International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 02 February 2023, Page no. – 3230-3235 Index Copernicus ICV: 57.55, Impact Factor: 8.187 DOI: 10.47191/ijmcr/v11i2.01

Neighborhood Sum Atom Bond Connectivity Indices of Some Nanostar Dendrimers

V. R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

ARTICLE INFO	ABSTRACT		
Published Online:	In this paper, we introduce the neighborhood sum atom bond connectivity index and the		
08 February 2023	multiplicative neighborhood sum atom bond connectivity index of a graph. Also we compute		
Corresponding Author:	these indices for certain dendrimers.		
V. R. Kulli			
KEYWORDS: neighborhood sum atom bond connectivity index, multiplicative neighborhood sum atom bond connectivity			
index, dendrimer.			

I. INTRODUCTION

Let K = (V(K), E(K)) be a finite, simple connected graph. A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of a molecular graph represents an atom of the molecule and its edges to the bonds between atoms. Let s(u) denote the sum of the degrees of all vertices adjacent to a vertex u. For other undefined notations, readers may refer to [1].

Chemical Graph Theory has an important effect on the development of Chemical Sciences. Topological index is a numerical parameter mathematically derived from the graph structure. Numerous topological indices have been considered in Theoretical Chemistry, especially in quantitative structure activity (*QSAR*) and quantitative structure property (*QSPR*) study, see [2, 3].

The fourth atom bond connectivity index [4] is

$$ABC_4(K) = \sum_{uv \in E(K)} \sqrt{\frac{s(u) + s(v) - 2}{s(u)s(v)}}$$

Recently some atom bond connectivity indices were studied in [5, 6, 7, 8, 9. 10, 11, 12, 13, 14].

We define the neighborhood sum atom bond connectivity index as

$$NSA(K) = \sum_{uv \in E(K)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}.$$

The fourth multiplicative atom bond connectivity index [15] is

$$ABC_4II(K) = \prod_{uv \in E(K)} \sqrt{\frac{s(u) + s(v) - 2}{s(u)s(v)}}$$

Recently some multiplicative atom bond connectivity indices were studied, for example, in [16, 17, 18, 9, 20, 21, 22, 23, 24, 25, 26, 27].

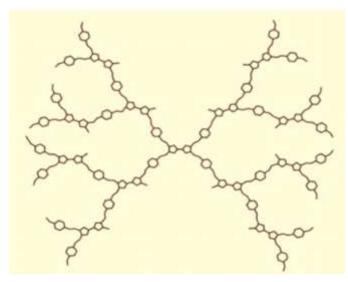
Now we define the multiplicative neighborhood sum atom bond connectivity index as

$$NSAII(K) = \prod_{uv \in E(K)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$

In this paper, we compute the neighborhood sum atom bond connectivity index and the multiplicative neighborhood sum atom bond connectivity index of tetrathiafulvalene, POPAM, $NS_2[n]$ and $NS_3[n]$ dendrimers.

II. TETRATHIAFULVALENE DENDRIMERS *TD*₂[*n*]

The molecular graph of tetrathiafulvalene dendrimers $TD_2[n]$ is shown in the below graph.



The graphs of $TD_2[n]$ have $31 \times 2^{n+2} - 74$ vertices and $35 \times 2^{n+2} - 85$ edges are shown in the above graph. Let $A = TD_2[n]$.

We obtain that $\{s(u), s(v): uv \square E(A)\}$ has nine edge set partitions.

$s(u), s(v) \setminus uv \in E(A)$	Number of edges
(2, 4)	2^{n+2}
(3, 6)	$2^{n+2}-4$
(4, 6)	2^{n+2}
(5, 5)	$7 \times 2^{n+2} - 16$
(5, 6)	$11 \times 2^{n+2} - 24$
(5,7)	$3 \times 2^{n+2} - 8$
(6, 6)	$2^{n+2}-4$
(6, 7)	$8 \times 2^{n+2} - 24$
(7, 7)	$2 \times 2^{n+2} - 5$

