International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 01 January 2023, Page no. – 3201-3208 Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i1.13

Atom Bond Connectivity E-Banhatti Indices

V. R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

ARTICLE INFO	ABSTRACT
Published Online:	In this paper, we introduce the atom bond connectivity E-Banhatti index and the sum atom
28 January 2023	bond connectivity E-Banhatti index of a graph. Also we compute these newly defined atom
	bond connectivity E-Banhatti indices for wheel graphs, friendship graphs, chain silicate
Corresponding Author:	networks, honeycomb networks and nanotubes.
V.R.Kulli	
KEYWORDS: atom bond connectivity E-Banhatti index, sum atom bond connectivity E-Banhatti index, chain silicate	
network, honeycomb network, nanotube.	

I. INTRODUCTION

We consider only simple, finite, connected graphs. Let *G* be such a graph with vertex set V(G) and edge set E(G). The degree $d_G(u)$ of a vertex *u* is the number of vertices adjacent to *u*. The edge *e* connecting the vertices *u* and *v* is denoted by *uv*. If e=uv is an edge of *G*, then the vertex *u* and edge *e* are incident as are *v* and *e*. Let $d_G(e)$ denote the degree of an edge *e* in *G*, which is defined by $d_G(e) = d_G(u) + d_G(v) - 2$ with e=uv. For term and concept not given here, we refer [1].

Mathematical Chemistry has an important effect on the development of Chemical Sciences. Several graph indices [2] have found some applications in Chemistry, especially in QSPR/QSAR research [3].

In [4], Kulli defined the Banhatti degree of a vertex u of a graph G as

$$B(u) = \frac{d_G(e)}{n - d_G(u)},$$

where |V(G)| = n and the vertex u and edge e are incident in G.

In [4], Kulli proposed the first and second E-Banhatti indices of a graph G and they are defined as

$$EB_1(G) = \sum_{uv \in E(G)} [B(u) + B(v)]$$
$$EB_2(G) = \sum_{uv \in E(G)} B(u)B(v).$$

Recently, some E-Banhatti indices were introduced and studied in [5, 6, 7, 8, 9, 10].

We put forward the atom bond connectivity E-Banhatti index of a graph *G* as follows:

The atom bond connectivity E-Banhatti index of a graph G is defined as

$$AEB(G) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$

In view of the atom bond connectivity E-Banhatti index, we define the sum atom bond connectivity E-Banhatti of a graph G as

$$SAEB(G) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

Recently, some atom bond connectivity indices were studied in [11, 12, 13].

In Chemical Graph Theory, several graph indices were introduced and studied such as the Zagreb indices [14, 15, 16], the Gourava indices [17, 18, 19, 20], the Revan indices [21, 22, 23, 24].

In this paper, we compute the atom bond connectivity E-Banhatti index and sum atom bond connectivity E-Banhatti index for wheel graphs, friendship graphs, some important molecular structures such as chain silicate networks, honeycomb networks and nanotubes.

II. RESULTS FOR SOME STANDARD GRAPHS 2.1. Atom Bond connectivity E-Banhatti Index

Proposition 1. If *G* is an *r*-regular graph with *n* vertices and $r \ge 2$, then

$$AEB(G) == \frac{nr\sqrt{(6r - 2n - 4)(n - r)}}{2(2r - 2)}$$

Proof: Let *G* be an *r*-regular graph with *n* vertices and $r \ge 2$.

Then
$$|E(G)| = \frac{nr}{2}$$
. For any edge $uv=e$ in G , $d_G(e)=2r-2$.

