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The applications of the differential geometry of sectional curvature plays a great role in the field 

of physics, mathematics and engineering because it paves to knowledge of curves, surfaces, 

curvature, radius of curvature  and sectional curvature . The study aims to explain some 

applications of sectional curvature. We followed the analytical  induction  mathematical 

method. We found the following some result: The sectional curvature indicate to know the 

behavior of some the functions and also we found that the sectional curvature 𝑘(𝑝, 𝑇𝑝𝑀) =

𝑘(𝑝) is the  Gaussian curvature. 
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1. INTRODUCTION 

Differential geometry is a discipline of mathematics that uses 

the techniques of calculus and linear algebra to study problem 

in geometry. The theory of plane, curves, surfaces and 

sectional curvature  in three-dimensional Euclidean space 

formed the basis for development of differential geometry 

during the 18th and the 19th . Since the late 19th century, 

differential geometry has grown into a field concerned more 

generally with the geometric structure on differential 

manifolds. Differential geometry of curves is branch of 

geometry that deals with smooth curves in the plane and in 

Euclidean space by applying the concept of differential and 

integral calculus . The curves are  represented in parametrized 

form and then their geometric properties and various 

quantities associated with them ,we turn our attention from 

curves to surfaces. The graphs of functions of two variables 

are familiar examples of surfaces from multivariable calculus. 

Whereas a curve locally looks like its tangent line ℝ1, a 

surface locally looks like its tangent plane, . ℝ2.Thus,we 

aremoving from intrinsically one-dimensional to intrinsically 

two-dimensional objects. such as curvature and sectional 

curvature . The  differential geometry of sectional curvature 

is the curvature of two-dimensional sections of manifold, [5], 

pp(1-2) 

2. DIFFERENTIAL GEOMETRY 

The most important notion for the contents of this study 

(which is alsothe source of the name “differential geometry”) 

is that of derivativeor differentiation of real-valued functions 

which are defined on someopen set U ⊂𝑅𝑛 or, more 

generally, of maps defined on open setsU ⊂𝑅𝑛 to 𝑅𝑚. To say 

that a function is differentiable is to saythat it can be 

linearized up to terms of second order. More preciselya map 

F: U → 𝑅𝑚 is said to be differentiable at a point x ∈ U,if  there 

is a linear map 𝐴𝑥 :𝑅𝑛  → 𝑅𝑚 such that in a 

neighborhood⋃ (𝑥)𝜖 (x) one has 

𝐹(𝑥 + 𝜉) = F(𝑥) + 𝐴𝑥(ξ) + o(||ξ||). (1) 

Here, the symbol o(||ξ||) means that the terms indicated by it 

tendto zero as ξ → 0, even after previous division by ||ξ||. 

Then Ax is thelinear map described by the Jacobi matrix or 

the Jacobianof f . 

Differential geometry uses calculus to study curved shapes, 

surfaces and curvature 

i.  Curves: 

Definition (2.1):[1], pp2. If 𝑓(𝑥, 𝑦) = 𝑐,where 𝑓 is a function 

of x and y and c is a constant. From this point of view a curve 

is  a set of points, namely  

𝐶 = {(𝑥, 𝑦) ∈ ℝ2|𝑓(𝑥, 𝑦) = 𝑐}.                                            (1) 

https://doi.org/10.47191/ijmcr/v11i2.02
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Its example for curves in the plane ℝ2, but we can also 

consider curves in ℝ3.For example, the 𝑥-axis inℝ3is straight 

line given by  𝑦 = 0, 𝑧 = 0,  and more generally a curve in 

ℝ3 might be defined by a pair of equations  

𝑓1(𝑥, 𝑦, 𝑧) = 𝑐1,      𝑓2(𝑥, 𝑦, 𝑧) = 𝑐2. 

Curves of this kind are called level curves, the idea being that 

the curve in Equation(1),for example, is the set of points 

(𝑥, 𝑦)in the plane at which the quantity 𝑓(𝑥, 𝑦)reaches the 

'level' c. But there another way to think about curves which 

turns out to be more useful in many situation. For this, a  curve 

is viewed as the path traced out by a moving  point. Thus, if 

 𝛾(𝑡)is the position of the point at time 𝑡, the curve is 

described by a function 𝛾 of a scalar paramerter  𝑡 with  vector 

values (in ℝ2for a plane curve, in ℝ3for a curve in space).[1] 

Definition(2.2):[13],pp4. 

For a given function F of two real variables x, y the equation 

F(x, y) = 0 describes a “curve” whenever the gradient of F 

does not vanish, that is to say if 
𝛿𝐹

𝛿𝑥
 ≠ 0  or

𝛿𝐹

𝛿𝑦
 = 0 at every 

point satisfying F(x, y) = 0. If this assumption is satisfied, 

then this curve can always be parametrized locally as a 

regular parametrized curve in the sense of Definition (2.2) 

below.For a given function F of three variables x, y, z the 

equationF(x, y, z) = 0 describes a “surface” whenever the 

gradient of Fdoes not vanish, i.e., if 
𝛿𝐹

𝛿𝑥
 = 0 or 

𝛿𝐹

𝛿𝑦
 = 0 or 

𝛿𝐹

𝛿𝑧
 = 0. 

If this assumption on thegradient is satisfied, then this surface 

can alwaysbe parametrized locally as a parametrized surface 

element in thesense of Definition 3.1 below. 