Theorem 1. The neighborhood sum atom bond connectivity index of $TD_2[n]$ is

$$NSA(A) = 2^{n+2} \left(\sqrt{\frac{2}{3}} \right) + \left(2^{n+2} - 4 \right) \left(\frac{\sqrt{7}}{3} \right)$$
$$+ \left(8 \times 2^{n+2} - 16 \right) \left(\frac{2}{\sqrt{5}} \right) + \left(11 \times 2^{n+2} - 24 \right) \left(\frac{3}{\sqrt{11}} \right)$$
$$+ \left(4 \times 2^{n+2} - 12 \right) \left(\sqrt{\frac{5}{6}} \right) + \left(8 \times 2^{n+2} - 24 \right) \left(\sqrt{\frac{11}{13}} \right)$$
$$+ \left(2 \times 2^{n+2} - 5 \right) \left(\sqrt{\frac{6}{7}} \right).$$

Proof: Applying definition and edge partition of $TD_2[n]$, we conclude

$$NSA(A) = \sum_{uv \in E(A)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$

= $2^{n+2} \left(\sqrt{\frac{2+4-2}{2+4}} \right) + \left(2^{n+2} - 4\right) \left(\sqrt{\frac{3+6-2}{3+6}} \right)$
+ $2^{n+2} \left(\sqrt{\frac{4+6-2}{4+6}} \right) + \left(7 \times 2^{n+2} - 16\right) \left(\sqrt{\frac{5+5-2}{5+5}} \right)$
+ $\left(11 \times 2^{n+2} - 24\right) \left(\sqrt{\frac{5+6-2}{5+6}} \right)$
+ $\left(3 \times 2^{n+2} - 8\right) \left(\sqrt{\frac{5+7-2}{5+7}} \right)$
+ $\left(2^{n+2} - 4\right) \left(\sqrt{\frac{6+6-2}{6+6}} \right)$
+ $\left(8 \times 2^{n+2} - 24\right) \left(\sqrt{\frac{6+7-2}{6\times7}} \right)$
+ $\left(2 \times 2^{n+2} - 5\right) \left(\sqrt{\frac{7+7-2}{7\times7}} \right)$

gives the desired result by solving the above equation.

Theorem 2. The multiplicative neighborhood sum atom bond connectivity index of $TD_2[n]$ is

$$NSAII(A) = \left(\sqrt{\frac{2}{3}}\right)^{2^{n+2}} \times \left(\frac{\sqrt{7}}{3}\right)^{2^{n+2}-4} \times \left(\frac{2}{\sqrt{5}}\right)^{8 \times 2^{n+2}-16} \\ \times \left(\frac{3}{\sqrt{11}}\right)^{11 \times 2^{n+2}-24} \times \left(\sqrt{\frac{5}{6}}\right)^{4 \times 2^{n+2}-12} \\ \times \left(\sqrt{\frac{11}{13}}\right)^{8 \times 2^{n+2}-24} \times \left(\sqrt{\frac{6}{7}}\right)^{2 \times 2^{n+2}-5}.$$

Proof: Applying definition and edge partition of $TD_2[n]$, we conclude

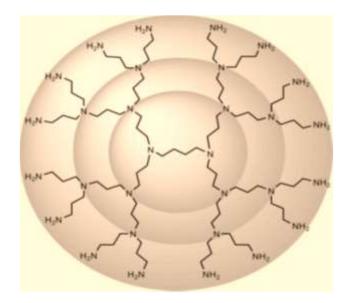
$$NSAII(A) = \prod_{uv \in E(A)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$
$$= \left(\sqrt{\frac{2+4-2}{2+4}}\right)^{2^{n+2}} \times \left(\sqrt{\frac{3+6-2}{3+6}}\right)^{2^{n+2}-4}$$
$$\times \left(\sqrt{\frac{4+6-2}{4+6}}\right)^{2^{n+2}} \times \left(\sqrt{\frac{5+5-2}{5+5}}\right)^{7\times 2^{n+2}-16}$$

$$\times \left(\sqrt{\frac{5+5-2}{5+5}}\right)^{7\times 2^{n+2}-16} \times \left(\sqrt{\frac{5+6-2}{5+6}}\right)^{11\times 2^{n+2}-24} \times \left(\sqrt{\frac{5+7-2}{5+7}}\right)^{3\times 2^{n+2}-8} \times \left(\sqrt{\frac{6+6-2}{6+6}}\right)^{2^{n+2}-4} \times \left(\sqrt{\frac{6+7-2}{6+7}}\right)^{8\times 2^{n+2}-24} \times \left(\sqrt{\frac{7+7-2}{7+7}}\right)^{2\times 2^{n+2}-5}$$

gives the desired result by solving the above equation.

