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1. INTRODUCTION 

After the introduction of fuzzy subsets by L.A.Zadeh[7], 

several researches explored on the generalization of the 

notion of fuzzy subset. In 1966, Imai and Iseki introduced 

two classes of abstract algebras viz. BCK-algebras and BCI-

algebras[2]. J.Neggers and H.S. Kim introduced the notion of 

B-algebras[3] which is a generalisation of BCK-algebras. We 

introduce the notion of BS-algebras which is a generalisation 

of B-algebras and established the notion of Doubt fuzzy bi-

ideal of BS-algebras[1]. F. Smarandache[4] extented the 

concept of fuzzy logic to neutrosophic logic which includes 

indeterminancy. Neutrosophic set theory played a major role 

in decision making problem, medical diagnosis, robotics, 

image processing, etc.,  

In this paper, we introduced the notion of Neutrosophic 

fuzzy bi-ideal of BS-algebras and studied their algebraic 

properties. We obtained the Cartesian product of 

neutrosophic fuzzy bi-ideal for BS-algebras. Finally, we 

studied how to deal with homomorphism in neutrosophic 

fuzzy bi-ideal for BS-algebras. 

 

2. PRELIMINARIES 

In this Section, We recall some basic definitions which are 

needed for our study. 

Definition 2.1 [1]. A BS-Algebra 𝕭 is a non empty set with 

a constant 1 and a binary operation * satisfying the 

following axioms 

(i) a*a=1 

(ii) a*1=a 

(iii) (a*b)*c = a*(c*(1*b))  

Definition 2.2 [1]. A fuzzy subset Ƒ in a BS-Algebra 𝕭 is 

called Fuzzy Bi-Ideal if 

(i) Ƒ(1) ≥ Ƒ(a) 

(ii) Ƒ(b*c) ≥ min{Ƒ(a), Ƒ(a*(b*c))}  

Example 2.3 [1]. Let 𝕭 = {1,x,y,z} be a set with the 

following Cayley table 

* 1 x y z 

1 1 x y z 

x x 1 z y 

y y z 1 x 

z z y x 1 

 

Then (𝕭, *, 1) is a BS-algebra. Define a fuzzy set 

Ƒ:𝕭 [0,1] by Ƒ(1)= Ƒ(b)=0.9 and Ƒ(a)= Ƒ(c)=0.7. Then Ƒ is 

a fuzzy bi-ideal of 𝕭. 

Definition 2.4 [5]. A Neutrosophic fuzzy set 𝓝 on the 

Universe of discourse X characterised by a truth 

membership function Ʈ𝓝(a), an indeterminacy function 

Ɩ𝓝(a) and a falsity membership function Ƒ𝓝(a) is defined as  

𝓝={<a, Ʈ𝓝(a), Ɩ𝓝(a), Ƒ𝓝(a)>: a  } where Ʈ𝓝, Ɩ𝓝, Ƒ𝓝 : 

X⟶[0,1] and 0 ≤ Ʈ𝓝+ Ɩ𝓝+ Ƒ𝓝 ≤ 3 

Definition 2.5 [5]. Let 𝓜 and 𝓝 be two neutrosophic fuzzy 

bi-ideal of BS-algebra 𝕭. Then  

i) 𝓜∪𝓝={<a, Ʈ𝓜∪𝓝(a), Ɩ𝓜∪𝓝(a), Ƒ𝓜∪𝓝(a)>}, where  

Ʈ𝓜∪𝓝(a) = max(Ʈ𝓜(a), Ʈ𝓝(a)); Ɩ𝓜∪𝓝(a) = min(Ɩ𝓜(a), 

Ɩ𝓝(a)); Ƒ𝓜∪𝓝(a) = min(Ƒ𝓜(a), Ƒ𝓝(a)) 
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ii) 𝓜∩𝓝={<a, Ʈ𝓜∩𝓝(a), Ɩ𝓜∩𝓝(a), Ƒ𝓜∩𝓝(a)>}, where 

Ʈ𝓜∩𝓝(a) = min(Ʈ𝓜(a), Ʈ𝓝(a)); Ɩ𝓜∩𝓝(a) =max (Ɩ𝓜(a), 

Ɩ𝓝(a)); Ƒ𝓜∩𝓝(a) = max(Ƒ𝓜(a), Ƒ𝓝(a)) 

 

3. NEUTROSOPHIC FUZZY BI IDEAL OF BS-

ALGEBRAS 

In this section, we give the definition for Neutrosophic 

Fuzzy Bi-Ideal of BS-Algebras and studied some of their 

algebraic properties. 

