Figure 4. Phase portrait by varying 𝛒. 

 

Example 3: The NS bifurcation diagram of the enzyme model may show more dynamic behavior when the values of 𝛾, 𝜗 changes 

separately by fixing all the parameters as in Example 2. The bifurcation diagrams and phase portraits are shown in Figure 5&7 and 

Figure.6 respectively.  

 

 
 

 
 

Figure 5. Bifurcation diagram by varying 𝝑. 
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Figure 6. Phase portrait by varying  𝝑 

 

  

Figure 7. Bifurcation diagram by varying 𝜸. 

 

5. CONCLUSION 

This work discusses a novel fractional order enzyme model. From 

the Caputo fractional derivative idea, such a fractional order 

model is created. We look into the equilibrium points of the sys-

tem (2)'s stability conditions and demonstrate that the system (2) 

exhibits PD and NS bifurcations. Using the linearization method, 

we provide asymptotic stability requirements for the equilibria. 

Intricate dynamical characteristics such as the emergence of PD 

and NS bifurcations, orbits, quasi-periodic orbits, attracting invar-

iant circles, and chaotic sets are all displayed by the model param-

eters are changed. Even yet, the problem of studying many param-

eter bifurcations in the system is still difficult. Future research is 

anticipated to yield additional analytical insights on this topic. 
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