Definition(2.3)[8], pp9. Let σ: I → 𝑅𝑛 be a parametrized 

curve of class (atleast)𝐶1. The vector 𝜎'(t) is the tangent 

vector to the curve at the point σ(t).If 𝑡0 ∈ 𝐼 is such that σ'(𝑡0) 

≠ O, then the line through σ(𝑡0) and parallelto σ'(𝑡0) is the 

affine tangent line to the curve at the point σ(𝑡0). Finally,if 

σ'(t) ≠ O for all t∈ I we shall say that σ is regular. 

Remark (2.4): [8], pp9. The notion of a tangent vector 

depends on the parametriza-tionwe have chosen, while the 

affine tangent line (if any) and the fact of beingregu-lar are 

properties of the curve. Indeed, let σ: I → 𝑅𝑛 and ˜σ: I˜ → 𝑅𝑛 

betwo equivalent parametrized curves of class C1, and h: I˜ 

→ I the parametertwo equivalent parametrized curves of class 

C1, and h: I˜ → I the parameterchange. Then, by computing 

˜σ = σ ◦ h, we find: 

�̃�′(𝑡) =

ℎ′(𝑡)𝜎′(ℎ(𝑡)).                                                                                          

 (2) 

Since h'  is never zero, we see that the length of the tangent 

vector depends onour particular parametrization, but its 

direction does not; so the affine tangent line in �̃�(𝑡) =

 𝜎 (ℎ(𝑡))𝜎 determined by ˜σ is the same as that determined 

by σ. Moreover,  �̃�′ is never zero if and only if �̃� is never zero; 

so, being regularis a property of the curve, rather than of a 

particular representative. 

Definition(2.5):[7],pp2 .  A parametrized differentiable 

curve  is a differentiablemap α: I → 𝑅3 of an open interval  I 

= (a, b) of the real line R into 𝑅3.The  word differentiable in 

this definition means that  α is a correspondence 

which maps each t ∈ I into a point  α(t) = (x(t), y(t), z(t)) ∈𝑅3 

in such away that the functions x(t), y(t), z(t) are 

differentiable. The variable t is called the parameter of the 

curve. The word interval is taken in a generalized sense,so 

that we do not exclude the cases a = −∞, b = +∞.   If we denote 

by x ′(t) the first derivative of x at the point t and use 

similarnotations  for the functions y and z, the vector  (x ′(t), 

y ′(t), z ′(t)) = α′(t) ∈𝑅3is called the tangent vector (or velocity 

vector) of the curve α at t. The image set  α(I) ⊂𝑅3  is called 

the trace of α. 

Example (2.6):[ 7 ],pp2.   The parametrized differentiable 

curve given by: 

𝛼(𝑡) = (acos 𝑡, asin 𝑡, 𝑏𝑡) , 𝑡

∈ 𝑅,                                                          (3) 

has as its trace in 𝑅3 a helix of pitch 2πb on the cylinder  𝑥2 +

𝑦2 = 𝑎2. The parameter  𝑡   here  measures   the angle  which 

the  x axis makes with the line joining the origin 0 to the 

projection of the point  α(t) over the  x y plane 

Definition(2.7):[9],pp52. Let r : [a, b] → 𝑅𝑖, i= 2 or 3, denote 

a regular parametrization of a curve C with 𝑃𝑡corresponding 

to the parameter value t, i.e., r(t) = 𝑂𝑃𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗. Fix a point  𝑃𝑡0∈C. 

Any line through 𝑃𝑡0 and another point𝑃𝑡is called a secant line 

through𝑃𝑡0 . 

What happens to those secant lines when t approaches 𝑡0, and 

thus Pt approaches 𝑃𝑡0?We should  show  that, for a curve  

with a regular parametrization, there is a limit position: the 

tangent line through 𝑃𝑡0 . 

  The secant line through 𝑃𝑡0 and𝑃𝑡has 𝑃𝑡0𝑃𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗as a parallel 

vector. The following definition tells us what we mean by a 

limit position: 

Definition(2.8):[9],pp53.The positive, resp. negative unit 

semi-tangent vectors to the curve C at Pt0 are given by: 

𝑡 + (𝑡0) =  lim
𝑡→𝑡0+

𝑃𝑡0𝑃𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑃𝑡0𝑃0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

𝑟𝑒𝑠𝑝. 𝑡−(𝑡0) =

lim
𝑡→𝑡0−

𝑃𝑡0𝑃𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑃𝑡0𝑃0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

 .                                    (4) If 𝑡−(𝑡0) = -𝑡+(𝑡0),  then  

C has a tangent line with t(𝑡0) = 𝑡+(𝑡0) as  a parallel vector.  

Remark (2.9):[9],pp5. 

I . The limits of the vector functions above may be taken 

coordinate wise. 

ii .In general, the limits above need not exist. But the 

following result shows, thatwe do not need to worry for 

curves with regular parametrizations: 

Definition(2.10):[9],pp59. again C be a curve with a regular  

parametrization [a, b] → 𝑅𝑖 ,i= 2 or i= 3. What is the Let 

length  l of the  piece of curve between the starting point  Pa  

and a point Pt, t ∈ [a, b]? What is the length of the entire curve 

from 𝑃𝑎  𝑡𝑜 𝑃𝑏? 
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Let the length of the  piece of curve  from Pa  to  Pt be denoted 

by  s(t). Of course, s(a) = 0, and s is an increasing (ordinary) 

function on [a, b]. Moreover, we found the speed of the 

parametrization  as the function  v : [a, b] → R, v(t) = |r′(t)|. 