Then

$$AEB(G) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$

= $\frac{nr}{2} \left[\left(\frac{2r - 2}{n - r} + \frac{2r - 2}{n - r} - 2 \right) \div \left(\frac{2r - 2}{n - r} \times \frac{2r - 2}{n - r} \right) \right]^{\frac{1}{2}}$
= $\frac{nr\sqrt{(6r - 2n - 4)(n - r)}}{2(2r - 2)}.$

Corollary 1.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$AEB(C_n) = \frac{n\sqrt{(8-2n)(n-2)}}{2}.$$

Corollary 1.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$AEB(K_n) = \frac{n(n-1)\sqrt{4n-10}}{4(n-2)}.$$

Proposition 2. Let P_n be a path with $n \ge 3$ vertices. Then

$$AEB(P_n) = \frac{2\left(\frac{1}{n-1} + \frac{2}{n-2} - 2\right)^{\frac{1}{2}}}{\left(\frac{1}{n-1} \times \frac{2}{n-2}\right)^{\frac{1}{2}}} + \frac{(n-3)\left(\frac{2}{n-2} + \frac{2}{n-2} - 2\right)^{\frac{1}{2}}}{\left(\frac{2}{n-2} \times \frac{2}{n-2}\right)^{\frac{1}{2}}} = \sqrt{2}\sqrt{9n - 2n^2 - 6} + \frac{1}{2}(n-3)\sqrt{8 - 2n}\sqrt{n-2}.$$

Proposition 3. Let $K_{m,n}$ be a complete bipartite graph with $1 \le m \le n$ and $n \ge 2$. Then

$$AEB(K_{m,n}) = \frac{mn\sqrt{m^2 + n^2 - 2(m+n)}}{m + n - 2}.$$

Proof: Let $K_{m,n}$ be a complete bipartite graph with m + n vertices and mn edges such that $|V_1| = m$, $|V_2| = n$, $V(K_{r,s}) = V_1 \square V_2$ for $1 \le m \le n$, and $n \ge 2$. Every vertex of V_1 is incident with n edges and every vertex of V_2 is incident with m edges. Then $d_G(e) = d_G(u) + d_G(v) - 2 = m + n - 2$.

$$AEB(K_{m,n}) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$
$$= \frac{mn\left(\frac{m+n-2}{m+n-n} + \frac{m+n-2}{m+n-m} - 2\right)^{\frac{1}{2}}}{\left(\frac{m+n-2}{m+n-m} + \frac{m+n-2}{m+n-m}\right)^{\frac{1}{2}}}$$
$$= \frac{mn\sqrt{m^2 + n^2 - 2(m+n)}}{m+n-2}.$$

Corollary 3.1. Let $K_{n,n}$ be a complete bipartite graph with $n \ge 2$. Then

$$AEB(K_{n,n}) = \frac{n^2 \sqrt{2n(n-2)}}{2(n-1)}.$$

Corollary 3.2. Let $K_{l,n}$ be a star with $n \ge 2$. Then

$$AEB(K_{1,n}) = \frac{n\sqrt{n^2 - 2n - 1}}{n - 1}.$$

2.1. Sum Atom Bond Connectivity E-Banhatti Index

Proposition 4. If *G* is an *r*-regular graph with *n* vertices and $r \ge 2$, then

$$SAEB(G) = \frac{nr\sqrt{(3r-n-2)}}{2\sqrt{2(r-1)}}$$

Proof: Let *G* be an *r*-regular graph with *n* vertices and $r \ge 2$.

Then $|E(G)| = \frac{nr}{2}$. For any edge uv=e in G, $d_G(e)=2r-2$.

Then

$$SAEB(G) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

= $\frac{nr}{2} \left[\left(\frac{2r - 2}{n - r} + \frac{2r - 2}{n - r} - 2 \right) \div \left(\frac{2r - 2}{n - r} + \frac{2r - 2}{n - r} \right) \right]^{\frac{1}{2}}$
= $\frac{nr\sqrt{(3r - n - 2)}}{2\sqrt{2(r - 1)}}.$

Corollary 4.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$SAEB(C_n) = \frac{n\sqrt{(4-n)}}{\sqrt{2}}.$$

Corollary 4.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$SAEB(K_n) = \frac{n(n-1)\sqrt{2n-5}}{4\sqrt{2}\sqrt{n-2}}$$