Definition 3.1. A Neutrosophic fuzzy set 𝓝 of BS-Algebras 

𝕭 is called a Neutrosophic Fuzzy Bi-Ideal of 𝕭 if  

 

(𝓝1) (1) ≥ (a); (1) ≤ (a); (1) ≤ (a); 

(𝓝2) (b*c) ≥ min{ (a), (a*(b*c))};  

          (b*c) ≤ max{ (a), (a*(b*c))};  

          (b*c) ≤ max{ (a), (a*(b*c))} 

 

Theorem 3.2. Let 𝓜 and 𝓝 be two neutrosophic fuzzy 

 bi-ideal of BS-algebra 𝕭. Then 𝓜  𝓝   is a neutrosophic 

fuzzy bi ideal of 𝕭. 

Proof 

Let 𝓜 and 𝓝 be two neutrosophic fuzzy bi-ideal of BS-

algebra 𝕭. For any  

i) (1) = max{Ʈ𝓜(1), Ʈ𝓝(1)}  

      ≥ max{Ʈ𝓜(a), Ʈ𝓝(a)} 

     = (a)  

Therefore, (1) ≥ (a) 

And (1) = min{Ɩ𝓜(1), Ɩ𝓝(1)}  

      ≤ min{Ɩ𝓜(a), Ɩ𝓝(a)} 

     = (a)  

Therefore, (1) ≤ (a) 

And (1) = min{Ƒ𝓜(1), Ƒ𝓝(1)}  

      ≤ min{Ƒ𝓜(a), Ƒ𝓝(a)} 

     = (a)  

Therefore, (1) ≤ (a) 

ii) (b*c) = max{Ʈ𝓜(b*c), Ʈ𝓝(b*c)} 

≥  max{min{Ʈ𝓜(a), Ʈ𝓜(a*( b*c))},    

min{Ʈ𝓝(a), Ʈ𝓝(a*( b*c))}} 

= min{max{Ʈ𝓜(a), Ʈ𝓝(a)}, 

max{Ʈ𝓜(a*( b*c)), Ʈ𝓝(a*( b*c))}} 

      = min{ Ʈ𝓜∪𝓝(a), Ʈ𝓜∪𝓝(a*(b*c))} 

Therefore, (b*c) ≥ min{ (a), (a*(b*c))}  

And (b*c) = min{Ɩ𝓜(b*c), Ɩ𝓝(b*c)} 

≤ min{max{Ɩ𝓜(a), Ɩ𝓜(a*( b*c))}, 

max{Ɩ𝓝(a), Ɩ𝓝(a*( b*c))}} 

= max{min{Ɩ𝓜(a), Ɩ𝓝(a)}, min{Ɩ𝓜(a*( 

b*c)), Ɩ𝓝(a*( b*c))}} 

       = max{Ɩ𝓜∪𝓝(a), Ɩ𝓜∪𝓝(a*(b*c))} 

Therefore, (b*c) ≤ max{ (a), (a*(b*c))}  

And (b*c) = min{Ƒ𝓜(b*c), Ƒ𝓝(b*c)} 

≤ min{max{Ƒ𝓜(a), Ƒ𝓜(a*( b*c))}, 

max{Ƒ𝓝(a), Ƒ𝓝(a*( b*c))}} 

= max{min{Ƒ𝓜(a), Ƒ𝓝(a)}, 

min{Ƒ𝓜(a*( b*c)), Ƒ𝓝(a*( b*c))}} 

       = max{Ƒ𝓜∪𝓝(a), Ƒ𝓜∪𝓝(a*(b*c))} 

Therefore, (b*c) ≤ max{ (a), (a*(b*c))}  

Hence, 𝓜∪𝓝 is a neutrosophic fuzzy bi-ideal of 𝕭 

 

Theorem 3.3. Let 𝓜 and 𝓝 be two neutrosophic fuzzy  

bi-ideal of BS-algebra 𝕭. Then 𝓜∩𝓝   is a neutrosophic 

fuzzy bi ideal of 𝕭. 