The speed is the differential increment of the length: 

𝑣(𝑡) = lim
ℎ→0

𝑠(𝑡 + ℎ) − 𝑠(𝑡)

ℎ
= 𝑠′(𝑡), 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒                                                             (5) 

Definition(2.11):[9], pp59.The arc length function  s : [a, b] 

→ R corresponding to the curve C parametrized by the vector 

function r above is defined as 

𝑠(𝑡0) 

=

∫
𝑣(𝑡)𝑑𝑡 =

 ∫ |𝑟′(𝑡)|𝑑𝑡.                                                                         (6)
𝑡0
𝑎

𝑡0
𝑎

 

More explicitly, if r(t) = [x(t), y(t), z(t)], then 

𝑠(𝑡0) =  

∫ √(𝑥′)2(𝑡) + (𝑦′)2(𝑡) + (𝑧′)(𝑡)
𝑡0

𝑎

𝑑𝑡.                      (7) 

The length of the entire curve C is: 

𝐼 = 𝑠(𝑏) = ∫ |𝑟′(𝑡)|
𝑏

𝑎

𝑑𝑡

= ∫ √(𝑥′)2(𝑡) + (𝑦′)2(𝑡) + (𝑧′)(𝑡)𝑑𝑡                   (8)
𝑏

𝑎

 

 The Fundamental Theorem of Calculus  allows to calculate 

the derivative of  the arc length function  s(t): In fact, s′ = v, 

the speed, as it should! Furthermore, one can show – using 

integration  by substitution – that the definition of the arc 

length function above (2.10) is independent of the chosen 

parametrization r. 

ii. Surfaces: 

By passing from curves to surfaces we in principle just 

replace the parameter of the curve by two independent 

parameters, which then describe a two-dimensional object, 

which is what is called a parametrized surface.  For a proper 

development of the   theory we require that the surface is not 

just given by a differentiable map in two vari- 

able, but that moreover it admits a geometric linearization in 

the sense that at every  point there is a linear surface (i.e., a 

plane) which touches the surface at least to order  one at that 

point. Hence it is quite natural to demand that the derivative 

of the param- etrization every point has maximal rank. A map 

satisfying this condition is called an immersion. A surface is 

a subset of ℝ3 that looks like a piece of ℝ2 in the vicinity  

or any given point, just as the surface of the Earth, although 

actually nearly spherical, appears to be a flat plane to an 

observer on the surface who sees only to the horizon. To make 

the phrases ‘looks like’ and ‘in the vicinity’ precise, we must 

first introduce some preliminary material. We describe this 

for ℝ𝑛for any 𝑛 ≥ 1, although we shall need it only for n = 1, 

2, or 3. 

First, a subset U of ℝ𝑛is called openif, whenever a is a point 

in U, there is a positive number such that every point u 

∈ℝ𝑛within a distance 𝜖 of a is also in 𝑈: 

    𝑎 ∈ 𝑈and ‖𝑢 − 𝑎‖ < 𝜖 ⟹     𝑢 ∈ 𝑈. 

For example, the whole of ℝ𝑛 is an open set, as is 

                  𝐷𝑟(𝑎) = {𝑢 ∈ ℝ
𝑛|‖𝑢 − 𝑎‖ < 𝑟}, 

the open ball with centrea and radius 𝑟 > 0. (If 𝑛 = 1,anopen 

ball is called anopen interval; if 𝑛 = 2  it is called an open 

disc.) However  

�̅�𝑟(𝑎) = {𝑢 ∈ ℝ
𝑛|‖𝑢 − 𝑎‖ ≤ 𝑟} 

is not open because however small the positive number 𝜖 is , 

there is a point within a distance 𝜖of the point (𝑎1 +

𝑟, 𝑎2, … , 𝑎𝑛) ∈ �̅�𝑟(𝑎) (𝑠𝑎𝑦)that is not in �̅�𝑟(𝑎)(forexample, 

the point (𝑎1 + 𝑟 +
𝜖

2
, 𝑎2, … , 𝑎𝑛). 

We are now in a position to make our first attempt at defining 

the notion of a surface in ℝ3. [1] 

Definition(2.12)[13),pp56 Let U ⊂𝑅2  be an open set. . A 

parametrized surface element is an immersionf : U→ 𝑅3 ,f is 

also called a parametrization, the elements of U are called 

parameters, and their images under f are called points. The 

cartesian coordinates in Uare then mapped  by  f onto 

coordinate lines in the surface element , for such a grid of 

coordinate lines . A (non-parametrized) surface elementis an 

equivalence class of parametrized surface elements, where 

two parametrizations f : U → 𝑅3 and 𝑓:̃ 𝑈→ 𝑅3 are viewed as 

being equivalent if there is a diffeomorphism𝜑: 𝑈 →

𝑈 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓 = 𝑓𝑜𝜑. 

Sometimes one also speaks of regular surface elements if the 

rank of the map f is maximal, i.e., if f is an immersion. If there 

turn out to be points, however, where the rank is not maximal, 

one speaks of singular points or singularities. Similarly, one 

defines a hypersurface elementin IRn+1 by means of an 

immersion of an open subset U of 𝑅𝑛 𝑖𝑛 𝑅𝑛+1, even more 

generally a k-dimensional surface element in 𝑅𝑛 . 

Definition ( 2.13):[8], pp118. An immersed (or 

parametrized) surfacein space is a  map 𝜑: U → 𝑅3of class 

𝐶∞, where U ⊆𝑅2is an open set, such that the differential 

𝑑𝜑𝑥 ∶ 𝑅
2 → 𝑅3is injective (that is, has rank 2) in every point 

x ∈U. The image 𝜑(𝑈) of𝜑is the supportof the immersed 

surface.Corollary (2.14):[8],pp118. Let ϕ: U → R3 be an 

immersed surface. Then every𝑥0 ∈U  has a neighborhood 

𝑈1⊆U such that 𝜑│𝑈1: 𝑈1 → 𝑅3is a homeomorphism 

with its image. 