Proposition 5. Let P_n be a path with $n \ge 3$ vertices. Then

$$SAEB(P_n) = \frac{2\left(\frac{1}{n-1} + \frac{2}{n-2} - 2\right)^{\frac{1}{2}}}{\left(\frac{1}{n-1} + \frac{2}{n-2}\right)^{\frac{1}{2}}} + \frac{(n-3)\left(\frac{2}{n-2} + \frac{2}{n-2} - 2\right)^{\frac{1}{2}}}{\left(\frac{2}{n-2} + \frac{2}{n-2}\right)^{\frac{1}{2}}} = \frac{2\sqrt{9n-2n^2-6}}{\sqrt{3n-4}} + \frac{1}{2}(n-3)\sqrt{8-2n}.$$

Proposition 6. Let $K_{m,n}$ be a complete bipartite graph with $1 \le m \le n$ and $n \ge 2$. Then

$$SAEB(K_{m,n}) = \frac{mn\sqrt{m^2 + n^2 - 2(m+n)}}{m+n-2}$$

Proof: Let $K_{m,n}$ be a complete bipartite graph with m + n vertices and mn edges such that $|V_1| = m$, $|V_2| =$

n, $V(K_{r,s}) = V_1 \cup V_2$ for $1 \le m \le n$, and $n \ge 2$. Every vertex of V_1 is incident with *n* edges and every vertex of V_2 is incident with *m* edges. Then $d_G(e) = d_G(u) + d_G(v) - 2 = m + n - 2$.

$$SAEB(K_{m,n}) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$
$$= \frac{mn\left(\frac{m+n-2}{m+n-n} + \frac{m+n-2}{m+n-m} - 2\right)^{\frac{1}{2}}}{\left(\frac{m+n-2}{m+n-m} + \frac{m+n-2}{m+n-m}\right)^{\frac{1}{2}}}$$
$$= \frac{mn\sqrt{m^2 + n^2 - 2(m+n)}}{m+n-2}.$$

Corollary 6.1. Let $K_{n,n}$ be a complete bipartite graph with $n \ge 2$. Then

$$SAEB(K_{n,n}) = \frac{n^2 \sqrt{2n(n-2)}}{2(n-1)}$$

Corollary 6.2. Let $K_{l,n}$ be a star with $n \ge 2$. Then

$$SAEB(K_{1,n}) = \frac{n\sqrt{n^2 - 2n - 1}}{n - 1}.$$

III. RESULTS FOR FRIENDSHIP GRAPHS

A friendship graph F_4 is shown in Figure 1. A friendship graph F_n is a graph with 2n+1 vertices and 3n edges.

Figure 1. Friendship graph F₄

In F_n , there are two types of edges as follows: $E_1 = \left\{ uv \in E(F_n) \mid d_{F_n}(u) = d_{F_n}(v) = 2 \right\}, \qquad |E_1| = n.$ $E_2 = \left\{ uv \in E(F_n) \mid d_{F_n}(u) = 2, d_{F_n}(v) = 2n \right\}, \quad |E_2| = 2n.$

Therefore, in F_n , we obtain that $\{B(u), B(v): uv \square E(F_n)\}$ has two Banhatti edge set partitions.

$$BE_1 = \{uv \in E(F_n) \mid B(u) = B(v) = \frac{2}{2n-1}\}, \qquad |BE_1| = n.$$

$$BE_2 = \{uv \in E(F_n) \mid B(u) = \frac{2n}{2n-1}, B(v) = 2n\}, \quad |BE_2| = 2n.$$

We calculate the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a friendship graph F_n as follows:

Theorem 1. Let F_n be a friendship graph. Then

(i)
$$AEB(F_n) = \frac{1}{2}n\sqrt{6-4n}\sqrt{2n-1}$$

 $+\sqrt{n}\sqrt{4n^2-6n+4}.$
(ii) $SAEB(F_n) = \frac{1}{2}n\sqrt{6-4n}$
 $+\frac{2n\sqrt{4n^2-6n+4}}{\sqrt{4n^2-2n+2}}.$