Proof 

Let 𝓜 and 𝓝 be two neutrosophic fuzzy bi-ideal of BS-

algebra 𝕭. For any  

i) (1) = min{Ʈ𝓜(1), Ʈ𝓝(1)}  

      ≥ min{Ʈ𝓜(a), Ʈ𝓝(a)} 

     = (a)  

Therefore, (1) ≥ (a) 

And (1) = max{Ɩ𝓜(1), Ɩ𝓝(1)}  

      ≤ max{Ɩ𝓜(a), Ɩ𝓝(a)} 

     = (a)  

Therefore, (1) ≤ (a) 

And (1) = max{Ƒ𝓜(1), Ƒ𝓝(1)}  

      ≤ max{Ƒ𝓜(a), Ƒ𝓝(a)} 

     = (a)  

Therefore,  (1) ≤ (a) 

ii) (b*c) = max{Ʈ𝓜(b*c), Ʈ𝓝(b*c)} 

≥ min{min{Ʈ𝓜(a), Ʈ𝓜(a*( b*c))}, 

min{Ʈ𝓝(a), Ʈ𝓝(a*( b*c))}} 

= min{min{Ʈ𝓜(a), Ʈ𝓝(a)}, 

min{Ʈ𝓜(a*( b*c)), Ʈ𝓝(a*( b*c))}} 

      = min{ Ʈ𝓜∩𝓝(a), Ʈ𝓜∩𝓝(a*(b*c))} 

Therefore, (b*c) ≥ min{ (a), (a*(b*c))}  

And (b*c) = max{Ɩ𝓜(b*c), Ɩ𝓝(b*c)} 

≤ max{max{Ɩ𝓜(a), Ɩ𝓜(a*( b*c))}, 

max{Ɩ𝓝(a), Ɩ𝓝(a*( b*c))}} 

= max{max{Ɩ𝓜(a), Ɩ𝓝(a)}, 

max{Ɩ𝓜(a*( b*c)), Ɩ𝓝(a*( b*c))}} 

       = max{Ɩ𝓜∩𝓝(a), Ɩ𝓜∩𝓝(a*(b*c))} 

Therefore, (b*c) ≤ max{ (a), (a*(b*c))}  

And (b*c) = max{Ƒ𝓜(b*c), Ƒ𝓝(b*c)} 

≤ max{max{Ƒ𝓜(a), Ƒ𝓜(a*( b*c))}, 

max{Ƒ𝓝(a), Ƒ𝓝(a*( b*c))}} 

= max{max{Ƒ𝓜(a), Ƒ𝓝(a)}, 

max{Ƒ𝓜(a*( b*c)), Ƒ𝓝(a*( b*c))}} 

       = max{Ƒ𝓜∩𝓝(a), Ƒ𝓜∩𝓝(a*(b*c))} 

Therefore, (b*c) ≤ max{ (a), (a*(b*c))}  
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Hence, 𝓜∩𝓝 is a neutrosophic fuzzy bi-ideal of 𝕭 

 

Corollary 3.4.  Let 𝓜1, 𝓜2,......, 𝓜n  are neutrosophic 

fuzzy bi-ideal of 𝕭, then 𝓜 =  is also a 

neutrosophic fuzzy bi-ideal of 𝕭  

 

Lemma 3.5. For all s, t  I and i be any positive integer, if s 

= t, then  

i) si ≤ ti 

ii) [min(s, t)]i  = min(si, ti) 

iii) [max(s, t)]i  = max(si, ti) 

Theorem 3.6. Let 𝓝  be a neutrosophic fuzzy bi-ideal of 𝕭, 

then 𝓝i={<a, Ʈ𝓝i(a), Ɩ𝓝i(a), Ƒ𝓝i(a)>: a } is a 

neutrosophic fuzzy bi-ideal of 𝕭i, where i is any positive 

integer and Ʈ𝓝i(a) = (Ʈ𝓝(a))i, Ɩ𝓝i(a) = (Ɩ𝓝(a))i,  

Ƒ𝓝i(a) = (Ƒ𝓝(a))i 

Proof 

Let   be a neutrosophic fuzzy bi-ideal of 𝕭. For any 

 

i) Ʈ𝓝i(1) = (Ʈ𝓝(1))i 

      ≥  (Ʈ𝓝(a))i 

    =  Ʈ𝓝i(a)   