III. POPAM DENDRIMERS TD₂[n]

The molecular graph of POPAM dendrimers $POD_2[n]$ is shown in the below graph.



The graphs of $POD_2[n]$ have $2^{n+5} - 10$ vertices and $2^{n+5} - 11$ edges are shown in the above graph. Let $B = POD_2[n]$.

We obtain that $\{s(u), s(v): uv \square E(B)\}$ has five edge set partitions.

$s(u), s(v) \setminus uv \in E(B)$	Number of edges
(2, 3)	2^{n+2}
(3, 4)	2^{n+2}
(4, 4)	1
(4, 5)	$3 \times 2^{n+2} - 6$
(5, 6)	$3 \times 2^{n+2} - 6$

Theorem 3. The neighborhood sum atom bond connectivity index of $POD_2[n]$ is

$$NSA(B) = 2^{n+2} \left(\sqrt{\frac{3}{5}} \right) + 2^{n+2} \left(\sqrt{\frac{5}{7}} \right) + \left(\sqrt{\frac{3}{4}} \right) + \left(3 \times 2^{n+2} - 6 \right) \left(\frac{\sqrt{7}}{3} \right) + \left(3 \times 2^{n+2} - 6 \right) \left(\frac{3}{\sqrt{11}} \right).$$

Proof: Applying definition and edge partition of $POD_2[n]$, we conclude

$$NSA(B) = \sum_{uv \in E(B)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$
$$= 2^{n+2} \left(\sqrt{\frac{2+3-2}{2+3}} \right) + 2^{n+2} \left(\sqrt{\frac{3+4-2}{3+4}} \right)$$
$$+ \left(\sqrt{\frac{4+4-2}{4+4}} \right) + \left(\sqrt{\frac{4+4-2}{4+4}} \right)$$
$$+ \left(3 \times 2^{n+2} - 6 \right) \left(\sqrt{\frac{4+5-2}{4+5}} \right)$$
$$+ \left(3 \times 2^{n+2} - 6 \right) \left(\sqrt{\frac{5+6-2}{5+6}} \right)$$

gives the desired result by solving the above equation.

Theorem 4. The multiplicative neighborhood sum atom bond connectivity index of $POD_2[n]$ is

$$NSAII(B) = \left(\sqrt{\frac{3}{5}}\right)^{2^{n+2}} \times \left(\sqrt{\frac{5}{7}}\right)^{2^{n+2}}$$
$$\times \left(\sqrt{\frac{3}{4}}\right) \times \left(\frac{\sqrt{7}}{3}\right)^{3 \times 2^n - 6} \times \left(\frac{3}{\sqrt{11}}\right)^{3 \times 2^n - 6}$$

Proof: Applying definition and edge partition of $POD_2[n]$, we conclude

$$NSAII(B) = \prod_{uv \in E(B)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$
$$= \left(\sqrt{\frac{2 + 3 - 2}{2 + 3}}\right)^{2^{n+2}} \times \left(\sqrt{\frac{3 + 4 - 2}{3 + 4}}\right)^{2^{n+2}}$$
$$\times \left(\sqrt{\frac{4 + 4 - 2}{4 + 4}}\right)^{1} \times \left(\sqrt{\frac{4 + 5 - 2}{4 + 5}}\right)^{3 \times 2^{n+2} - 6}$$
$$\times \left(\sqrt{\frac{5 + 6 - 2}{5 + 6}}\right)^{3 \times 2^{n+2} - 6}$$

gives the desired result by solving the above equation.

IV. NS₂[n] DENDRIMERS

The molecular graph of $NS_2[n]$ dendrimers is shown in the below graph.

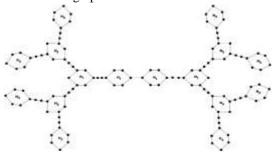


Figure 3. The molecular structure of NS₂[3]

The graphs of $NS_2[n]$ have $16 \times 2^n - 4$ vertices and $18 \times 2^n - 5$ edges are shown in the above graph. Let $C = NS_2[n]$.

We obtain that $\{s(u), s(v): uv \Box E(C)\}$ has five edge set partitions.