Proof: Applying definition and Banhatti edge partition of F_n , we conclude

(i)
$$AEB(F_n) = \sum_{uv \in E(F_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$

$$= \frac{n\left(\frac{2}{2n-1} + \frac{2}{2n-1} - 2\right)^{\frac{1}{2}}}{\left(\frac{2}{2n-1} \times \frac{2}{2n-1}\right)^{\frac{1}{2}}} + \frac{2n\left(\frac{2}{2n-1} + 2n - 2\right)^{\frac{1}{2}}}{\left(\frac{2}{2n-1} \times 2n\right)^{\frac{1}{2}}}.$$

By simplifying the above equation, we get the desired result.

(ii)
$$SAEB(F_n) = \sum_{uv \in E(F_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

$$=\frac{n\left(\frac{2}{2n-1}+\frac{2}{2n-1}-2\right)^{\frac{1}{2}}}{\left(\frac{2}{2n-1}+\frac{2}{2n-1}\right)^{\frac{1}{2}}}+\frac{2n\left(\frac{2}{2n-1}+2n-2\right)^{\frac{1}{2}}}{\left(\frac{2}{2n-1}+2n\right)^{\frac{1}{2}}}.$$

By simplifying the above equation, we get the desired result.

IV. RESULTS FOR WHEEL GRAPHS

A wheel graph W_n is the join of C_n and K_1 . Then W_n has n+1 vertices and 2n edges. A graph W_n is presented in Figure 2.

Figure 2. Wheel graph W_n

In W_n , there are two types of edges as follows:

$$E_1 = \{uv \in E(W_n) \mid d(u) = d(v) = 3\}, \quad |E_1| = n.$$

$$E_2 = \{uv \in E(W_n) \mid d(u) = 3, d(v) = n\}, \quad |E_2| = n.$$

Therefore, in W_n , there are two types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow:

$$BE_{1} = \{uv \in E(W_{n}) \mid B(u) = B(v) = \frac{4}{(n-2)}\}, \quad |BE_{1}| = n.$$
$$BE_{2} = \{uv \in E(W_{n}) \mid B(u) = \frac{n+1}{n-2}, B(v) = n+1\}, \quad |BE_{2}| = n.$$

We calculate the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a wheel graph W_n as follows:

Theorem 2. Let W_n be a wheel graph. Then

(i)
$$AEB(W_n) = \frac{1}{4}n\sqrt{12-2n}\sqrt{n-2} + \frac{n\sqrt{n^2-2n+3}}{n+1}$$
.
(ii) $SAEB(W_n) = \frac{1}{2\sqrt{2}}n\sqrt{12-2n} + \frac{n\sqrt{n^2-2n+3}}{\sqrt{n^2-1}}$.

Proof: Applying definition and Banhatti edge partition of W_n , we conclude

(i)
$$AEB(W_n) = \sum_{uv \in E(W_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$

= $\frac{n\left(\frac{4}{n-2} + \frac{4}{n-2} - 2\right)^{\frac{1}{2}}}{\left(\frac{4}{n-2} \times \frac{4}{n-2}\right)^{\frac{1}{2}}} + \frac{n\left(\frac{n+1}{n-2} + (n+1) - 2\right)^{\frac{1}{2}}}{\left(\frac{n+1}{n-2} \times (n+1)\right)^{\frac{1}{2}}}.$

By simplifying the above equation, we get the desired result.

(ii)
$$SAEB(W_n) = \sum_{uv \in E(W_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

$$=\frac{n\left(\frac{4}{n-2}+\frac{4}{n-2}-2\right)^{\frac{1}{2}}}{\left(\frac{4}{n-2}+\frac{4}{n-2}\right)^{\frac{1}{2}}}+\frac{n\left(\frac{n+1}{n-2}+(n+1)-2\right)^{\frac{1}{2}}}{\left(\frac{n+1}{n-2}+(n+1)\right)^{\frac{1}{2}}}.$$

By simplifying the above equation, we get the desired result.