Therefore, Ʈ𝓝i(1) ≥ Ʈ𝓝i(a) 

And Ɩ𝓝i(1) = (Ɩ𝓝(1))i 

          ≤  (Ɩ𝓝(a))i 

      =  Ɩ𝓝i(a)   

Therefore, Ɩ𝓝i(1) ≤ Ɩ𝓝i(a) 

And Ƒ𝓝i(1) = (Ƒ𝓝(1))i 

          ≤  (Ƒ𝓝(a))i 

      =  Ƒ𝓝i(a)   

Therefore, Ƒ𝓝i(1) ≤ Ƒ𝓝i(a) 

ii) Ʈ𝓝i(b*c) = (Ʈ𝓝(b*c))i 

≥  min{Ʈ𝓝(a), Ʈ𝓝(a*( b*c))}}i 

= min{(Ʈ𝓝(a))i, Ʈ𝓝(a*( b*c))i} 

= min{Ʈ𝓝i(a), Ʈ𝓝i(a*(b*c))} 

Therefore, Ʈ𝓝i(b*c) ≥ min{Ʈ𝓝i(a), Ʈ𝓝i(a*(b*c))}  

And Ɩ𝓝i(b*c) = (Ɩ𝓝(b*c))i 

≤  max{Ɩ𝓝(a), Ɩ𝓝(a*( b*c))}}i 

= max{( Ɩ𝓝(a))i, Ɩ𝓝(a*( b*c))i} 

= max{Ɩ𝓝i(a), Ɩ𝓝i(a*(b*c))} 

Therefore, Ɩ𝓝i(b*c) ≤ max{Ɩ𝓝i(a), Ɩ𝓝i(a*(b*c))}  

And Ƒ𝓝i(b*c) = (Ƒ𝓝(b*c))i 

≤  max{Ƒ𝓝(a), Ƒ𝓝(a*( b*c))}}i 

= max{( Ƒ𝓝(a))i, Ƒ𝓝(a*( b*c))i} 

= max{Ƒ𝓝i(a), Ƒ𝓝i(a*(b*c))} 

Therefore, Ƒ𝓝i(b*c) ≤ max{Ƒ𝓝i(a), Ƒ𝓝i(a*(b*c))} 

Hence 𝓝i
  be a neutrosophic fuzzy bi-ideal of 𝕭i 

 

4. DIRECT PRODUCT OF NEUTROSOPHIC FUZZY 

BI IDEAL OF BS-ALGEBRAS 

In this Section, we shall discuss with the direct product of 

neutrosophic fuzzy bi-ideals of BS-Algebras. 

 

Definition 4.1. Let 𝓜 and 𝓝 be two neutrosophic fuzzy 

subsets of BS-algebra 𝕭1 and 𝕭2 respectively. Then the 

direct product of neutrosophic fuzzy subsets of BS-algebras 

𝕭1 and 𝕭2 is defined by 𝓜x𝓝: 𝕭1 x 𝕭2⟶[0,1] such that  

𝓜x𝓝={<(a,b), Ʈ𝓜x𝓝(a,b), Ɩ𝓜x𝓝(a,b), Ƒ𝓜x𝓝(a,b)>: a 𝕭1, 

b 𝕭2}, where Ʈ𝓜x𝓝(a,b) = min(Ʈ𝓜(a), Ʈ𝓝(b)); 

 Ɩ𝓜x𝓝(a,b) = max(Ɩ𝓜(a), Ɩ𝓝(b)); 

 Ƒ𝓜x𝓝(a,b) = min(Ƒ𝓜(a), Ƒ𝓝(b)) 

Definition 4.2. Let 𝓜 and 𝓝 be two neutrosophic fuzzy 

subsets of BS-algebra 𝕭1 and 𝕭2 respectively. Then 𝓜x𝓝 

is a neutrosophic fuzzy bi-ideal of 𝕭1 x 𝕭2 if it satisfies the 

following conditions 

i) (1,1) ≥ (a1, a2); (1,1) ≤ (a1, a2); 