Proof. Let G: Ω → Wbe the diffeomorphism , 𝜋: 𝑅3 → 𝑅2the 

projection on first  coordinates, and set  𝑈1 = 𝜋(Ω ∩

(𝑈 × {0})). Then φ((𝑥) = 𝐺(𝑥, 0) for all 𝑥 ∈ 𝑈1 and so 

𝜑│𝑈1is  a homeomorphism with its image, as required. 

Definition(2.15):[8], pp121. A connected subset  𝑆 ⊆ 𝑅3is a 

(regular or embedded) surface in space if for all p ∈ S there 

exists a map 𝜑: U → 𝑅3 of class ∁∞, whereU ⊆𝑅2is an open 

subset, such that: 
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i.  𝜑(U) ⊆ S is an open neighborhood of p in S (or, 

equivalently, there exists an open neighborhood W ⊆𝑅3 of p 

in 𝑅3 such that 𝜑(U) = W ∩ S); 

ii. 𝜑 is a homeomorphism with its image; 

iii.  the differential 𝑑𝜑𝑥: 𝑅
2 → 𝑅3 is injective (that is, it has 

maximum rank, 

      i.e., 2) for all 𝑥∈ U. Any map 𝜑 satisfying (a)–(c) is a 

local (or regular) parametrization in p; if O ∈ U and 𝜑(O) = 

p, we say that the local parametrization is centered in p. The 

inverse map 𝜑−1: 𝜑(𝑈) → 𝑈 is called local chart in p; the 

neighborhood 𝜑(𝑈) of p in S is called a coordinate 

neighborhood, the coordinates(𝑥1(𝑝), 𝑥2(𝑝)) =  𝜑
−1(𝑝)) are 

called local coordinates ofp; and, for j = 1, 2, the curve 𝑡 →

𝜑 (𝑥0, + 𝑡𝑒𝑗) is the j-th coordinate curve (or line) through 

𝜑(𝑥0). 

Example(2.16):[6], pp(128-129). We will show that the 

cylinder{ 𝐶 = (𝑥, 𝑦, 𝑧) ∈ 𝑅3│𝑥2 + 𝑦2 = 1}is a regular 

surface. Every point 𝑝 = (𝑥, 𝑦, 𝑧)∈C with 𝑥 ≠ −1, 

lies in the image of the smooth function 𝜎: (−𝜋, 𝜋) ⋮× 𝑅⏟        
𝑈

→

𝐶 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝜎(𝑢, 𝑣) =

 (cos(𝑢))⏟    
𝑥(𝑢,𝑣)

,sin(𝑢)⏟  
𝑦(𝑢,𝑣)

, 𝑣⏟
𝑧(𝑢,𝑣)

;  𝑠𝑒𝑒  𝐹𝑖𝑔𝑢𝑟𝑒 𝑁𝑜. 1 

The image 𝑉 =  𝜎(𝑈)is open in C, because it is the 

intersection with C of the open set {(𝑥, 𝑦, 𝑧) ∈  𝑅3|𝑥 ≠ −1}. 

It is straightforward to verify that𝜎 is injec- 

tive. To complete the verification that σ is a diffeomorphism 

(and is thus a valid surf- ace patch), it remains to show that 

the inverse 𝜎−1: 𝑉 → 𝑈 is smooth. At points of  𝑉+ =

{(𝑥, 𝑦, 𝑧) ∈ 𝑉|𝑥 > 0}, 𝑡ℎ𝑒𝑚𝑎𝑝 𝜎− 1 is given by the 

formula(𝑥, 𝑦, 𝑧) → (𝑡𝑎𝑛−1(
𝑦
𝑥⁄ ), 𝑧), which is smooth 

becauseit extends to the smooth function with the same 

formula on the open set {(𝑥, 𝑦, 𝑧) ∈ 𝑅3│𝑥 > 0}. }. The 

smoothness of  𝜎−1at  other  points  of  V  can verified in a 

similar manner. Thus, σ is a surface patch. 

The points of 𝐶 at which 𝑥 = −1can be covered by the second 

function𝜇: (−𝜋, 𝜋) × 𝑅 → 𝐶 defined as𝜇(𝑢, 𝑣) = (cos(𝑢 +

𝜋) , sin(𝑢 + 𝜋) , 𝑣), ),  

which isa valid surface patch by similar arguments. Notice 

that μ is the composition of σ with the rigid motion of 𝑅3that 

rotates 180◦ about the 𝑧 − 𝑎𝑥𝑖𝑠.This completes the 

verification that C is a regular surface. For laterreference, we 

will nowindepend-ently verify the rank-2 condition 

guaranteed for the surface patch 𝜎.The Jacobian matrix at𝑞 =

(𝑢, 𝑣) ∈ 𝑖𝑠 

𝑑𝜎𝑞 =

(

 
 
 

∂x

∂u
(𝑞)

∂x

∂v
(𝑞)

∂y

∂u
(𝑞)

∂y

∂v
(𝑞)

∂z

∂u
(𝑞)

∂z

∂v
(𝑞))

 
 
 

= (
−sin (𝑢) 0

cos (𝑢) 0
0 1

).                                                (9) 

It has rank 2 for all choices of 𝑞 ∈ 𝑈, because the two 

columns 𝜎𝑢(𝑞) =   (− sin(u) , cos(u) , 0) ,  𝜎𝑣(𝑞) =

(0,0,1), are  linearly independent. Notice that 𝜎𝑢(𝑞) points 

“around,”  while 𝜎𝑣(𝑞) points "up".We knowthat the upper 

hemisphere (z > 0)of𝑆2 is diffeomorphic to an open disk in 

𝑅2. The other five hemispheres(z <0, x >0, x <0, y >0, and y 

<0) are also diffeomorphic to disks,by similar arguments. For 

example, the hemisphere y <0 is covered by the surface patch 

𝜎(𝑥, 𝑦) = (𝑥, −√1 − 𝑥2 − 𝑧2, 𝑧),whose domain is an open 

disk in the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 , {(𝑥, 𝑦) ∈ 𝑅2|𝑥2 + 𝑧2 < 1}. Thus ,𝑆2 

is a regular surface covered by atlas of six surface patches.  