V. RESULTS FOR CHAIN SILICATE NETWORKS

Silicates are very important elements of Earth's crust. Sand and several minerals are constituted by silicates. A family of chain silicate network is symbolized by CS_n and is obtained by arranging $n \ge 2$ tetrahedral linearly, see Figure 3.

Figure 3. Chain silicate network

Let *G* be the graph of a chain silicate network CS_n with 3n+1 vertices and 6n edges. In *G*, by calculation, there are three types of edges based on the degree of end vertices of each edge as follows:

$$E_{1} = \{uv \in E(CS_{n}) \mid d_{G}(u) = d_{G}(v) = 3\}, \quad |E_{1}| = n + 4.$$

$$E_{2} = \{uv \in E(CS_{n}) \mid d_{G}(u) = 3, d_{G}(v) = 6\}, |E_{2}| = 4n - 2.$$

$$E_{3} = \{uv \in E(CS_{n}) \mid d_{G}(u) = d_{G}(v) = 6\}, |E_{3}| = n - 2.$$

Therefore, in *CS_n*, there are three types of Banhatti edge

Therefore, in CS_n , there are three types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow:

$$BE_{1} = \{uv \in E(CS_{n}) \mid B(u) = B(v) = \frac{4}{3n-2} \},\$$

$$|BE_{1}| = n+4.$$

$$BE_{2} = \{uv \in E(CS_{n}) \mid B(u) = \frac{7}{3n-2}, B(v) = \frac{7}{3n-5} \},\$$

$$|BE_{2}| = 4n-2.$$

 $BE_3 = \{uv \in E(CS_n) \mid B(u) = \frac{10}{3n-5}, B(v) = \frac{10}{3n-5} \},$ $|BE_3| = n-2.$

We calculate the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a graph of CS_n as follows:

Theorem 3. Let CS_n be a chain silicate network. Then

(i)
$$AEB(CS_n) = \frac{1}{4}(n+4)\sqrt{12-3n}\sqrt{3n-2}$$

 $+\frac{1}{7}(4n-2)\sqrt{82n-18n^2-69}$
 $+\frac{1}{10}(n-2)\sqrt{30-6n}\sqrt{3n-5}.$
(ii) $SAEB(CS_n) = \frac{1}{2\sqrt{2}}(n+4)\sqrt{12-3n}$
 $+\frac{(4n-2)\sqrt{82n-18n^2-69}}{\sqrt{42n-49}}$
 $+\frac{1}{2\sqrt{5}}(n-2)\sqrt{30-6n}.$

Proof: Applying definition and Banhatti edge partition of CS_n , we conclude

(i)
$$AEB(CS_n) = \sum_{uv \in E(CS_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$

 $= \frac{(n+4)\left(\frac{4}{3n-2} + \frac{4}{3n-2} - 2\right)^{\frac{1}{2}}}{\left(\frac{4}{3n-2} \times \frac{4}{3n-2}\right)^{\frac{1}{2}}}$
 $+ \frac{(4n-2)\left(\frac{7}{3n-2} \times \frac{4}{3n-2}\right)^{\frac{1}{2}}}{\left(\frac{7}{3n-2} \times \frac{7}{3n-5}\right)^{\frac{1}{2}}}$
 $+ \frac{(n-2)\left(\frac{10}{3n-5} + \frac{10}{3n-5} - 2\right)^{\frac{1}{2}}}{\left(\frac{10}{3n-5} \times \frac{10}{3n-5}\right)^{\frac{1}{2}}}$

gives the desired result after simplification.

(ii)
$$SAEB(CS_n) = \sum_{uv \in E(CS_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

By simplifying the above equation, we get the desired result.

VI. RESULTS FOR HONEYCOMB NETWORKS

Honeycomb networks are useful in Computer Graphics and Chemistry. A honeycomb network of dimension n is denoted by HC_n , where n is the number of hexagons between central and boundary hexagon. A 4-dimensional honeycomb network is shown in Figure 4.