(1,1) ≤ (a1, a2);  

ii) ((b1, b2)* (c1, c2)) ≥ min{ (a1, a2),  

          ((a1, a2)*((b, b2)* (c1, c2)))}; 

     ((b1, b2)* (c1, c2)) ≤ max{ (a1, a2), 

           ((a1, a2)*((b, b2)* (c1, c2)))}; 

     ((b1, b2)* (c1, c2)) ≤ max{ (a1, a2),  

             ((a1, a2)*((b, b2)* (c1, c2)))} 

 

Theorem 4.3. Let 𝓜 and 𝓝 be two neutrosophic fuzzy 

 bi-ideals of BS-algebra 𝕭1 and 𝕭2 respectively. Then 𝓜x𝓝 

is a neutrosophic fuzzy bi-ideals of 𝕭1 x 𝕭2  

Proof 

Let 𝓜 and 𝓝 be two neutrosophic fuzzy bi-ideals of BS-

algebra 𝕭1 and 𝕭2 respectively.  

Let (a1, a2), (b, b2), (c1, c2)  𝕭1 x 𝕭2. We have 

i) (1,1) = min{Ʈ𝓜(1), Ʈ𝓝(1)} 

       ≥ min{Ʈ𝓜(a1), Ʈ𝓝(a2)} 

        = (a1, a2)  

Therefore, (1,1) ≥ (a1, a2)  

Again (1,1) = max{Ɩ𝓜(1), Ɩ𝓝(1)} 

  ≤ max {Ɩ𝓜(a1), Ɩ𝓝(a2)} 

  = (a1, a2)  

Therefore, (1,1) ≥ (a1, a2)  

Again (1,1) = max{Ƒ𝓜(1), Ƒ𝓝(1)} 

  ≤ max {Ƒ𝓜(a1), Ƒ𝓝(a2)} 

  = (a1, a2)  

Therefore, (1,1) ≥ (a1, a2)  

ii) Then ((b1, b2)* (c1, c2)) = Ʈ𝓜x𝓝 (b1*c1, b2*c2)   

                    = min{Ʈ𝓜(b1*c1), Ʈ𝓝(b2*c2)} 

 

≥ min[min{Ʈ𝓜(a1), Ʈ𝓜(a1*(b1*c1))}, 

           min{Ʈ𝓝(a2), Ʈ𝓝(a2*(b2*c2))}] 

= min[min{Ʈ𝓜(a1), Ʈ𝓝(a2)},  

           min{Ʈ𝓜(a1*(b1*c1)), Ʈ𝓝(a2*(b2*c2))}]      

= min{Ʈ𝓜x𝓝(a1, a2), Ʈ𝓜x𝓝(a1*(b1*c1)) , (a2*(b2*c2))}  
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= min{Ʈ𝓜x𝓝(a1, a2), Ʈ𝓜x𝓝((a1, a2)*((b, b2)* (c1, c2)))} 

Therefore, ((b1, b2)* (c1, c2)) ≥ min{ (a1, a2), 

((a1, a2)*((b, b2)* (c1, c2)))} 

And ((b1, b2)* (c1, c2)) = Ɩ𝓜x(b1*c1, b2*c2)   

             = max{Ɩ𝓜(b1*c1), Ɩ𝓝(b2*c2)} 

 ≤ max[max{Ɩ𝓜(a1), Ɩ𝓜(a1*(b1*c1))}, 

            max{Ɩ𝓝(a2), Ɩ𝓝(a2*(b2*c2))}] 

 = max[max{Ɩ𝓜(a1), Ɩ𝓝(a2)},  

            max{Ɩ𝓜(a1*(b1*c1)), Ɩ𝓝(a2*(b2*c2))}]     

 = max{Ɩ𝓜x𝓝(a1, a2), Ɩ𝓜x𝓝(a1*(b1*c1)) , (a2*(b2*c2))}  

 = max{Ɩ𝓜x𝓝(a1, a2), Ɩ𝓜x𝓝((a1, a2)*((b, b2)* (c1, c2)))} 

Therefore, ((b1, b2)* (c1, c2)) ≤ max{ (a1, a2),   

((a1, a2)*((b, b2)* (c1, c2)))} 

And ((b1, b2)* (c1, c2)) = Ƒ𝓜x(b1*c1, b2*c2)   

