International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 02 February 2023, Page no. – 3250-3254 Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i2.05

Neutrosophic Fuzzy Bi-Ideal of BS-Algebras

P. Ayesha Parveen¹, M. Himaya Jaleela Begum²

^{1,2} Department of Mathematics, Sadakathullah Appa College, Tirunelveli-11, Tamil Nadu, India.

ARTICLE INFO	ABSTRACT				
Published Online:	The main aim of this paper is to introduce the new concept of neutrosophic fuzzy bi-ideal of				
17 February 2023	BS-algebras. Some algebraic nature are investigated. Neutrosophic fuzzy bi-ideal of BS-				
Corresponding Author:	algebras is also applied in Cartesian product. Finally, we also provide the homomorphic				
P. Ayesha Parveen	behaviour of neutrosophic fuzzy bi-ideal of BS-algebras.				
KEYWORDS: BS-algebras, Neutrosophic fuzzy bi-ideal, Cartesian product, Homomorphism.					

1. INTRODUCTION

After the introduction of fuzzy subsets by L.A.Zadeh[7], several researches explored on the generalization of the notion of fuzzy subset. In 1966, Imai and Iseki introduced two classes of abstract algebras viz. BCK-algebras and BCI-algebras[2]. J.Neggers and H.S. Kim introduced the notion of B-algebras[3] which is a generalisation of BCK-algebras. We introduce the notion of BS-algebras which is a generalisation of B-algebras and established the notion of Doubt fuzzy bi-ideal of BS-algebras[1]. F. Smarandache[4] extented the concept of fuzzy logic to neutrosophic logic which includes indeterminancy. Neutrosophic set theory played a major role in decision making problem, medical diagnosis, robotics, image processing, etc.,

In this paper, we introduced the notion of Neutrosophic fuzzy bi-ideal of BS-algebras and studied their algebraic properties. We obtained the Cartesian product of neutrosophic fuzzy bi-ideal for BS-algebras. Finally, we studied how to deal with homomorphism in neutrosophic fuzzy bi-ideal for BS-algebras.

2. PRELIMINARIES

In this Section, We recall some basic definitions which are needed for our study.

Definition 2.1 [1]. A BS-Algebra **B** is a non empty set with a constant 1 and a binary operation * satisfying the following axioms

- (i) a*a=1
- (ii) a*1=a
- (iii) $(a^*b)^*c = a^*(c^*(1^*b)) \forall a, b, c \in \mathfrak{B}$

Definition 2.2 [1]. A fuzzy subset F in a BS-Algebra **B** is called Fuzzy Bi-Ideal if

- (i) $F(1) \ge F(a)$
- (ii) $F(b^*c) \ge \min\{F(a), F(a^*(b^*c))\} \forall a, b, c \in \mathfrak{B}$

Example 2.3 [1]. Let $\mathfrak{B} = \{1, x, y, z\}$ be a set with the following Cayley table

0	5 5			
*	1	Х	у	Z
1	1	Х	у	Z
x	Х	1	Z	У
У	У	Z	1	Х
Z	Z	У	Х	1

Then (93, *, 1) is a BS-algebra. Define a fuzzy set

 $F: \mathfrak{B} \rightarrow [0,1]$ by F(1) = F(b) = 0.9 and F(a) = F(c) = 0.7. Then F is a fuzzy bi-ideal of \mathfrak{B} .

Definition 2.4 [5]. A Neutrosophic fuzzy set \mathcal{N} on the Universe of discourse X characterised by a truth membership function $T_{\mathcal{N}}(a)$, an indeterminacy function $l_{\mathcal{N}}(a)$ and a falsity membership function $F_{\mathcal{N}}(a)$ is defined as

 $\mathcal{N} = \{ \langle a, T_{\mathcal{N}}(a), l_{\mathcal{N}}(a), F_{\mathcal{N}}(a) \rangle : a \in X \} \text{ where } T_{\mathcal{N}}, l_{\mathcal{N}}, F_{\mathcal{N}} : X \rightarrow [0,1] \text{ and } 0 \leq T_{\mathcal{N}} + l_{\mathcal{N}} + F_{\mathcal{N}} \leq 3$

Definition 2.5 [5]. Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideal of BS-algebra \mathfrak{B} . Then $a \in \mathfrak{B}$

i) $\mathcal{M} \cup \mathcal{N} = \{ \langle a, T_{\mathcal{M} \cup \mathcal{N}}(a), l_{\mathcal{M} \cup \mathcal{N}}(a), F_{\mathcal{M} \cup \mathcal{N}}(a) \rangle \}$, where $T_{\mathcal{M} \cup \mathcal{N}}(a) = \max(T_{\mathcal{M}}(a), T_{\mathcal{N}}(a)); l_{\mathcal{M} \cup \mathcal{N}}(a) = \min(l_{\mathcal{M}}(a), l_{\mathcal{N}}(a)); F_{\mathcal{M} \cup \mathcal{N}}(a) = \min(F_{\mathcal{M}}(a), F_{\mathcal{N}}(a))$ ii) $\mathcal{M} \cap \mathcal{N} = \{ \langle a, T_{\mathcal{M} \cap \mathcal{N}}(a), l_{\mathcal{M} \cap \mathcal{N}}(a), F_{\mathcal{M} \cap \mathcal{N}}(a) \rangle \}$, where $T_{\mathcal{M} \cap \mathcal{N}}(a) = \min(T_{\mathcal{M}}(a), T_{\mathcal{N}}(a)); l_{\mathcal{M} \cap \mathcal{N}}(a) = \max(l_{\mathcal{M}}(a), l_{\mathcal{N}}(a)); F_{\mathcal{M} \cap \mathcal{N}}(a) = \max(F_{\mathcal{M}}(a), F_{\mathcal{N}}(a))$

3. NEUTROSOPHIC FUZZY BI IDEAL OF BS-ALGEBRAS

In this section, we give the definition for Neutrosophic Fuzzy Bi-Ideal of BS-Algebras and studied some of their algebraic properties.