Figure 4. A 4-dimensional honeycomb network

Let *G* be the graph of a honeycomb network HC_n . By calculation, we obtain that *G* has $6n^2$ vertices and $9n^2-3n$ edges. In *G*, by algebraic method, there are three types of edges based on the degree of end vertices of each edge as follows:

$$E_{1} = \{uv \in E(HC_{n}) \mid d_{G}(u) = d_{G}(v) = 2\},\$$

$$|E_{1}| = 6.$$

$$E_{2} = \{uv \in E(HC_{n}) \mid d_{G}(u) = 2, d_{G}(v) = 3\},\$$

$$|E_{2}| = 12n - 12.$$

$$E_{3} = \{uv \in E(HC_{n}) \mid d_{G}(u) = d_{G}(v) = 3\},\$$

$$|E_{3}| = 9n^{2} - 15n + 6.$$

Therefore, in HC_n , there are three types of Banhatti edges based on Banhatti degrees of end vertices of each edge as follow:

"Atom Bond Connectivity E-Banhatti Indices"

 $BE_{1} = \{uv \in E(HC_{n}) \mid B(u) = B(v) = \frac{2}{6n^{2} - 2}\},\$ $|BE_{1}| = 6.$ $BE_{2} = \{uv \in E(HC_{n}) \mid B(u) = \frac{3}{6n^{2} - 2}, B(v) = \frac{3}{6n^{2} - 3}\},\$

 $|BE_2| = 12n - 12.$ $BE_3 = \{uv \in E(HC_n) \mid B(u) = B(v) = \frac{4}{6n^2 - 3}\},$ $|BE_3| = 9n^2 - 15n + 6.$

We calculate the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a graph of HC_n as follows:

Theorem 4. Let HC_n be a honeycomb network. Then (i)

(i)
$$AEB(HC_n) = 3\sqrt{8 - 12n^2}\sqrt{6n^2 - 2}$$

 $+\frac{1}{3}(12n - 12)\sqrt{96n^2 - 72n^4 - 27}$
 $+\frac{1}{4}(9n^2 - 15n + 6)\sqrt{14 - 12n^2}\sqrt{6n^2 - 3}.$
(ii)

$$SAEB(HC_n) = 3\sqrt{8 - 12n^2} + \frac{(12n - 12)\sqrt{96n^2 - 72n^4 - 27}}{\sqrt{36n^2 - 15}} + \frac{1}{2\sqrt{2}}(9n^2 - 15n + 6)\sqrt{14 - 12n^2}.$$

Proof: Applying definition and Banhatti edge partition of HC_n , we conclude

(i)
$$AEB(HC_n) = \sum_{uv \in E(HC_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$

$$= \frac{6\left(\frac{2}{6n^2 - 2} + \frac{2}{6n^2 - 2} - 2\right)^{\frac{1}{2}}}{\left(\frac{2}{6n^2 - 2} \times \frac{2}{6n^2 - 2}\right)^{\frac{1}{2}}}$$

$$+ \frac{(12n - 12)\left(\frac{3}{6n^2 - 2} + \frac{3}{6n^2 - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{3}{6n^2 - 2} \times \frac{3}{6n^2 - 3}\right)^{\frac{1}{2}}}$$

$$+ \frac{(9n^2 - 15n + 6)\left(\frac{4}{6n^2 - 3} + \frac{4}{6n^2 - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{4}{6n^2 - 3} \times \frac{4}{6n^2 - 3}\right)^{\frac{1}{2}}}.$$

By simplifying the above equation, we get the desired result.