            = max{Ƒ𝓜(b1*c1), Ƒ𝓝(b2*c2)} 

≤ max[max{Ƒ𝓜(a1), Ƒ𝓜(a1*(b1*c1))}, 

           max{Ƒ𝓝(a2), Ƒ𝓝(a2*(b2*c2))}] 

= max[max{Ƒ𝓜(a1), Ƒ𝓝(a2)},  

           max{Ƒ𝓜(a1*(b1*c1)), Ƒ𝓝(a2*(b2*c2))}]     

= max{Ƒ𝓜x𝓝(a1, a2), Ƒ𝓜x𝓝(a1*(b1*c1)) , (a2*(b2*c2))}         

= max{Ƒ𝓜x𝓝(a1, a2), Ƒ𝓜x𝓝((a1, a2)*((b, b2)* (c1, c2)))} 

Therefore, ((b1, b2)* (c1, c2)) ≤ max{ (a1, a2),      

((a1, a2)*((b, b2)* (c1, c2)))} 

 

5. HOMOMORPHISM OF NEUTROSOPHIC FUZZY 

BI IDEAL OF BS-ALGEBRAS 

In this section, we discuss about homomorphism 

Definition 5.1. Let 𝕭1 and 𝕭2  be two BS-algebras and  

h:𝕭1 ⟶𝕭2 be a function. If 𝓝 is a neutrosophic fuzzy set  

in 𝕭2 , then the preimage of 𝓝 under h denoted by h-1(𝓝)  

is the  neutrosophic fuzzy set in 𝕭1 is defined by  

h-1(𝓝)={<(a), h-1(Ʈ𝓝(a)), h-1(Ɩ𝓝(a)), h-1(Ƒ𝓝(a)) >: a 𝕭},  

where h-1(Ʈ𝓝(a)) = Ʈ𝓝(h(a)); h-1(Ɩ𝓝(a)) = Ɩ𝓝(h(a)); 

 h-1(Ƒ𝓝(a)) = Ƒ𝓝(h(a)) 

 

Theorem 5.2. Let h: 𝕭1  𝕭2 be an epimorphism of BS-

algebras if 𝓝 is a neutrosophic fuzzy bi-ideal of 𝕭2, then 

the pre image of 𝓝 under h is also a neutrosophic fuzzy  

bi-ideal of 𝕭1. 

Proof 

Let 𝓝 is a neutrosophic fuzzy bi-ideal of 𝕭2. Let a,b,c  𝕭1 

Now, h-1( (1)) = (h(1)) 

    ≥ (h(a)) 

    = h-1( (a)) 

Therefore h-1( (1)) ≥ h-1( (a)) 

And h-1( (1)) = (h(1)) 

    ≤ (h(a)) 

    = h-1( (a)) 

Therefore h-1( (1)) ≤ h-1( (a)) 

And h-1( (1)) = (h(1)) 

    ≤ (h(a)) 

    = h-1( (a)) 

Therefore h-1( (1)) ≤ h-1( (a)) 

And, h-1( (b*c)) = (h(b*c)) 

   = (h(b)*h(c))     

    ≥ min{Ʈ𝓝(h(a)),Ʈ𝓝(h(a)*[h(b)*h(c)])} 

                  = min{Ʈ𝓝(h(a)), Ʈ𝓝(h(a*(b*c)))} 

Therefore, h-1( (b*c)) ≥  min{ (h(a)), (h(a*(b*c)))}   

And h-1( (b*c)) = (h(b*c)) 

= (h(b)*h(c))     

≤ max{Ɩ𝓝(h(a)), Ɩ𝓝(h(a)*[h(b)*h(c)])} 

               = max{Ɩ𝓝(h(a)), Ɩ𝓝(h(a*(b*c)))} 

Therefore, h-1( (b*c)) ≤  max{ (h(a)), (h(a*(b*c)))}   

And h-1( (b*c)) = (h(b*c)) 