 
Figure: 2.1.The surface patch 𝝈 covers all but the green line 
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3.  SECTIONAL CURVATURE 

For our investigation of sectional curvature ,we need some 

symmetry  properties of the curvature tensor , which are not 

so immediate . 

Lemma(3.1):[13],pp242. For arbitrary vector fields X,Y,Z 

,V the following hold 

i. 𝑅(𝑋, 𝑌)𝑍 =

 −𝑅((𝑌, 𝑋)𝑍;                                         (10) 

ii. 𝑅(𝑋, 𝑌)𝑍 + 𝑅(𝑌, 𝑍)𝑋 + 𝑅(𝑍, 𝑋)𝑌 = 0;   

1st (Bianchi  identity)               (11) 

iii. (∇ × 𝑅)(𝑌, 𝑍)𝑉 + (∇𝑌𝑅)(𝑍, 𝑋)𝑉 +

(∇𝑍𝑅)(𝑋, 𝑌)𝑉 =

0;                             (2𝑛𝑑 𝐵𝑖𝑎𝑛𝑐ℎ𝑖 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 )(12) 

iv. 〈𝑅(𝑋, 𝑌)𝑍, 𝑉〉 =

−〈𝑅(𝑋, 𝑌)𝑉, 𝑍〉;                              (13) 

v. 〈𝑅(𝑋, 𝑌)𝑍, 𝑉〉 =  〈𝑅(𝑍, 𝑉)𝑋, 𝑌〉(14) 

Definition(3.2):[13],pp246. With respect to a given 

Riemannian metric 〈−,−〉, the standard curvature tensor 𝑅1 

is defined by the relation 𝑅1(𝑋, 𝑌)𝑍 = 〈𝑌, 𝑍〉𝑋 − 〈𝑋, 𝑍〉𝑌. We 

then set 𝑘1(𝑋, 𝑌) =  〈𝑅1(𝑋, 𝑌)𝑌, 𝑋〉 = 〈𝑋, 𝑋〉〈𝑌, 𝑌〉  −

〈𝑋, 𝑌〉2, 𝑘(𝑋, 𝑌) = 〈𝑅(𝑋, 𝑌)𝑌, 𝑋〉. Let 𝜎 ∁𝑇𝑝𝑀 be two-

dimensional subspace , spanned by X,Y. Then the quantity 

𝐾𝜎 =
𝑘(𝑋,𝑌)

𝑘1(𝑋,𝑌
 , is called the sectional curvature of the 

Riemannian manifold with respect to the plane 𝜎. If X,Y  are 

orthonormal , then one has simply 𝐾𝜎 = 〈𝑅(𝑋, 𝑌)𝑌, 𝑋〉. For 

case 𝑛 = 2 we recognize the theorema fgregium with 𝐾𝜎 =

𝐾 (Gaussian  curvature). 

Definition(3.3):[2],pp(409-410). The sectional curvature is 

the curvature of two-dimensional sections of manifold Given 

any two vectors 𝑢, 𝑣 ∈ 𝑇𝑝𝑀,recally by Cauchy-Schwarz that  

〈𝑢, 𝑣〉𝑝
2 ≤ 〈𝑢, 𝑣〉𝑝〈𝑣, 𝑣〉𝑝, with equality if 𝑢, 𝑣 are linearly 

dependent . Consequently, if  𝑢 𝑎𝑛𝑑 𝑣 are linearly 

independent, we have 〈𝑢, 𝑣〉𝑝〈𝑣, 𝑣〉𝑝 − 〈𝑢, 𝑣〉
2 ≠ 0.  In this 

case, we claim that the ratio  

𝐾𝑝(𝑢, 𝑣) =
𝑅𝑝(𝑢,𝑣,𝑢,𝑣)

〈𝑢,𝑣〉𝑝〈𝑣,𝑣〉𝑝−〈𝑣,𝑣〉𝑝
2 =

〈𝑅𝑝(𝑢,𝑣)𝑢,𝑣〉

〈𝑢,𝑣〉𝑝〈𝑣,𝑣〉𝑝−〈𝑢,𝑣〉𝑝
2                                         

(15) 

Is independent of the plane  II spanned by 

 𝑢 𝑎𝑛𝑑 𝑣. 𝐼𝑓  (𝑥, 𝑦 )is another basis of  II, then  𝑥 = 𝑎𝑢 +

𝑏𝑣 ,   𝑦 = 𝑐𝑢 + 𝑑𝑣, we get  

〈𝑥, 𝑥〉𝑝〈𝑦, 𝑦〉𝑝 − 〈𝑥, 𝑦〉𝑝
2 = (𝑎𝑑 − 𝑏𝑐)2(〈𝑢, 𝑢〉𝑝〈𝑣, 𝑣〉𝑝 −

〈𝑢, 𝑣〉2) , and similarly, 𝑅𝑝(𝑥, 𝑦, 𝑥, 𝑦) =  〈𝑅𝑝(𝑥, 𝑦)𝑥, 𝑦〉 =

 (𝑎𝑑 − 𝑏𝑐)2𝑅𝑝(𝑢, 𝑣, 𝑢, 𝑣).                          (16)            