ii)
$$SAEB(HC_n) = \sum_{uv \in E(HC_n)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

$$= \frac{6\left(\frac{2}{6n^2 - 2} + \frac{2}{6n^2 - 2} - 2\right)^{\frac{1}{2}}}{\left(\frac{2}{6n^2 - 2} + \frac{2}{6n^2 - 2}\right)^{\frac{1}{2}}}$$

$$+ \frac{(12n - 12)\left(\frac{3}{6n^2 - 2} + \frac{3}{6n^2 - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{3}{6n^2 - 2} + \frac{3}{6n^2 - 3}\right)^{\frac{1}{2}}}$$

$$+ \frac{(9n^2 - 15n + 6)\left(\frac{4}{6n^2 - 3} + \frac{4}{6n^2 - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{4}{6n^2 - 3} + \frac{4}{6n^2 - 3}\right)^{\frac{1}{2}}}.$$

By simplifying the above equation, we get the desired result.

VII. RESULTS FOR HC5C7 [p, q] NANOTUBES

We consider $HC_5C_7[p, q]$ nanotubes, see Figure 5.

Figure 5. 2-D lattice of HC5C7 [8, 4] nanotube

The graphs of a nanotube HC_5C_7 [p, q] have 4pq vertices and 6pq - p edges are shown in above graph. Let $G = HC_5C_7$ [p, q].

In G, there are two types of edges as follows:

- $E_1 = \{uv \in E(G) | d(u) = 2, d(v) = 3\}, \quad |E_1| = 4p.$
- $E_2 = \{uv \in E(G) | d(u) = d(v) = 3\}, |E_2| = 6pq 5p.$

Therefore, in *G*, we obtain that $\{B(u), B(v): uv \square E(NHPX[m, n])\}$ has two Banhatti edge set partitions.

$$BE_1 = \{uv \in E(G) \mid B(u) = \frac{3}{4pq-2}, B(v) = \frac{3}{4pq-3}\},\$$

 $|BE_1| = 4p.$

$$BE_2 = \{uv \in E(G) \mid B(u) = B(v) = \frac{4}{4pq-3} \}$$
$$|BE_2| = 6pq-5p.$$

"Atom Bond Connectivity E-Banhatti Indices"

We calculate the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a nanotube $HC_5C_7[p, q]$ as follows:

Theorem 5. Let $HC_5C_7[p, q]$ be a nanotube. Then

(i)
$$AEB(G) = \frac{4}{3}p\sqrt{16p^2q^2 + 4pq - 9}$$

 $+\frac{2}{3}(6pq - 5p)\sqrt{3 - 2pq}\sqrt{4pq - 3}.$
(ii) $SAEB(G) = \frac{4p\sqrt{16p^2q^2 + 4pq - 9}}{\sqrt{24pq - 15}}$
 $+\frac{2}{\sqrt{6}}(6pq - 5p)\sqrt{3 - 2pq}.$

Proof: Applying definition and Banhatti edge partition of *G*, we conclude

(i)
$$AEB(G) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u)B(v)}}$$
$$= \frac{4p\left(\frac{3}{4pq - 2} + \frac{3}{4pq - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{3}{4pq - 2} \times \frac{3}{4pq - 3}\right)^{\frac{1}{2}}}$$
$$+ \frac{(6pq - 5p)\left(\frac{3}{4pq - 3} + \frac{3}{4pq - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{3}{4pq - 3} \times \frac{3}{4pq - 3}\right)^{\frac{1}{2}}}$$

gives the desired result after simplification.

(ii)
$$SAEB(G) = \sum_{uv \in E(G)} \sqrt{\frac{B(u) + B(v) - 2}{B(u) + B(v)}}$$

$$= \frac{4p \left(\frac{3}{4pq - 2} + \frac{3}{4pq - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{3}{4pq - 2} + \frac{3}{4pq - 3}\right)^{\frac{1}{2}}}$$
$$+ \frac{(6pq - 5p) \left(\frac{3}{4pq - 3} + \frac{3}{4pq - 3} - 2\right)^{\frac{1}{2}}}{\left(\frac{3}{4pq - 3} + \frac{3}{4pq - 3}\right)^{\frac{1}{2}}}.$$

By simplifying the above equation, we get the desired result.