Definition 3.1. A Neutrosophic fuzzy set \mathcal{N} of BS-Algebras **B** is called a Neutrosophic Fuzzy Bi-Ideal of **B** if $\forall a, b, c \in \mathfrak{B}$ $(\mathcal{N}_1) \ T_{\mathcal{N}}(1) \ge T_{\mathcal{N}}(a); \ l_{\mathcal{N}}(1) \le l_{\mathcal{N}}(a); \ F_{\mathcal{N}}(1) \le F_{\mathcal{N}}(a);$ $(\mathcal{N}_2) \ T_{\mathcal{N}}(b^*c) \ge \min\{T_{\mathcal{N}}(a), \ T_{\mathcal{N}}(a^*(b^*c))\};$ $l_{\mathcal{N}}(b^*c) \le \max\{l_{\mathcal{N}}(a), \ l_{\mathcal{N}}(a^*(b^*c))\};$ $F_{\mathcal{N}}(b^*c) \le \max\{F_{\mathcal{N}}(a), \ F_{\mathcal{N}}(a^*(b^*c))\}$

Theorem 3.2. Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideal of BS-algebra \mathfrak{B} . Then $\mathcal{M} \cup \mathcal{N}$ is a neutrosophic fuzzy bi ideal of \mathfrak{B} .

Proof

Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideal of BSalgebra **B**. For any $a, b, c \in \mathfrak{B}$ i) $T_{\mathcal{M}\cup\mathcal{N}}(1) = \max\{T_{\mathcal{M}}(1), T_{\mathcal{N}}(1)\}$ $\geq \max\{T_{\mathcal{M}}(a), T_{\mathcal{N}}(a)\}$ $= T_{\mathcal{M} \cup \mathcal{N}}(a)$ Therefore, $T_{\mathcal{M}\cup\mathcal{N}}(1) \ge T_{\mathcal{M}\cup\mathcal{N}}(a)$ And $l_{\mathcal{M}\cup\mathcal{N}}(1) = \min\{l_{\mathcal{M}}(1), l_{\mathcal{N}}(1)\}$ $\leq \min\{l_{\mathcal{M}}(a), l_{\mathcal{N}}(a)\}$ $= l_{M \cup N}(a)$ Therefore, $l_{\mathcal{M}\cup\mathcal{N}}(1) \leq l_{\mathcal{M}\cup\mathcal{N}}(a)$ And $F_{\mathcal{M}\cup\mathcal{N}}(1) = \min\{F_{\mathcal{M}}(1), F_{\mathcal{N}}(1)\}$ $\leq \min\{F_{\mathcal{M}}(a), F_{\mathcal{N}}(a)\}$ $= F_{\mathcal{M} \cup \mathcal{N}}(a)$ Therefore, $F_{\mathcal{M}\cup\mathcal{N}}(1) \leq F_{\mathcal{M}\cup\mathcal{N}}(a)$ ii) $T_{\mathcal{M}\cup\mathcal{N}}(b^*c) = \max\{T_{\mathcal{M}}(b^*c), T_{\mathcal{N}}(b^*c)\}$ $\geq \max{\min{\{T_{\mathcal{M}}(a), T_{\mathcal{M}}(a^{*}(b^{*}c))\}},$ $\min\{\mathsf{T}\boldsymbol{N}(a), \mathsf{T}\boldsymbol{N}(a^{*}(b^{*}c))\}\}$ $\min\{\max\{T_{\mathcal{M}}(a),\$ $T \boldsymbol{N}(a)$ $\max{\{T_{\mathcal{M}}(a^{*}(b^{*}c)), T_{\mathcal{N}}(a^{*}(b^{*}c)))\}}$ $= \min\{ \mathsf{T}_{\mathcal{M} \cup \mathcal{N}}(a), \mathsf{T}_{\mathcal{M} \cup \mathcal{N}}(a^*(b^*c)) \}$ Therefore, $T_{\mathcal{M}\cup\mathcal{N}}(b^*c) \ge \min\{T_{\mathcal{M}\cup\mathcal{N}}(a), T_{\mathcal{M}\cup\mathcal{N}}(a^*(b^*c))\}$ And $l_{\mathcal{M}\cup\mathcal{N}}(b^*c) = \min\{l_{\mathcal{M}}(b^*c), l_{\mathcal{N}}(b^*c)\}$ $\leq \min\{\max\{l_{\mathcal{M}}(a), l_{\mathcal{M}}(a^*(b^*c))\},\$ $\max\{l_{\mathcal{N}}(a), l_{\mathcal{N}}(a^{*}(b^{*}c))\}\}$ $= \max\{\min\{l_{\mathcal{M}}(a), l_{\mathcal{N}}(a)\}, \min\{l_{\mathcal{M}}(a^{*}(a^$ $b^{*}c)$, $l_{\mathcal{N}}(a^{*}(b^{*}c))$ } $= \max\{l_{\mathcal{M}\cup\mathcal{N}}(a), l_{\mathcal{M}\cup\mathcal{N}}(a^{*}(b^{*}c))\}$

Therefore, $l_{\mathcal{M}\cup\mathcal{N}}(b^*c) \leq \max\{l_{\mathcal{M}\cup\mathcal{N}}(a), l_{\mathcal{M}\cup\mathcal{N}}(a^*(b^*c))\}$ And $F_{\mathcal{M}\cup\mathcal{N}}(b^*c) = \min\{F_{\mathcal{M}}(b^*c), F_{\mathcal{N}}(b^*c)\}$ $\leq \min\{\max\{F_{\mathcal{M}}(a), F_{\mathcal{M}}(a^*(-b^*c))\}\}$ $= \max\{F_{\mathcal{N}}(a), F_{\mathcal{N}}(a^*(-b^*c))\}\}$ $= \max\{\min\{F_{\mathcal{M}}(a), F_{\mathcal{N}}(a^*(-b^*c))\}\}$ $= \max\{F_{\mathcal{M}\cup\mathcal{N}}(a), F_{\mathcal{M}\cup\mathcal{N}}(a^*(-b^*c))\}\}$ Therefore, $F_{\mathcal{M}\cup\mathcal{N}}(b^*c) \leq \max\{F_{\mathcal{M}\cup\mathcal{N}}(a), F_{\mathcal{M}\cup\mathcal{N}}(a^*(-b^*c))\}\}$ Hence, $\mathcal{M}\cup\mathcal{N}$ is a neutrosophic fuzzy bi-ideal of \mathfrak{B}