Definition(3.4):[2].pp410. Let (M,〈−,−〉 be any Riemannian 

manifold equipped with the Lev-Civita connection. For every 

𝑝 ∈ 𝑇𝑝𝑀,for every 2-plane II⊂𝑇𝑝𝑀 ,the sectio-nal 

curvature 

𝐾𝑝(𝐼𝐼) = 𝐾𝑝(𝑥, 𝑦)

=
𝑅𝑝(𝑥, 𝑦, 𝑥, 𝑦)

〈𝑥, 𝑦〉𝑝〈𝑦, 𝑦〉𝑝 − 〈𝑥, 𝑦〉𝑝
2
 ,                                                     (16) 

for any basis(𝑥, 𝑦) of  II 

 

The Differential Geometry of Sectional Curvature: 

i.  Constant Sectional Curvature: 

Definition (4.1):[3], pp281. Let k ∈ 𝑹 and 𝑚 ≥ 2 be an 

integer. An m-manifold 𝑀⊂𝑅2is said to have constant 

sectional curvature 𝑘  iff 𝑘(𝑝, 𝑒) = 𝑘, for every p∈ 𝑀 and 

every 2-dimensional linear subspace  𝐸⊂ 𝑇𝑝𝑀. 

Proposition(4.2):[13],pp(248-249). (F. Schur 1886). When 

the sectional curvature 𝐾𝜎  of a connected manifold of 

dimension 𝑛 ≥ 3 does not depend on the plane 𝜎,but only on 

the point 𝑝 at which it is calculated, then it is constant, i.e., 

does not depend on the point. 

Proof:  

First of all we have by  𝑅 = 𝐾𝑅1 the relation 𝑅(𝑌, 𝑍)𝑉 =

𝐾. 𝑅1(𝑌, 𝑍)𝑉 with a differentiable function 𝐾:𝑀 → 𝑹. By 

taking derivatives we get  

(∇𝑥𝑅)(𝑌, 𝑍)𝑉 = 𝐾. (∇𝑋𝑅1)(𝑌, 𝑍)𝑉 + 𝑋(𝐾). 𝑅1(𝑌, 𝑍)𝑉

= 𝑋(𝐾). 𝑅1(𝑌, 𝑍)𝑉,          (17) 

Because ∇ × 𝑅1 = 0, we now wish to show that 𝑋(𝐾) = 𝑂, 

for all X. By cyclically permuting the arguments, we get  

(∇𝑥𝑅)(𝑌, 𝑍)𝑉 = 𝑋(𝐾)(〈𝑍, 𝑉〉𝑌 − 〈𝑌, 𝑉〉𝑍), 

(𝛻_𝑌 𝑅)(𝑍, 𝑋)𝑉 = 𝑌(𝐾)(〈𝑋, 𝑉〉𝑍 − 〈𝑍, 𝑉〉𝑋), 

(∇𝑍𝑅)(𝑋, 𝑌)𝑉 = 𝑍(𝐾)(〈𝑌, 𝑉〉𝑋 − 〈𝑋, 𝑉〉𝑌. 

Now when we take the sum of these equations, the left-hand 

side vanishes because of the third equation in Lemma (3.1) 

and hence we have 

0 = (𝑍(𝐾)〈𝑌, 𝑉〉 − 𝑌(𝐾)〈𝑍, 𝑉〉𝑋 + (𝑋(𝐾)〈𝑍, 𝑉〉 −

𝑍(𝐾)〈𝑋, 𝑉〉)𝑌 + (𝑌(𝐾)〈𝑋. 𝑉〉 −

𝑋(𝐾)〈𝑌, 𝑉〉)𝑍,                                                                                                                       

(18)  

For all X,Y,Z,V. By our assumption on the dimension there 

are three orthogonal vectors  𝑋, 𝑌, 𝑍. We first set 𝑉 = 𝑋, 

yielding  

0 = −𝑍(𝐾)𝑌 + 𝑌(𝐾)𝑍, 

And consequently 𝑌(𝐾) = 𝑍(𝐾) = 0. Now we choose 

similarly 𝑉 = 𝑌, yielding     0 = 𝑍(𝐾)𝑋 − 𝑋(𝐾)𝑍, 

And then also 𝑌(𝐾) = 0. Since at least one of the three 

vectors may be chosen arbitrarily , it follows that 𝑋(𝐾) = 0, 

for every 𝑋. Thus K   is locally constant, and by connectedness 

of M it is globally constant. 

Definition(4.3):[13],pp249. If on a Riemannian 𝐾𝜎  is  a 

constant or, equivalently, if 𝑅 = 𝐾. 𝑅1 with 𝑘 ∈ 𝑹, the 

manifold is called a pace of constant curvature. 

Theorem(4.4):[3],pp(281-282). Let 𝑀 ⊂ 𝑅𝑛 be an m-

manifoldand fix an element        𝑝 ∈ 𝑀and a real number k. 

then the following are equivalent  

i. 𝐾(𝑝, 𝐸) = 𝐾  for every 2-dimensional linear 

subspace 𝐸 ⊂ 𝑇𝑝𝑀 

ii. The Riemann curvature tensor of𝑀 at 𝑝  given by 

〈𝑅𝑝(𝑣1, 𝑣2)𝑣3, 𝑣4〉

= 𝐾(〈𝑣1, 𝑣4〉〈𝑣2, 𝑣3〉

− 〈𝑣1, 𝑣3〉〈𝑣2, 𝑣4〉                              (19) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ 𝑇𝑝𝑀 
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 Proof: That (ii) implies (i) follows directly from the 

definition of sectional curvature in (3.4) y taking 𝑣1 =

𝑣4 = 𝑢 and 𝑣2 = 𝑣3 = 𝑣 in 𝐾(𝐼𝐼, 𝐸) =
1

4
|[𝜉, 𝜂]|2, 

conversely ,assume (i) and defined the multi-linear 

map𝑄: 𝑇𝑝 → 𝑅 by𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4) =

〈𝑅𝑝(𝑣1, 𝑣2)𝑣3, 𝑣4〉 − 𝐾(〈𝑣1, 𝑣4〉〈𝑣2, 𝑣3〉 −

〈𝑣1, 𝑣3`〉〈𝑣2, 𝑣4〉  .       