 = (h(b)*h(c))     

 ≤ max{Ƒ𝓝(h(a)), Ƒ𝓝(h(a)*[h(b)*h(c)])} 

                = max{Ƒ𝓝(h(a)), Ƒ𝓝(h(a*(b*c)))} 

Therefore, h-1( (b*c)) ≤  max{ (h(a)), (h(a*(b*c)))}   

 

Definition 5.3. Let 𝕭1 and 𝕭2 be two BS-algebras and 

 h: 𝕭1  𝕭2 be a homomorphism. Then h(1) =1 

Proof 

Let 𝕭1 and 𝕭2 be two BS-algebras  

Let  𝕭1therefore h  𝕭2 

Now h(1)=h(a*a)=h(a)*h(a)=1*1 =1 

 

Theorem 5.4. Let h: 𝕭1  𝕭2 be a homomorphism of BS-

algebras if 𝓝 is a neutrosophic fuzzy bi-ideal of 𝕭1, then 

h(𝓝)is a neutrosophic fuzzy bi-ideal of 𝕭2. 

Proof 

Let a1, a2, a3  𝕭1 and b1, b2, b3  𝕭2 such that h(a1)= b1 , 

h(a2)= b2, h(a3)= b3  

Now, (b1) = (h(a1)) 

          = h-1( (a1)) 

                       ≤ h-1( (1)) 

          = (h(1)) 

          = (1) 

Therefore, (b1) ≤ (1) 

 

And (b1)= (h(a1)) 

     = h-1( (a1)) 

                       ≥ h-1( (1)) 

         = (h(1)) 

         = (1) 

Therefore, (b1) ≥ (1) 
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And (b1)= (h(a1)) 

      = h-1( (a1)) 

                   ≥ h-1( (1)) 

      = (h(1)) 

      = (1) 

Therefore, (b1) ≥ (1) 

ii) Again we have 

      (b2* b3) = (h(a2)* h(a3)) 

  = h-1( (a2*a3)) 

  ≥ min{h-1(Ʈ𝓝(a1)), h-1(Ʈ𝓝(a1*(a2*a3)))} 

  =min{Ʈ𝓝(h(a1)), Ʈ𝓝(h(a1*(a2*a3)))} 

=min{Ʈ𝓝(h(a1)), Ʈ𝓝(h(a1)*(h(a2)*h(a3)))} 

=min{Ʈ𝓝(b1), Ʈ𝓝(b1*(b2*b3))} 

Therefore, (b2* b3) ≥ min{ (b1), (b1*(b2*b3))} 

And (b2* b3) = (h(a2)* h(a3)) 

  = h-1( (a2*a3)) 

  ≤ max{h-1(Ɩ𝓝(a1)), h-1(Ɩ𝓝(a1*(a2*a3)))} 

  =max{Ɩ𝓝(h(a1)), Ɩ𝓝(h(a1*(a2*a3)))} 

=max{Ɩ𝓝(h(a1)), Ɩ𝓝(h(a1)*(h(a2)*h(a3)))} 

=max{Ɩ𝓝(b1), Ɩ𝓝(b1*(b2*b3))} 

Therefore, (b2* b3) ≤ max{ (b1), (b1*(b2*b3))} 

And (b2* b3) = (h(a2)* h(a3)) 

  = h-1( (a2*a3)) 

  ≤ max{h-1(Ƒ𝓝(a1)), h-1(Ƒ𝓝(a1*(a2*a3)))} 

  =max{Ƒ𝓝(h(a1)), Ƒ𝓝(h(a1*(a2*a3)))} 

=max{Ƒ𝓝(h(a1)), Ƒ𝓝(h(a1)*(h(a2)*h(a3)))} 

=max{Ƒ𝓝(b1), Ƒ𝓝(b1*(b2*b3))} 

Therefore, (b2* b3) ≤ max{ (b1), (b1*(b2*b3))} 

 

CONCLUSION 

In this paper, the notion of Neutrosophic fuzzy bi-ideal of 

BS-algebras are introduced and studied their algebraic 

properties. We obtained the Cartesian product of 

neutrosophic fuzzy bi-ideal for BS-algebras. Finally, we 

studied how to deal with homomorphism.  
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