Theorem 3.3. Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideal of BS-algebra \mathfrak{B} . Then $\mathcal{M} \cap \mathcal{N}$ is a neutrosophic fuzzy bi ideal of **B**. Proof Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideal of BSalgebra **\mathfrak{B}**. For any $a, b, c \in \mathfrak{B}$ i) $\mathbf{T}_{\mathcal{M} \cap \mathcal{N}}(1) = \min\{\mathbf{T}_{\mathcal{M}}(1), \mathbf{T}_{\mathcal{N}}(1)\}$ $\geq \min\{T_{\mathcal{M}}(a), T_{\mathcal{N}}(a)\}$ $= T_{\mathcal{M} \cap \mathcal{N}}(a)$ Therefore, $T_{\mathcal{M} \cap \mathcal{N}}(1) \geq T_{\mathcal{M} \cap \mathcal{N}}(a)$ And $l_{\mathcal{M}\cap\mathcal{N}}(1) = \max\{l_{\mathcal{M}}(1), l_{\mathcal{N}}(1)\}$ $\leq \max\{l_{\mathcal{M}}(a), l_{\mathcal{N}}(a)\}$ $= l_{M \cap N}(a)$ Therefore, $l_{\mathcal{M}\cap\mathcal{N}}(1) \leq l_{\mathcal{M}\cap\mathcal{N}}(a)$ And $F_{\mathcal{M}\cap\mathcal{N}}(1) = \max\{F_{\mathcal{M}}(1), F_{\mathcal{N}}(1)\}$ $\leq \max\{F_{\mathcal{M}}(a), F_{\mathcal{N}}(a)\}$ $= F_{M \cap N}(a)$ Therefore, $F_{\mathcal{M}\cap\mathcal{N}}(1) \leq F_{\mathcal{M}\cap\mathcal{N}}(a)$ ii) $T_{\mathcal{M}\cap\mathcal{N}}(b^*c) = \max\{T_{\mathcal{M}}(b^*c), T_{\mathcal{N}}(b^*c)\}$ $\geq \min\{\min\{\mathsf{T}\boldsymbol{\mathcal{M}}(a), \mathsf{T}\boldsymbol{\mathcal{M}}(a^*(b^*c))\},\$ $\min\{T_{\mathcal{N}}(a), T_{\mathcal{N}}(a^{*}(b^{*}c))\}\}$ = $\min\{\min\{\mathsf{T}\boldsymbol{M}(a),$ $[\mathcal{N}(a)],$ $\min\{T_{\mathcal{M}}(a^{*}(b^{*}c)), T_{\mathcal{N}}(a^{*}(b^{*}c))\}\}$ $= \min\{ \mathsf{T}_{\mathcal{M} \cap \mathcal{N}}(a), \mathsf{T}_{\mathcal{M} \cap \mathcal{N}}(a^*(b^*c)) \}$ Therefore, $\mathbb{T}_{\mathcal{M}\cap\mathcal{N}}(b^*c) \geq \min\{\mathbb{T}_{\mathcal{M}\cap\mathcal{N}}(a), \mathbb{T}_{\mathcal{M}\cap\mathcal{N}}(a^*(b^*c))\}$ And $l_{\mathcal{M}\cap\mathcal{N}}(b^*c) = \max\{l_{\mathcal{M}}(b^*c), l_{\mathcal{N}}(b^*c)\}$ $\leq \max\{\max\{l_{\mathcal{M}}(a), l_{\mathcal{M}}(a^*(b^*c))\},\$ $\max\{l_{\mathcal{N}}(a), l_{\mathcal{N}}(a^{*}(b^{*}c))\}\}$ = $\max\{\max\{l_{\mathcal{M}}(a),$ $l_{\mathcal{N}}(a)$ $\max\{l_{\mathcal{M}}(a^{*}(b^{*}c)), l_{\mathcal{N}}(a^{*}(b^{*}c))\}\}$ $= \max\{l_{\mathcal{M}\cap\mathcal{N}}(a), l_{\mathcal{M}\cap\mathcal{N}}(a^*(b^*c))\}$ Therefore, $l_{\mathcal{M}\cap\mathcal{N}}(b^*c) \leq \max\{l_{\mathcal{M}\cap\mathcal{N}}(a), l_{\mathcal{M}\cap\mathcal{N}}(a^*(b^*c))\}$ And $\mathbf{F}_{\mathcal{M}\cap\mathcal{N}}(b^*c) = \max\{\mathbf{F}_{\mathcal{M}}(b^*c), \mathbf{F}_{\mathcal{N}}(b^*c)\}$ $\leq \max\{\max\{F_{\mathcal{M}}(a), F_{\mathcal{M}}(a^{*}(b^{*}c))\},\$ $\max\{F_{\mathcal{N}}(a), F_{\mathcal{N}}(a^{*}(b^{*}c))\}\}$ $\max\{\max\{F_{\mathcal{M}}(a),$ $F_{\mathcal{N}}(a)$ $\max{F_{\mathcal{M}}(a^{*}(b^{*}c)), F_{\mathcal{N}}(a^{*}(b^{*}c))}$ $= \max\{F\boldsymbol{\mathcal{M}}\cap\boldsymbol{\mathcal{M}}(a), F\boldsymbol{\mathcal{M}}\cap\boldsymbol{\mathcal{M}}(a^{*}(b^{*}c))\}$ $Therefore, \ F_{\mathcal{M}\cap\mathcal{N}}(b^*c) \leq max\{F_{\mathcal{M}\cap\mathcal{N}}(a), \ F_{\mathcal{M}\cap\mathcal{N}}(a^*(b^*c))\}$