$s(u), s(v) \setminus uv \in E(C)$	Number of edges
(4, 4)	2×2^n
(5, 4)	2×2^n
(5, 5)	$2 \times 2^{n} + 2$
(5, 6)	6×2^n
(7, 7)	1
(5,7)	4
(6, 6)	$6 \times 2^{n} - 12$

Theorem 5. The neighborhood sum atom bond connectivity index of a $NS_2[n]$ dendrimer is

$$NSA(C) = \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{7}}{3} + \frac{2}{\sqrt{5}} + \frac{9}{\sqrt{11}} + 3\sqrt{\frac{5}{6}}\right) 2 \times 2^{n}$$
$$-\frac{4}{\sqrt{5}} + \left(\sqrt{\frac{6}{7}}\right) - 8\sqrt{\frac{5}{6}}.$$

Proof: Applying definition and edge partition of $NS_2[n]$, we conclude

$$NSA(C) = \sum_{uv \in E(C)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$
$$= 2 \times 2^n \left(\sqrt{\frac{4 + 4 - 2}{4 + 4}}\right) + 2 \times 2^n \left(\sqrt{\frac{5 + 4 - 2}{5 + 4}}\right)$$

$$+ \left(2 \times 2^{n} + 2\right) \left(\sqrt{\frac{5+5-2}{5+5}}\right) + 6 \times 2^{n} \left(\sqrt{\frac{5+6-2}{5+6}}\right)$$
$$+ \left(\sqrt{\frac{7+7-2}{7+7}}\right) + 4 \left(\sqrt{\frac{5+7-2}{5+7}}\right)$$
$$+ \left(6 \times 2^{n} - 12\right) \left(\sqrt{\frac{6+6-2}{6+6}}\right)$$

gives the desired result by solving the above equation.

Theorem 6. The multiplicative neighborhood sum atom bond connectivity index of $NS_2[n]$ is

$$NSAII(C) = \left(\frac{\sqrt{3}}{2}\right)^{2 \times 2^{n}} \times \left(\frac{\sqrt{7}}{3}\right)^{2 \times 2^{n}} \times \left(\frac{2}{\sqrt{5}}\right)^{2 \times 2^{n} - 2}$$
$$\times \left(\frac{3}{\sqrt{11}}\right)^{6 \times 2^{n}} \times \left(\sqrt{\frac{6}{7}}\right) \times \left(\sqrt{\frac{5}{6}}\right)^{6 \times 2^{n} - 12}.$$

Proof: Applying definition and edge partition of $NS_2[n]$ based on $S_G(u)$, $S_G(v)$, we conclude

$$NSAII(C) = \prod_{uv \in E(C)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$
$$= \left(\sqrt{\frac{4 + 4 - 2}{4 + 4}}\right)^{2 \times 2^{n}} \times \left(\sqrt{\frac{5 + 4 - 2}{5 + 4}}\right)^{2 \times 2^{n}}$$
$$\times (2 \times 2^{n} + 2) \left(\sqrt{\frac{5 + 5 - 2}{5 + 5}}\right)^{2 \times 2^{n} + 2} \times \left(\sqrt{\frac{5 + 6 - 2}{5 + 6}}\right)^{6 \times 2^{n}}$$
$$\times \left(\sqrt{\frac{7 + 7 - 2}{7 + 7}}\right)^{1} \times \left(\sqrt{\frac{5 + 7 - 2}{5 + 7}}\right)^{4}$$
$$\times \left(\sqrt{\frac{6 + 6 - 2}{6 + 6}}\right)^{6 \times 2^{n} - 12}$$

gives the desired result by solving the above equation.

IV. NS₃[n] DENDRIMERS

The molecular graph of $NS_3[n]$ dendrimers is shown in the below graph.

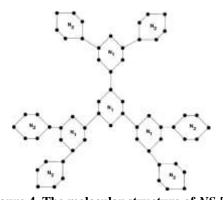


Figure 4. The molecular structure of *NS*₃[2] V. R. Kulli, IJMCR Volume 11 Issue 02 February 2023 "Neighborhood Sum Atom Bond Connectivity Indices of Some Nanostar Dendrimers"

The graphs of $NS_3[n]$ have $18 \times 2^n - 12$ vertices and $21 \times 2^n - 15$ edges are shown in the above graph. Let $D = NS_3[n]$.