  (20) 

Then for all 𝑢, 𝑢, 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ 𝑇𝑝𝑀.The 𝑄 satisfies the 

equation  

𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4) + (𝑣2, 𝑣1, 𝑣3, 𝑣4)

= 0,                                                                     (21) 

𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4) + 𝑄(𝑣2, 𝑣3, 𝑣1, 𝑣4) + (𝑣3, 𝑣1, 𝑣2, 𝑣4)

= 0,                                   (22) 

Q(𝑣1, 𝑣2, 𝑣3, 𝑣4) − 𝑄(𝑣3, 𝑣4, 𝑣1, 𝑣2) =

0,                                                                   (23) 

Q(𝑢, 𝑣, 𝑢, 𝑣) =

0.                                                                                                             (24) 

Here the firstthree equations from Lemma(3.1)and the 

last follows from the definition of Qand the hypothesis 

that the sectional curvature is 𝐾(𝑝, 𝐸) = 𝐾 for every 2-

dimensional linear subspace 𝐸 ⊂ 𝑇𝑝𝑀.We mustprove 

that Q vanishes using  equations (23)and (24) we find  

0 = 𝑄(𝑢, 𝑣1 + 𝑣2, 𝑢, 𝑣1 + 𝑣2)

= 𝑄(𝑢, 𝑣1, 𝑢, 𝑣2) + 𝑄(𝑢, 𝑣2, 𝑢, 𝑣1) 

= 2𝑄(𝑢, 𝑣1, 𝑢, 𝑣2) 

For all 𝑢, 𝑣1, 𝑣2 ∈ 𝑇𝑝𝑀. This implies  

0 = 𝑄(𝑢1 + 𝑢2, 𝑣1, 𝑢1 + 𝑢2, 𝑣2) = 𝑄(𝑢1, 𝑣1, 𝑢2, 𝑣2) +

𝑄(𝑢2, 𝑣1, 𝑢1, 𝑣2)              for all 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈

𝑇𝑝𝑀. Hence 

𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4) = −𝑄(𝑣3, 𝑣2, 𝑣1, 𝑣4)

= 𝑄(𝑣2, 𝑣3, 𝑣1, 𝑣4) 

= −𝑄(𝑣3, 𝑣1, 𝑣2, 𝑣4) − 𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4). 

Here the equation(21)and the equation ( 22). Thus

  

 𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4) = −
1

2
𝑄(𝑣3, 𝑣1, 𝑣2, 𝑣4)

− 𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4) 

for all𝑣1, 𝑣2, 𝑣3, 𝑣4𝜖𝑇𝑝𝑀 and repeating this 

argument, 

𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4)

=
1

4
𝑄(𝑣1, 𝑣2, 𝑣3, 𝑣4).                                                              (25)    

𝐻𝑒𝑛𝑐𝑒 𝑄 ≡ 0 as claimed .This proves 

Theorem(4.4). 

Corollary(4.5):[3],pp284. Any two connected , simply 

connected complete Riemannian manifold with the same 

constant sectional curvature and the same dimension are 

isometric. 

Proof: Theorem (4.4) 

Example(4.6)[3],pp285. Any flat Riemannian manifold has 

constant sectional curvature 𝐾 = 0. 

 

ii. Nonpositive Sectional Curvature: 

Definition(4.7):[3].pp293.  A Riemannian manifold 𝑀is said 

to  have nonpositive sectional curvature  iff 𝐾(𝑝, 𝐸) ≤ 0 for 

every 𝑝 ∈ 𝑀and evry2-dimensional linear subspace  𝐸 ⊂

𝑇𝑝𝑀  or , equivalently〈𝑅𝑝(𝑢, 𝑣)𝑣, 𝑢〉 ≤ 0 for all 𝑝 ∈ 𝑀 and 

all 𝑢, 𝑣 ∈ 𝑇𝑝𝑀. A nonempty, connected, simply connected, 

complete Riemannian manifold with nonpositive sectional 

curvature is called aHadamard manifold. 

iii. Positive Sectional Curvature: 

The definition of positive sectional curvature  with standard 

definition can easily be discussed by using  the following 

corollary 

Corollary(4.7):[3], pp312.  Let𝑀 ⊂ 𝑹𝟐be a complete, 

connected manifold of dimensional 𝑚 ≥ 2 and suppose that 

there three exists a 𝛿 > 0 such that      𝐾(𝑝, 𝐸) ≥ 𝛿 for every 

𝑝 ∈ 𝑀  and every 2-dimensional linear subspace 𝐸 ⊂ 𝑇𝑝𝑀.  

𝑑(𝑝, 𝑞) ≤
𝜋

√𝛿
, for all 𝑝, 𝑞 ∈ 𝑀 and hence 𝑀 is complete. 