P. Ayesha Parveen¹, IJMCR Volume 11 Issue 02 February 2023

Hence, $\mathcal{M} \cap \mathcal{N}$ is a neutrosophic fuzzy bi-ideal of \mathfrak{B}

Corollary 3.4. Let \mathcal{M}_1 , \mathcal{M}_2 ,...., \mathcal{M}_n are neutrosophic fuzzy bi-ideal of \mathfrak{B} , then $\mathcal{M} = \bigcap_{i=1}^n \mathcal{M}_i$ is also a neutrosophic fuzzy bi-ideal of \mathfrak{B}

Lemma 3.5. For all s, $t \in I$ and i be any positive integer, if s

= t. then i) $s^i \le t^i$ ii) $[\min(s, t)]^{i} = \min(s^{i}, t^{i})$ iii) $[\max(s, t)]^i = \max(s^i, t^i)$ **Theorem 3.6.** Let \mathcal{N} be a neutrosophic fuzzy bi-ideal of \mathfrak{B} , then $\mathcal{N}^{i} = \{ \leq a, \ T \mathcal{N}^{i}(a), \ l \mathcal{N}^{i}(a), \ F \mathcal{N}^{i}(a) >: a \in \mathfrak{B} \}$ is a neutrosophic fuzzy bi-ideal of \mathfrak{B}^{i} , where i is any positive integer and $T \mathbf{w}^{i}(a) = (T \mathbf{w}(a))^{i}$, $l \mathbf{w}^{i}(a) = (l \mathbf{w}(a))^{i}$, $F \boldsymbol{\mathcal{N}}^{i}(a) = (F \boldsymbol{\mathcal{N}}(a))^{i}$ Proof be a neutrosophic fuzzy bi-ideal of **B**. For any Let $a, b, c \in \mathfrak{B}$ i) $\mathsf{T} \boldsymbol{\varkappa}^{i}(1) = (\mathsf{T} \boldsymbol{\varkappa}(1))^{i}$ $\geq (T \kappa(a))^i$ $= T \boldsymbol{\chi}^{i}(a)$ Therefore, $T \boldsymbol{\kappa}^{i}(1) \geq T \boldsymbol{\kappa}^{i}(a)$ And $lw^{i}(1) = (lw(1))^{i}$ $\leq (l_{\mathcal{N}}(a))^{i}$ $= l \boldsymbol{w}^{i}(a)$ Therefore, $l \kappa^{i}(1) \leq l \kappa^{i}(a)$ And $\mathcal{F}\boldsymbol{\mathcal{N}}^{i}(1) = (\mathcal{F}\boldsymbol{\mathcal{N}}(1))^{i}$ $\leq (F \kappa(a))^i$ $= F \boldsymbol{\chi}^{i}(a)$ Therefore, $F \boldsymbol{\kappa}^{i}(1) \leq F \boldsymbol{\kappa}^{i}(a)$ ii) $T \boldsymbol{\varkappa}^{i}(b^{*}c) = (T \boldsymbol{\varkappa}(b^{*}c))^{i}$ $\geq \min\{\mathsf{T}_{\mathcal{N}}(a), \mathsf{T}_{\mathcal{N}}(a^{*}(b^{*}c))\}\}^{i}$ $= \min\{(\mathsf{T}\boldsymbol{\varkappa}(a))^{i}, \mathsf{T}\boldsymbol{\varkappa}(a^{*}(b^{*}c))^{i}\}$ $= \min\{\mathsf{T}\boldsymbol{\mathcal{N}}^{i}(a), \mathsf{T}\boldsymbol{\mathcal{N}}^{i}(a^{*}(b^{*}c))\}$ Therefore, $T_{\boldsymbol{\mathcal{N}}^{i}}(b^{*}c) \geq \min\{T_{\boldsymbol{\mathcal{N}}^{i}}(a), T_{\boldsymbol{\mathcal{N}}^{i}}(a^{*}(b^{*}c))\}$ And $l_{\mathcal{N}}^{i}(b^{*}c) = (l_{\mathcal{N}}(b^{*}c))^{i}$ $\leq \max\{l_{\mathcal{N}}(a), l_{\mathcal{N}}(a^{*}(b^{*}c))\}\}^{i}$ $= \max\{(l_{\mathcal{N}}(a))^{i}, l_{\mathcal{N}}(a^{*}(b^{*}c))^{i}\}$ $= \max\{l_{\mathcal{N}}^{i}(a), l_{\mathcal{N}}^{i}(a^{*}(b^{*}c))\}$ Therefore, $l_{\mathcal{N}}^{i}(b^{*}c) \leq \max\{l_{\mathcal{N}}^{i}(a), l_{\mathcal{N}}^{i}(a^{*}(b^{*}c))\}$ And $F \boldsymbol{\varkappa}^{i}(b^{*}c) = (F \boldsymbol{\varkappa}(b^{*}c))^{i}$ $\leq \max{\{F_{\mathcal{N}}(a), F_{\mathcal{N}}(a^{*}(b^{*}c))\}}^{i}$ $= \max\{(F_{\mathcal{N}}(a))^{i}, F_{\mathcal{N}}(a^{*}(b^{*}c))^{i}\}$ $= \max\{F\boldsymbol{\kappa}^{i}(a), F\boldsymbol{\kappa}^{i}(a^{*}(b^{*}c))\}$ Therefore, $F_{\mathcal{N}^{i}}(b^{*}c) \leq \max\{F_{\mathcal{N}^{i}}(a), F_{\mathcal{N}^{i}}(a^{*}(b^{*}c))\}$ Hence \mathcal{N}^{i} be a neutrosophic fuzzy bi-ideal of \mathfrak{B}^{i}

4. DIRECT PRODUCT OF NEUTROSOPHIC FUZZY BI IDEAL OF BS-ALGEBRAS

In this Section, we shall discuss with the direct product of neutrosophic fuzzy bi-ideals of BS-Algebras.