We obtain that $\{s(u), s(v): uv \square E(D)\}$ has five edge set partitions.

$S_G(u), S_G(v) \setminus uv \in E(D)$	Number of edges
(4, 4)	3×2^n
(4, 5)	3×2^n
(5,7)	3×2^n
(6,7)	$9 \times 2^{n} - 12$
(7,7)	$3 \times 2^{n} - 3$

Theorem 7. The neighborhood sum atom bond connectivity index of $NS_3[n]$ is

$$NSA(D) = \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{7}}{3} + \sqrt{\frac{5}{6}} + 3\sqrt{\frac{11}{13}} + \sqrt{\frac{6}{7}}\right) 3 \times 2^{n}$$
$$-12\sqrt{\frac{11}{13}} - 3\left(\sqrt{\frac{6}{7}}\right).$$

Proof: Applying definition and edge partition of $NS_3[n]$, we conclude

$$NSA(D) = \sum_{uv \in E(D)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$

= $3 \times 2^n \left(\sqrt{\frac{4 + 4 - 2}{4 + 4}} \right) + 3 \times 2^n \left(\sqrt{\frac{4 + 5 - 2}{4 + 5}} \right)$
+ $3 \times 2^n \left(\sqrt{\frac{5 + 7 - 2}{5 + 7}} \right) + (9 \times 2^n - 12) \left(\sqrt{\frac{6 + 7 - 2}{6 + 7}} \right)$
+ $(3 \times 2^n - 3) \left(\sqrt{\frac{7 + 7 - 2}{7 + 7}} \right)$

gives the desired result by solving the above equation.

Theorem 8. The multiplicative neighborhood sum atom bond connectivity index of $NS_3[n]$ is

$$NSAII(D) = \left(\frac{\sqrt{3}}{2}\right)^{3 \times 2^{n}} \times \left(\frac{\sqrt{7}}{3}\right)^{3 \times 2^{n}} \times \left(\sqrt{\frac{5}{6}}\right)^{3 \times 2^{n}} \times \left(\sqrt{\frac{11}{13}}\right)^{9 \times 2^{n} - 12} \times \left(\sqrt{\frac{6}{7}}\right)^{3 \times 2^{n} - 3}.$$

Proof: Applying definition and edge partition of $NS_3[n]$ based on $S_G(u)$, $S_G(v)$, we conclude

$$NSAII(D) = \prod_{uv \in E(D)} \sqrt{\frac{s(u) + s(v) - 2}{s(u) + s(v)}}$$
$$= \left(\sqrt{\frac{4 + 4 - 2}{4 + 4}}\right)^{3 \times 2^{n}} \times \left(\sqrt{\frac{4 + 5 - 2}{4 + 5}}\right)^{3 \times 2^{n}}$$
$$\times \left(\sqrt{\frac{5 + 7 - 2}{5 + 7}}\right)^{3 \times 2^{n}} \times \left(\sqrt{\frac{6 + 7 - 2}{6 + 7}}\right)^{9 \times 2^{n} - 12}$$
$$\times \left(\sqrt{\frac{7 + 7 - 2}{7 + 7}}\right)^{3 \times 2^{n} - 3}$$

gives the desired result by solving the above equation.

V. CONCLUSION

In this paper, we have determined the neighborhood sum atom bond connectivity index and the multiplicative neighborhood sum atom bond connectivity index of certain dendrimers.

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. I.Gutman and O.E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin (1986).
- R.Todeschini and V. Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley-VCH, Weinheim, (2009).
- 4. M.Ghorbhani and M.A.Hosseinzadeh, Computing ABC4 index of nanostar dendrimers, *Optoelectron Adv. Mater. Rapid Commun.* 4(9) (2010) 1419-1422.
- 5. A.Ali, B.Furtula, I.Redzepovic and I.Gutman, Atom bond sum connectivity indiex, *J. Math. Chem.* in press. DOI: 10.1007/s10910-022-01403-1.
- A.R.Bindsree, V.Lokesha and P.S.Ranjini, ABC index on subdivision graphs and line graphs, *IOSR Journal of Mathematics*, 1-6.
- K.C.Das, Atom bond connectivity index of graphs, Discrete Applied Mathematics, 158 (2010) 1181-1188.
- E.Estrada, Atom bond connectivity and the energetic of branched alkanes, *Chem. Phys. Lett.* 463 (2008) 422-425.
- E.Estrada, L.Torres, L.Rodriguez and I.Gutman, An atom bond connectivity index: modeling the enthalpy of formation of alkanes, *Indian J. Chem.*37 (1998) 849-855.
- 10. B.Furtula, A.Graovac and D.Vukicevic, Atom bond connectivity index of trees, *Discrete Applied Mathematics*, 157 (2009) 2828-2835.

