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I. INTRODUCTION 

The Artin systems [1] describe the geodesics flow associated 

with the Hamiltonian problem of a point particle moving of 

geodesic motion on the PSL(2,Z) domain the Upper Poincar´e 

Half Plane. The system is strongly chaotic, ergodic, and 

strong mixing: it s one realization of the Anosov flow. 

Within the Artin formulation, the system is represented as a 

billiard, in which the point-particle moving on the geodesics 

undergo (hyperbolic) reflections on the sides of the group 

domains: the composition of the hyperbolic reflection lays the 

basis of the symbolic-dynamic analysis of the chaotic 

(billiard) systems. 

In [2], analogues of the Artin factorization formulas are 

worked for the factorization formula of the Selberg zeta 

function. Very importantly, the determinant of a(n 

automoprhic) scattering matrix of arbitrary subgroups (of 

finite index) of a Fuchsian group of the first kind is used. 

The Artin formalism of the desymmetrized PSL(2,Z) group is 

applied in [3]. 

Particular cases of the Artin formalism provided with the 

Selberg zeta function are exposed in [4]. 

In [3], the transfer operators of the return map of the 

geodesics belonging to the geodesics flow of the Hamiltonian 

problem on the Upper Poincar´e Half Plane on the surface of 

section individuated after the choice of the u = 0, v ≥ 1 are 

newly derived. As an important result, also the singular orbits 

are taken into account: after this result, the analysis of the 

cusp forms is pobble even after the geometric tools followed 

in [3]. 

In [5], a dynamical zeta function is described, which is apt 

to relate the formulation of the Hamiltonian problem 

according to the Artin description of the fully-chaotic 

Hamiltonian flow (in billiard-like descriptions). 

Generalized transfer operators are introduced after a new 

dynamical proof of the factorization formula. The geodesics 

flow remains this way related with the Hamiltonian problem; 

as a new outline, the problem is lead to a decomposition of 

the eigenfunctions of the Hamiltonian problem into two 

different sets obeying different boundary conditions. 

The dynamical zeta function of the symbolic dynamics of 

Artin billiards is further characterized in [5]. In particular, 

The dynamical zeta function is here explained to relate the 

formulation of the Hamiltonian problem according to the 

Artin description and the fully-chaotic Hamiltonian flow (in 

a billiard-like description). The particularities of generalised 

transfer operators are further outlined after a new dynamical 

proof of the factorization formula. The geodesics flow related 

with the Hamiltonian problem leads to a decomposition of the 

eigenfunction into two sets obeying different boundary 

conditions. 

The problem of defining Transfer operators of the Anosov 

flows is formulated in [6]. 

https://doi.org/10.47191/ijmcr/v11i2.07
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The definition of the transfer operator form Banach spaces 

of special pre-quantum operators of the normalized oriented 

geodesics flow is studied in [7]. 

The relation between Anosov flows and abstract Birkhoff 

section are summarized in [8]; in [9], oriented surfaces are 

taken into account for the analysis. 

The consideration of an arbitrary Poincar´e surface of 

section of a chaotic system is presented in [10]: as from 

Formula (19) and from Formula (20) in [10], the composition 

of operators which will be here demonstrated to act ’on the 

left’ of the symbolic-dynamics representation of the 

conjugacy subclass corresponding to a chosen orbit produces 

the effect to further factorize the Fredholm determinant 

formula. 

The study of the definition of Birkhoff sections for Anosov 

flows was addressed in [11]; as a result, any transitive 

pseudo-Anosov flow is shown to have a Birkhoff section with 

two boundary components after the method of triangulations. 

The aim of the present investigation is the study of new 

arbitrary reduced 2-dimensional oriented Birkhoff surfaces of 

section of the complete phase space of the geodesics flow 

solution of a Hamiltonian problem on the upper Poincar´e 

Half Plane. To this purpose, arbitrary oriented 3-dimensional 

Birkhoff sections are considered, and the opportune 

hypotheses for the reduction of the degrees of freedom of the 

problem are formulated. The definition of the Hamiltonian 

problem allows one to impose conditions on the phase space: 

under certain conditions, the number of degrees of freedom 

of the phase space is reduced, and so are the dimensions of 

the Birkhoff surface of section of the phase space. The 

arbitrariness of the choice of the new Birkhoff section is the 

choice of one non overlapping one of the (in the analysed 

literature, i.e. such as [3]) sides (or a preferred one, such as 

the (u = 0, v ≥ 1) side) of the PSL(2,Z) group. 

The study of [3] is specialized with the symmetrized 

PSL(2,Z) group domain, as for the direct application of the 

billiard map Formula 15. 

The definition of reduced surds [12] will be applied to the 

considered system. 

The need of oriented surfaces within the framework of the 

present analysis is dictated after the consideration of the 

(normalized) geodesics flow, whose geodesics are oriented 

ones (where the orientation of the geodesics can be defined 

after the specificities of the phase space after the choice of the 

orientation of the endpoints in the coordinate space). 

The new definition of reduced oriented Birkhoff sections 

is this way obtained. More in detail, the orientation for the 

reduced Birkhoff sections is chosen by the orientation of the 

velocity-normalized geodesics whose flow is associated with 

the quantum (Hamiltonian) problem. 

The present study is motivated after the analysis of [20], 

which is based on the self-adjointed-ness of the needed 

operators, which, in the present case, is the operator Ts from 

[13] in [3], whose features are studied with respect to the 

needed conjugacy subclasses of the groups studied in the 

present paper. The classification of all the periodic orbits 

according to the maps permits one to reconstruct the complete 

spectrum of the operator. 