Definition 4.1. Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy subsets of BS-algebra \mathfrak{B}_1 and \mathfrak{B}_2 respectively. Then the direct product of neutrosophic fuzzy subsets of BS-algebras \mathfrak{B}_1 and \mathfrak{B}_2 is defined by $\mathcal{M} \times \mathcal{N}$: $\mathfrak{B}_1 \times \mathfrak{B}_2 \longrightarrow [0,1]$ such that $\mathcal{M} \times \mathcal{N} = \{<(a,b), \ T \mathfrak{M}_x \mathcal{N}(a,b), \ l \mathfrak{M}_x \mathcal{N}(a,b), \ F \mathfrak{M}_x \mathcal{N}(a,b)>: a \in \mathfrak{B}_1, b \in \mathfrak{B}_2\}$, where $T \mathfrak{M}_x \mathcal{N}(a,b) = \min(T \mathfrak{M}(a), \ T \mathfrak{N}(b));$ $l \mathfrak{M}_x \mathcal{N}(a,b) = \max(l \mathfrak{M}(a), \ l \mathfrak{N}(b));$

 $F_{\mathcal{M}_{x}\mathcal{N}}(a,b) = \min(F_{\mathcal{M}}(a), F_{\mathcal{N}}(b))$

Definition 4.2. Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy subsets of BS-algebra \mathfrak{B}_1 and \mathfrak{B}_2 respectively. Then $\mathcal{M} \times \mathcal{N}$ is a neutrosophic fuzzy bi-ideal of $\mathfrak{B}_1 \times \mathfrak{B}_2$ if it satisfies the following conditions

$$\begin{split} \text{i) } & \mathbb{T}_{\mathcal{M}\times\mathcal{N}}(1,1) \geq \mathbb{T}_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}); \ \mathbf{l}_{\mathcal{M}\times\mathcal{N}}(1,1) \leq \mathbf{l}_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}); \\ & F_{\mathcal{M}\times\mathcal{N}}(1,1) \leq F_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}); \\ & \text{ii) } \mathbb{T}_{\mathcal{M}\times\mathcal{N}}((b_{1}, b_{2})^{*} (c_{1}, c_{2})) \geq \min\{\mathbb{T}_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}), \\ & \mathbb{T}_{\mathcal{M}\times\mathcal{N}}((a_{1}, a_{2})^{*}((b, b_{2})^{*} (c_{1}, c_{2})))\}; \\ & \mathbf{l}_{\mathcal{M}\times\mathcal{N}}((b_{1}, b_{2})^{*} (c_{1}, c_{2})) \leq \max\{\mathbb{I}_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}), \\ & \mathbb{I}_{\mathcal{M}\times\mathcal{N}}((b_{1}, b_{2})^{*} (c_{1}, c_{2})) \leq \max\{\mathbb{F}_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}), \\ & \mathbb{F}_{\mathcal{M}\times\mathcal{N}}((b_{1}, b_{2})^{*} (c_{1}, c_{2})) \leq \max\{\mathbb{F}_{\mathcal{M}\times\mathcal{N}}(a_{1}, a_{2}), \\ & \mathbb{F}_{\mathcal{M}\times\mathcal{N}}((a_{1}, a_{2})^{*}((b, b_{2})^{*} (c_{1}, c_{2})))\} \end{split}$$

Theorem 4.3. Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideals of BS-algebra $\boldsymbol{\mathcal{B}}_1$ and $\boldsymbol{\mathcal{B}}_2$ respectively. Then $\boldsymbol{\mathcal{M}} \mathbf{x} \boldsymbol{\mathcal{N}}$ is a neutrosophic fuzzy bi-ideals of $\mathbf{B}_1 \ge \mathbf{B}_2$ Proof Let \mathcal{M} and \mathcal{N} be two neutrosophic fuzzy bi-ideals of BSalgebra \mathfrak{B}_1 and \mathfrak{B}_2 respectively. Let (a_1, a_2) , (b, b_2) , $(c_1, c_2) \in \mathfrak{B}_1 \times \mathfrak{B}_2$. We have i) $\mathbf{T}_{\mathcal{M} \times \mathcal{N}}(1,1) = \min\{\mathbf{T}_{\mathcal{M}}(1), \mathbf{T}_{\mathcal{N}}(1)\}$ $\geq \min\{\mathsf{T}_{\mathcal{M}}(a_1), \mathsf{T}_{\mathcal{N}}(a_2)\}$ =**T**_{MXN} (a_1, a_2) Therefore, $T_{\mathcal{M} \times \mathcal{N}}(1,1) \ge T_{\mathcal{M} \times \mathcal{N}}(a_1, a_2)$ Again $l_{\mathcal{M}\times\mathcal{N}}(1,1) = \max\{l_{\mathcal{M}}(1), l_{\mathcal{N}}(1)\}$ $\leq \max \{ l_{\mathcal{M}}(a_1), l_{\mathcal{N}}(a_2) \}$ $=\mathbf{l}_{\mathcal{M}\times\mathcal{N}}(\mathbf{a}_1,\mathbf{a}_2)$ Therefore, $l_{\mathcal{M}\times\mathcal{N}}(1,1) \geq l_{\mathcal{M}\times\mathcal{N}}(a_1, a_2)$ Again $F_{\mathcal{M}\times\mathcal{N}}(1,1) = \max\{F_{\mathcal{M}}(1), F_{\mathcal{N}}(1)\}$ $\leq \max \{ F \boldsymbol{\mathcal{M}}(a_1), F \boldsymbol{\mathcal{N}}(a_2) \}$ $=\mathbf{F}_{\mathcal{M}\times\mathcal{N}}(\mathbf{a}_1,\mathbf{a}_2)$ Therefore, $F_{\mathcal{M}\times\mathcal{N}}(1,1) \ge F_{\mathcal{M}\times\mathcal{N}}(a_1,a_2)$ ii) Then $T_{\mathcal{M} \times \mathcal{N}}((b_1, b_2)^* (c_1, c_2)) = T_{\mathcal{M} \times \mathcal{N}}(b_1^* c_1, b_2^* c_2)$ $= \min\{T_{\mathcal{M}}(b_1 * c_1), T_{\mathcal{N}}(b_2 * c_2)\}$ $\geq \min[\min\{\mathsf{T}\boldsymbol{\varkappa}(a_1), \mathsf{T}\boldsymbol{\varkappa}(a_1^*(b_1^*c_1))\},$ $\min\{T_{\mathcal{N}}(a_2), T_{\mathcal{N}}(a_2^*(b_2^*c_2))\}]$ $= \min[\min\{\mathsf{T}\boldsymbol{\varkappa}(a_1), \mathsf{T}\boldsymbol{\varkappa}(a_2)\},\$