VIII. CONCLUSION

In this study, we have introduced the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a graph. Also we have determined these newly defined E-Banhatti indices for some standard graphs, wheel graphs, friendship graphs, certain networks and nanotubes.

REFERENCES

- 1. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA (2020) 66-91.
- R.Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009).
- V.R.Kulli, New direction in the theory of graph index in graphs, International Journal of Engineering Sciences & Research Technology, 11(12) (2022) 1-8.
- 5. V.R.Kulli, Hyper E-Banhatti indices of certain networks, International Journal of Mathematical Archive, 13(12) (2022) 1-10.
- V.R.Kulli, Computation of E-Banhatti Nirmala indices of tetrameric 1,3-adamantane, Annals of Pure and Applied Mathematics, 26(2) (2022) 119-124.
- V.R.Kulli, E-Banhatti Sombor indices, International Journal of Mathematics and Computer Research, 10(12) (2022) 2986-2994.
- V.R.Kulli, The (a, b)-KA E-Banhatti indices of graphs, Journal of Mathematics and Informatics, 23 (2022) 55-60.
- 9. V.R.Kulli, Product connectivity E-Banhatti indices of certain nanotubes, Annals of Pure and Applied Mathematics, 27(1) (2023) 7-12.
- V.R.Kulli, FE-Banhatti index and its polynomial of certain nanostructures, International Journal of Mathematical Archive, 14(1) (2023).
- K.C.Das, Atom bond connectivity index of graphs, Discrete Applied Mathematics,158 (2010) 1181-1188.
- 12. E.Estrada, L.Torres, L.Rodriguez and I.Gutman, An ABC index: modeling the enthalpyof formation of alkanes, Indian J. Chem, 37A (1998) 849-855.
- 13. V.R.Kulli, ABC, GA, AG HDR indices of certain chemical drugs, International Journal of Mathematics Trends and Technology, 68(2) (2022) 80-88.
- 14. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total □-electron energy of

alternant hydrocarbons, Chem. Phys. Lett. vol. 17, pp 535-538, 1972.

- G.Caporossi, P.Hansen and D.Vukicecic, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem., 63 (2010) 441-451.
- T.Doslic, B.Furtula, A.Graovac, I.Gutman, S.Moradi and Z.Yarahmadi, On vertex degree based molecular structure descriptors, MATCH Commun. Math. Comput. Chem., 66 (2011) 613-626.
- 17. V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017).
- M.Aruvi, M.Joseph and E.Ramganesh, The second Gourava index of some graph products, Advances in Mathematics: Scientific Journal 9(12) (2020) 10241-10249.
- B.Basavanagoud and S.Policepatil, Chemical applicability of Gourava and hyper Gourava indices, Nanosystems: Physics, Chemistry, Mathematics 12(2) (2021) 142-150.
- 20. V.R.Kulli, V.Lokesha, S.Jain and M.Manjunath, The Gourava index of four operations on graphs, International J. Math. Combin. 4 (2018) 65-76.
- 21. A.Q.Baig, M.Nadeem and W.Gao, Revan and hyper Revan indices of Octahedral and icosahdral networks, Applied Mathematics and Nonlinear Sciences, 3(1) (2018) 33-40.
- 22. P.Kandan, E.Chandrasekaran and M.Priyadharshini, The Revan weighted Szeged index of graphs, Journal of Emerging Technologies and Innovative Research, 5(9) (2018) 358-366.
- 23. R.Aguilar-Sanchez, I.F.Herrera-Gonzalez, J.A.Mendez-Bermudez and J.M.Sigarreta, Revan degree indices on random graphs, arXiv:2210.04749v1 [math.CO] 10 Oct 2022.
- 24. D.Zhao, M.A.Zahid, R.Irfan. M.Arshad, A.Fahad, Z.Ahmad and L.Li, Banhatti, Revan and hyper indices of silicon carbide Si2C3-III[n, m], Open Chemistry, 19 (2021) 646-652.