 

5. APPLICATIONS OF THE DIFFERENTIAL 

GEOMETRY OF SECTIONAL CURVATURE 

Example (5.1)[3], pp290. If  𝑀 ⊂ 𝑅3is a 2-manifold, then 

the sectional curvature 𝐾(𝑝, 𝑇𝑝𝑀) = 𝐾(𝑝) is the Gaussian 

curvature of 𝑀 at 𝑝. More generally, for any 2-m- anifold𝑀 ⊂

𝑅𝑛(where or not it has codimension one) we define the 

Gaussian curvat- ure of 𝑀 at 𝑝 by 

𝐾(𝑝)

= 𝐾(𝑝, 𝑇𝑝𝑀)                                                                      (26)     

Example(5.2):[3], pp280. If 𝑀 ⊂ 𝑅𝑚+1 is a submanifold of 

codimension one and 𝑣:𝑀 → 𝑆𝑚 is a Gaussian map, then the 

sectional curvature of  a 2-dimensional subspace  𝐸 ⊂ 𝑇𝑝𝑀 

spanned by two linearly independent tangent vectors 𝑢, 𝑣 ∈

𝑇𝑝𝑀 is given by  

𝐾(𝑝, 𝐸)

=
〈𝑢, 𝑑𝑣(𝑝)𝑢〉〈𝑣, 𝑑𝑣(𝑝)𝑣〉 − 〈𝑢, 𝑑𝑣(𝑝)𝑣〉2

|𝑢|2|𝑣|2 − 〈𝑢, 𝑣〉2
,              (27) 

Which holds in all dimensions. In particular, when 𝑀 = 𝑆𝑚, 

we have 𝑣(𝑝) = 𝑝 and hence 𝐾(𝑝, ) = 1 for all 𝑝 𝑎𝑛𝑑 𝐸. For 

a sphere of radius r we have 𝑣(𝑝) =
𝑝

𝑟
 and hence 𝐾(𝑝, 𝐸) =

1

𝑟2
. 

Example (5.3)[9], pp(147-148). Let 𝑓: 𝑅2 → 𝑅 denote the 

function 

𝑓(𝑥, 𝑦) = cos 𝑥 + cos 𝑦 − 2 ,with parametrization 𝑟(𝑢, 𝑣) =

[𝑢, 𝑣, cos 𝑢 + cos 𝑣 − 2].  Since𝑓𝑢(𝑢, 𝑣) =

− sin 𝑢 , 𝑓𝑣(𝑢, 𝑣) = − sin 𝑣 , 𝑓𝑢𝑢(𝑢, 𝑣) = − cos 𝑢  ,

𝑓𝑢𝑣(𝑢, 𝑣) = 0, 𝑓𝑣𝑣(𝑢, 𝑣) = −𝑣, we obtain:  𝐸(𝑢, 𝑣) = 1 +

(sin 𝑢)2,   𝐹(𝑢, 𝑣) = sin 𝑢 sin 𝑣,    𝐺(𝑢, 𝑣) = 1 + (sin 𝑣)2,  

𝑒(𝑢, 𝑣) =
− cos 𝑢

√1 + (sin 𝑢)2 + (sin 𝑣)2
𝑓(𝑢, 𝑣) = 0; 

𝑔(𝑢, 𝑣) =
− cos 𝑣

√1 + (sin 𝑢)2 + (sin 𝑣)2
;                    
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𝐾(𝑢, 𝑣) =
cos 𝑢 𝑐𝑜𝑠𝑣

(1 + (sin 𝑢)2 + (sin 𝑣)2
;             

  𝐻(𝑢, 𝑣)

=
cos 𝑢(1 + (sin 𝑢)2) − cos 𝑣(1 + (sin 𝑣)2)

2(1 + (sin 𝑢)2 + (sin 𝑣)2)
3

2

.                            

The point 𝑝0: (0,0) is critical with respect to the function 

𝑓, 𝑖. 𝑒., both partial derivative vanish at 𝑝0. The other critical 

points have coordinates (𝐾𝜋, 𝑙𝜋)with integer 𝑘 and l. At 𝑝0 

the graph of 𝑓 has the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒𝑧 = 0 as its tangent plane ; 

at the other critical points the tangent plane is one of the 

horizontal planes 𝑧 = 0 or 𝑧 = −2 or 𝑧 = −4. The Gaussian 

curvature at 𝑝0 is 𝑘(0,0) = 1, the mean curvatureis 𝐻(0,0) =

−1. The principal curvature at this point are 𝑘1(𝑝0) =

𝑘2(𝑝𝑜) = −1. This means, that alldirections are principal 

directions.The approximating paraboloid  at 𝑝0 is a sphere of 

radius 1. Since the Gaussian curvature is positive, the  

function has a local extremum(in fact , a local maximum) at 

𝑝0. 

At (𝑘𝜋, 𝑙𝜋), the Gaussian curvature is positive , if 𝑘 and l are 

either both even or both odd. The function 𝑓 has a local 

maximum at each a point (𝑓(𝑘𝜋, 𝑙𝜋) = 0) if 𝑘 and l are both 

even and a local minimum (𝑓(𝑘𝜋, 𝑙𝜋) = −4), if 𝑘 and l are 

both odd. If 𝑘 is even and lis odd  -or vice versa -, then 

(𝑘𝜋, 𝑙𝜋)with horizontal tangent plane  𝑧 = −2. 

 

RESULTS 

The differential geometry of sectional curvature indicates to 

know behavior  of some of the functions and we showed  that 

the calculation of the parametrized differentiable curves, 

surfaces and sectional curvature . And also we explained that 

the sectional curvature is the Gaussian curvature. 

 

CONCLUSION 

Finally we can say that any sectional curvature is Gaussian 

curvature. 
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