 $\min\{T_{\mathcal{M}}(a_1^{*}(b_1^{*}c_1)), T_{\mathcal{N}}(a_2^{*}(b_2^{*}c_2))\}]$

 $= \min\{\mathsf{T}\boldsymbol{\varkappa}_{x}\boldsymbol{\varkappa}(a_{1}, a_{2}), \mathsf{T}\boldsymbol{\varkappa}_{x}\boldsymbol{\varkappa}(a_{1}^{*}(b_{1}^{*}c_{1})), (a_{2}^{*}(b_{2}^{*}c_{2}))\}$

"Neutrosophic Fuzzy Bi-Ideals of BS-Algebras"

 $= \min\{T_{\mathcal{M}_{x}\mathcal{N}}(a_{1}, a_{2}), T_{\mathcal{M}_{x}\mathcal{N}}((a_{1}, a_{2})^{*}((b, b_{2})^{*}(c_{1}, c_{2})))\}$ $T_{\mathcal{M} \times \mathcal{N}}((a_1, a_2)^*((b, b_2)^*(c_1, c_2)))$ And $l_{\mathcal{M} \times \mathcal{N}}((b_1, b_2)^* (c_1, c_2)) = l_{\mathcal{M} \times \mathcal{N}}(b_1^* c_1, b_2^* c_2)$ $= \max\{l_{\mathcal{M}}(b_1 * c_1), l_{\mathcal{N}}(b_2 * c_2)\}$ $\leq \max[\max\{l_{\mathcal{M}}(a_1), l_{\mathcal{M}}(a_1^*(b_1^*c_1))\},$ $\max\{l_{\mathcal{N}}(a_2), l_{\mathcal{N}}(a_2^*(b_2^*c_2))\}]$ $= \max[\max\{l_{\mathcal{M}}(a_1), l_{\mathcal{N}}(a_2)\},\$ $\max\{l_{\mathcal{M}}(a_1^{*}(b_1^{*}c_1)), l_{\mathcal{N}}(a_2^{*}(b_2^{*}c_2))\}]$ $= \max\{l_{\mathcal{M}_{x}\mathcal{N}}(a_{1}, a_{2}), l_{\mathcal{M}_{x}\mathcal{N}}(a_{1}^{*}(b_{1}^{*}c_{1})), (a_{2}^{*}(b_{2}^{*}c_{2}))\}$ $= \max \{ l_{\mathcal{M}_{x}} \mathcal{N}(a_{1}, a_{2}), l_{\mathcal{M}_{x}} \mathcal{N}((a_{1}, a_{2})^{*}((b, b_{2})^{*}(c_{1}, c_{2}))) \}$ $l_{\mathcal{M} \times \mathcal{N}}((a_1, a_2)^*((b, b_2)^*(c_1, c_2)))$ And $F_{\mathcal{M} \times \mathcal{N}}((b_1, b_2)^* (c_1, c_2)) = F_{\mathcal{M}_x}(b_1^* c_1, b_2^* c_2)$ $= \max\{F_{\mathcal{M}}(b_1 * c_1), F_{\mathcal{M}}(b_2 * c_2)\}$ $\leq \max[\max\{F\boldsymbol{\mathcal{M}}(a_1), F\boldsymbol{\mathcal{M}}(a_1^*(b_1^*c_1))\},$ $\max{F_{\mathcal{N}}(a_2), F_{\mathcal{N}}(a_2^*(b_2^*c_2))}]$ $= \max[\max{\{F\boldsymbol{\kappa}(a_1), F\boldsymbol{\kappa}(a_2)\}},$ max{ $F_{\mathcal{M}}(a_1^{*}(b_1^{*}c_1)), F_{\mathcal{N}}(a_2^{*}(b_2^{*}c_2))$ }] $= \max\{F_{\mathcal{M}_{x}\mathcal{N}}(a_{1}, a_{2}), F_{\mathcal{M}_{x}\mathcal{N}}(a_{1}^{*}(b_{1}^{*}c_{1})), (a_{2}^{*}(b_{2}^{*}c_{2}))\}$ $= \max\{F\boldsymbol{M}_{x}\boldsymbol{N}(a_{1}, a_{2}), F\boldsymbol{M}_{x}\boldsymbol{N}((a_{1}, a_{2})^{*}((b, b_{2})^{*}(c_{1}, c_{2})))\}$ Therefore, $F_{\mathcal{M}\times\mathcal{N}}((b_1, b_2)^* (c_1, c_2)) \le \max\{F_{\mathcal{M}\times\mathcal{N}}(a_1, a_2), \}$ $F_{\mathcal{M}\times\mathcal{N}}((a_1, a_2)^*((b, b_2)^*(c_1, c_2)))\}$