"Neighborhood Sum Atom Bond Connectivity Indices of Some Nanostar Dendrimers"

- 11. V.R.Kulli, Product connectivity leap index and *ABC* leap index of helm graphs, *Annals of Pure* and *Applied Mathematics*, 18(2) (2018) 189-193.
- N.M.Husin, R.Hasni and N.E.Arif, Atom bond connectivity and geometric-arithmetic indices of dendrimer nanostars, *Australian Journal of Basic* and Applied Sciences, 7(9) (2013) 10-14.
- 13. V.R.Kulli, *ABC*, *GA*, *AG* HDR indices of certain chemical drugs, *International Journal of Mathematics Trends and Technology*, 68(2) (2022) 80-88.
- 14. V.R.Kulli, Atom bond connectivity E-Banhatti indices, *International Journal of Mathematics and Computer Research*, 11(1) (2023) 3201-3208.
- 15. V.R.Kulli, Two new multiplicative atom bond connectivity indices, *Annals of Pure and Applied Mathematics*, 13(1) (2017) 1-7.
- 16. U.Babar, H.Ali, S.H.Arshad and U.Sheikh, Multiplicative topological properties of graphs from honeycomb structure, *AIMS Mathematics*, 5(2) (2019) 1562-1587.
- V.R.Kulli, On fifth multiplicative Zagreb indices of tetrathiafulvalene and POPAM dendrimers, *International Journal of Engineering Sciences & Research Technology*, 7(3) (2018) 471-479.
- V.R.Kulli, On multiplicative F-indices and multiplicative connectivity F-indices of chemical networks, *International Journal of Current Research in Science and Technology*, 5(2) (2019) 1-10.
- 19. V.R.Kulli, Edge version of multiplicative atom bond connectivity index of certain nanotubes and nanotorus, *International Journal of Mathematics And its Applications*, 6(1-E) (2018) 977-982.
- 20. V.R.Kulli, On multiplicative connectivity indices of certain nanotubes, *Annals of Pure and Applied Mathematics*, 12(2) (2016) 169-179.
- 21. Z.Hussain, Ahsan and S.H.Arshad, Computing multiplicative topological indices of some chemical nanotubes and networks, *Open Journal of Discrete Applied Mathematics*, 2(3) (2019) 7-18.
- 22. V.R.Kulli, Multiplicative connectivity indices of TUC4C8[m, n] and TUC4[m, n] nanotubes, *Journal of Computer and Mathematical Sciences*, 7(11) (2016) 599-605.
- 23. V.R.Kulli, Multiplicative connectivity indices of nanostructures, *Journal of Ultra Scientist of Physical Sciences*, 29(1) (2017) 1-10.
- 24. Y.C.Kwun, A. ur Rehman, W.Nazeer, M.A.Rehman and S.M.Kang, On the multiplicative degree based topological indices of silicon carbon Si2C3-I[p, q] and Si2C3-II[p, q], *Symmetry*, 2018 10, 320; doi: 10.3390/sym10080320

- 25. V.R.Kulli, Multiplicative ABC, GA and AG neighborhood Dakshayani indices of dendrimers, *International Journal of Fuzzy Mathematical Archive*, 17(2) (2019) 77-82.
- 26. V.R.Kulli, Multiplicative *ABC*, *GA*, *AG*, augmented and harmonic status indices of graphs, *International Journal of Mathematical Archive*, 11(1) (2020) 32-40.
- 27. W.Gao, W.Wang, D.Dimitrov and Y.Wang, Nano properties analysis via fourth multiplicative ABC indicator calculating, *Arabian Journal of Chemistry*,(2018).https://doi.org/10.1016/j.arabje.2 017.12024.