5. HOMOMORPHISM OF NEUTROSOPHIC FUZZY BI IDEAL OF BS-ALGEBRAS

In this section, we discuss about homomorphism

Definition 5.1. Let \mathfrak{B}_1 and \mathfrak{B}_2 be two BS-algebras and h: $\mathfrak{B}_1 \longrightarrow \mathfrak{B}_2$ be a function. If \mathfrak{N} is a neutrosophic fuzzy set in \mathfrak{B}_2 , then the preimage of \mathfrak{N} under h denoted by $h^{-1}(\mathfrak{N})$ is the neutrosophic fuzzy set in \mathfrak{B}_1 is defined by $h^{-1}(\mathfrak{N}) = \{ <(a), h^{-1}(T\mathfrak{N}(a)), h^{-1}(\mathfrak{l}\mathfrak{N}(a)), h^{-1}(F\mathfrak{N}(a)) >: a \in \mathfrak{B} \},$ where $h^{-1}(T\mathfrak{N}(a)) = T\mathfrak{N}(h(a)); h^{-1}(\mathfrak{l}\mathfrak{N}(a)) = \mathfrak{l}\mathfrak{N}(h(a));$ $h^{-1}(F\mathfrak{N}(a)) = F\mathfrak{N}(h(a))$

Theorem 5.2. Let h: $\mathfrak{B}_1 \rightarrow \mathfrak{B}_2$ be an epimorphism of BSalgebras if \mathcal{N} is a neutrosophic fuzzy bi-ideal of \mathfrak{B}_2 , then the pre image of \mathcal{N} under h is also a neutrosophic fuzzy bi-ideal of \mathfrak{B}_1 .

Proof

Let \mathcal{N} is a neutrosophic fuzzy bi-ideal of \mathfrak{B}_2 . Let $a,b,c \in \mathfrak{B}_1$ Now, $h^{-1}(\mathcal{T}_{\mathcal{N}}(1)) = \mathcal{T}_{\mathcal{N}}(h(1))$

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$

And $h^{-1}(F_{\mathcal{N}}(1)) = F_{\mathcal{N}}(h(1))$ $\leq F_{\mathcal{N}}(h(a))$ $= h^{-1}(F_{\mathcal{N}}(a))$ Therefore $h^{-1}(F_{\mathcal{N}}(1)) \leq h^{-1}(F_{\mathcal{N}}(a))$ And, $h^{-1}(T_{\mathcal{N}}(b^*c)) = T_{\mathcal{N}}(h(b^*c))$ $= \mathbf{T}_{\mathcal{N}}(\mathbf{h}(\mathbf{b}) * \mathbf{h}(\mathbf{c}))$ $\geq \min\{\mathsf{T}_{\mathcal{N}}(h(a)), \mathsf{T}_{\mathcal{N}}(h(a)^*[h(b)^*h(c)])\}$ $= \min\{\mathsf{T}_{\mathcal{N}}(h(a)), \mathsf{T}_{\mathcal{N}}(h(a^*(b^*c)))\}$ Therefore, $h^{-1}(T_{\mathcal{N}}(b^*c)) \ge \min\{T_{\mathcal{N}}(h(a)), T_{\mathcal{N}}(h(a^*(b^*c)))\}$ And $h^{-1}(\mathbf{l}_{\mathcal{N}}(b^*c)) = \mathbf{l}_{\mathcal{N}}(h(b^*c))$ $= l_{\mathcal{N}}(h(b)*h(c))$ $\leq \max\{l_{\mathcal{N}}(h(a)), l_{\mathcal{N}}(h(a)*[h(b)*h(c)])\}$ $= \max\{l_{\mathcal{N}}(h(a)), l_{\mathcal{N}}(h(a^{*}(b^{*}c)))\}$ Therefore, $h^{-1}(l_{\mathcal{N}}(b^*c)) \leq \max\{l_{\mathcal{N}}(h(a)), l_{\mathcal{N}}(h(a^*(b^*c)))\}$ And $h^{-1}(F_{\mathcal{N}}(b^*c)) = F_{\mathcal{N}}(h(b^*c))$ $= \mathbf{F}_{\mathcal{N}}(\mathbf{h}(\mathbf{b}) * \mathbf{h}(\mathbf{c}))$ $\leq \max\{F_{\mathcal{N}}(h(a)), F_{\mathcal{N}}(h(a)^*[h(b)^*h(c)])\}$ $= \max\{F_{\mathcal{N}}(h(a)), F_{\mathcal{N}}(h(a^{*}(b^{*}c)))\}$ Therefore, $h^{-1}(F_{\mathcal{N}}(b^*c)) \leq \max\{F_{\mathcal{N}}(h(a)), F_{\mathcal{N}}(h(a^*(b^*c)))\}$

Definition 5.3. Let \mathfrak{B}_1 and \mathfrak{B}_2 be two BS-algebras and h: $\mathfrak{B}_1 \rightarrow \mathfrak{B}_2$ be a homomorphism. Then h(1) = 1

Proof Let \mathfrak{B}_1 and \mathfrak{B}_2 be two BS-algebras Let $a \in \mathfrak{B}_1$ therefore $h(a) \in \mathfrak{B}_2$ Now $h(1)=h(a^*a)=h(a)*h(a)=1*1=1$

Theorem 5.4. Let h: $\mathfrak{B}_1 \rightarrow \mathfrak{B}_2$ be a homomorphism of BSalgebras if \mathcal{N} is a neutrosophic fuzzy bi-ideal of \mathfrak{B}_1 , then h(\mathcal{N})is a neutrosophic fuzzy bi-ideal of \mathfrak{B}_2 .

Proof

Let $a_1, a_2, a_3 \in \mathfrak{B}_1$ and $b_1, b_2, b_3 \in \mathfrak{B}_2$ such that $h(a_1)=b_1$, $h(a_2)=b_2, h(a_3)=b_3$ Now, $\mathcal{T}_{\mathcal{N}}(b_1) = \mathcal{T}_{\mathcal{N}}(h(a_1))$ $= h^{-1}(\mathcal{T}_{\mathcal{N}}(a_1))$ $\leq h^{-1}(\mathcal{T}_{\mathcal{N}}(1))$ $= \mathcal{T}_{\mathcal{N}}(h(1))$ $= \mathcal{T}_{\mathcal{N}}(h(1))$ Therefore, $\mathcal{T}_{\mathcal{N}}(b_1) \leq \mathcal{T}_{\mathcal{N}}(1)$ And $l_{\mathcal{N}}(b_1)=l_{\mathcal{N}}(h(a_1))$ $= h^{-1}(l_{\mathcal{N}}(a_1))$ $\geq h^{-1}(l_{\mathcal{N}}(1))$ $= l_{\mathcal{N}}(h(1))$

 $= l_{\mathcal{N}}(\mathbf{I})$

Therefore, $\mathbf{l}_{\mathcal{N}}(\mathbf{b}_1) \ge \mathbf{l}_{\mathcal{N}}(1)$

And $F_{\mathcal{N}}(b_1) = F_{\mathcal{N}}(h(a_1))$ $= h^{-1}(F_{\mathcal{N}}(a_1))$ $\geq h^{-1}(\mathbf{F}_{\mathcal{N}}(1))$ $= \mathbf{F}_{\mathcal{N}}(\mathbf{h}(1))$ $=\mathbf{F}_{\mathcal{N}}(1)$ Therefore, $F_{\mathcal{N}}(b_1) \ge F_{\mathcal{N}}(1)$ ii) Again we have $T_{\mathcal{N}}(b_2 * b_3) = T_{\mathcal{N}}(h(a_2) * h(a_3))$ $= h^{-1}(\mathbf{T}_{\mathcal{N}}(a_2 * a_3))$ $\geq \min\{h^{-1}(T_{\mathcal{N}}(a_1)), h^{-1}(T_{\mathcal{N}}(a_1^*(a_2^*a_3)))\}$ $=\min\{T_{\mathcal{N}}(h(a_1)), T_{\mathcal{N}}(h(a_1^*(a_2^*a_3)))\}$ =min{ $T_{\mathcal{N}}(h(a_1)), T_{\mathcal{N}}(h(a_1)^*(h(a_2)^*h(a_3)))$ } $=\min\{T_{\mathcal{N}}(b_1), T_{\mathcal{N}}(b_1^*(b_2^*b_3))\}$ Therefore, $T_{\mathcal{N}}(b_2 * b_3) \ge \min\{T_{\mathcal{N}}(b_1), T_{\mathcal{N}}(b_1 * (b_2 * b_3))\}$ And $l_{\mathcal{N}}(b_2 * b_3) = l_{\mathcal{N}}(h(a_2) * h(a_3))$ $= h^{-1}(l_{\mathcal{N}}(a_2 * a_3))$ $\leq \max\{h^{-1}(l_{\mathcal{N}}(a_1)), h^{-1}(l_{\mathcal{N}}(a_1^{*}(a_2^{*}a_3)))\}$ $=\max\{l_{\mathcal{N}}(h(a_1)), l_{\mathcal{N}}(h(a_1^*(a_2^*a_3)))\}$ $=\max\{l_{\mathcal{N}}(h(a_1)), l_{\mathcal{N}}(h(a_1)^*(h(a_2)^*h(a_3)))\}$ $=\max\{l_{\mathcal{N}}(b_1), l_{\mathcal{N}}(b_1^*(b_2^*b_3))\}$ Therefore, $l_{\mathcal{N}}(b_2 * b_3) \le \max\{l_{\mathcal{N}}(b_1), l_{\mathcal{N}}(b_1 * (b_2 * b_3))\}$ And $F_{\mathcal{N}}(b_2 * b_3) = F_{\mathcal{N}}(h(a_2) * h(a_3))$ $= h^{-1}(F_{N}(a_{2}*a_{3}))$ $\leq \max\{h^{-1}(F_{\mathcal{N}}(a_1)), h^{-1}(F_{\mathcal{N}}(a_1^{*}(a_2^{*}a_3)))\}$ $=\max\{F_{\mathcal{N}}(h(a_1)), F_{\mathcal{N}}(h(a_1^*(a_2^*a_3)))\}$ =max{ $F_{\mathcal{N}}(h(a_1)), F_{\mathcal{N}}(h(a_1)^*(h(a_2)^*h(a_3)))$ }

 $= \max\{F n(h(a_1)), F n(h(a_1)^*(h(a_2)^*h(a_3)) = \max\{F n(b_1), F n(b_1^*(b_2^*b_3))\}$

Therefore, $F_{\mathcal{N}}(b_2 * b_3) \le \max\{F_{\mathcal{N}}(b_1), F_{\mathcal{N}}(b_1 * (b_2 * b_3))\}$

CONCLUSION

In this paper, the notion of Neutrosophic fuzzy bi-ideal of BS-algebras are introduced and studied their algebraic properties. We obtained the Cartesian product of neutrosophic fuzzy bi-ideal for BS-algebras. Finally, we studied how to deal with homomorphism.

REFERENCES

- Ayesha Parveen, P. and Himaya Jaleela Begum, M. *Doubt Fuzzy Bi-ideal of BS-Algebras*, Journal of Emerging Technologies and Innovative Research, Vol.6(3), 20-24, 2019
- Imai, Y. and Iseki, K. On Axiom System of Propositional Calculi, 15 Proc.Japan Academy, Vol. 42,19-22,1966.
- 3. Neggers, J. and Kim, H.S. *On B-algebras*, Math. Vensik, Vol.54, 21-29,2002.
- 4. Smarandache, F. *Neutrosophy, A new branch of Philosophy logic in multiple-valued logic,* An international journal, vol.8(3),2002, 297-384

- Smarandache, F. Neutrosophy and Neutrosophic logic, First international Conference on Neutrosophy, Neutrosophic Logic set, Probability and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002)
- Smarandache, F. Neutrosophic set a generalization of the Intuitionistic fuzzy sets, J. Pure Appl.Math, vol.24,2005, 287-297
- 7. Zadeh, L.A. Fuzzy sets Information and control, 8(1965), 338-353.