As a new item of investigation, the results are consistent with 

the considered conjugacy subclasses enumerated as those 

needed for the definition of reduced surds, and those needed 

for the reconstruction of the geodesics flow for arbitrary (and 

oriented) Birkhoff surfaces of sections. 

The study allows one to recover tori from the Upper Poincar´e 

Half Plane. 

The further study of perturbations of the periodic orbits, 

differently, is newly found to provide one with the complete 

tessellation of the Upper Poincar´e Half Plane after the study 

of the related topological entropy of the geodesics-flow 

analysis, where the latter is performed with respect ti the new 

definition of reduced oriented Birkhoff sections. The paper is 

organized as follows. 

In Section II, the main objects to be investigated and newly-

analysed are summarised. 

In Section III, the descriptions of generic non-oriented 3-

dimensional Birkhoff section after Anosov flows are 

reviewed; factorization formulas are introduced according to 

the different proofs methods. 

In Section IV, the methods of the Artin factorization formula 

are explained. 

In Section V, some specific properties of quantum maps and 

transfer operators, which are needed for the new 

investigations of the objects defined in Section III, are briefly 

recalled. 

In VI, the symbolic dynamics of the solutions of the free 

Hamiltonian problem occurring on the desymmetrized 

PSL(2,Z) group domain is birefly recalled. 

In Section VII, the definition of arbitrary Poincar´e surfaces 

of section is proposed. 

In Section VIII, novel 2-dimensional oriented Birkhoff 

surfaces of sections are defined. 

In Section X, the return map of the 2-dimensional oriented 

Birkhoff surfaces of section are newly defined. 

Outlook and perspectives follow in Section XI. 

In the Appendix A, complements of the geodesics-flow 

analyses are provided with. 

 

II.   INTRDUCTORY MATERIAL 

It is possible to investigate the properties of the Anosov 

flow X associated with the geodesics flow (i.e. solution of the 

Hamiltonian problem) after the definition of a generic (non-

oriented) 3-dimensional Birkhoff surfaces of section. 

The results of the analyses of pseudo-Anosov maps are 

recapitulated in [? ] from [14]. 

As from [15], any transitive Anosov flow on an oriented 3-

manifold is proven to admit a Birkhoff section Σ; the first 
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return map of the geodesics of the flow on the Birkhoff 

section induces a pseudo-Anosov homeomorphism on a 

closed surface Σ obtained from Σ after ’collapsing’ every 

component of the frontier˜ FΣ of the Birkhoff section Σ. 

 

III.  3-DIMENSIONAL GENERIC BIRKHOFF 

SURFACES OF SECTIONS 

It is here convenient to study a 3-dimensional Birkhoff 

section [9]. The 3-dimensional Birkhoff section is defined 

after an Anosov flow A and a 3-manifold M. The Birkhoff 

section Σ is a compact surface; the interior of Σ is embedded 

in the 3-manifold M in a transverse manner to the Anosov 

flow X, and its boundary FΣ is made of finitely many periodic 

orbits of the Anosov flow. Such orbits are hypothesized to 

match the Birkhoff section Σ within a finite time. As 

investigated in [15], the successive return maps can be 

defined after the techniques developped in [16] and [17]. 

As from [17], for any disjoint set of simple closed geodesics, 

the geodesics flow is Anosov. 

The Thurston description [18] allows one to include sngular 

trajectories within the geodesics flow, i.e. it allows one to 

include the cusp point within the frontier of the group 

domains. 

The complete Anosov flow is thus reconstructed after the 

techniques exposed in [19] after the analysis of the Markov 

decomposition in the considered 3-dimensional case. 

The multiplicity of the orbits can be used, within other tools, 

for the reconstruction of the Anosov flow X associated with 

any component on the frontier FΣ, which is apt to describe 

the topological position of the surface of section Σ. These 

notions will be used in Section IX for the reconstruction of 

the return maps on an arbitrary surface of section. 

From Theorem A in [15], an Anosov flow on the 3-manifold 

M can admit a positive Birkhoff section. 

 

IV.  THE ARTIN FACTORIZATION OF THE 

SELBERG ZETA FUNCTION 

The determinant of the automorphic scattering matrix can be 

calculated in different manners [2]. 

From [20], the Artin-Takagi formula is obtained as a 

consequence of a more general spectral structure for the 

resolvent of a self-adjoint operator in the space of 

automorphic functions, in terms of which functions the 

Selberg zeta function is expressed. The case of non-compact-

domains groups is taken into account; it can be demonstrated 

that for each of these groups there exists a normal subgroup 

of finite index, for which the Roelke [21] conjecture holds. 

From [2], the spectral-theory properties of automorphic 

functions are exploited for the factorization of the formula. 

The present analysis is motivated after and follows form the 

analysis of [20], as the latter is based on the properties of self-

adjointed-ness of the used operators. 

 

V.  THE TRANSFER OPERATORS AND THE 

QUANTUM MAPS 

The existence of transfer operators associates with quantum 

maps is derived in [3] after the existence of opportune zeta 

functions defined within the framework of a continuous time 

dynamics of the solution(s) of the Hamiltonian problem: 

more in detail, in [3] pag. 25, the demonstration is based on 

the existence and uniqueness of the Banach spaces in which 

the various operators have spectral properties. 

Quasi-hyperbolic geometry is obtained from the Banach 

spaces. The quasi-hyperbolic geometry implies 

quasihyperbolic lengths, which define quasi-hyperbolic 

distances, with the properties of uniform convexity, uniform 

smoothness and locally-uniform round spaces. 

Given Σ2 the Poincar´e surface of section, a transfer operator 

TE is defined, on which the Poincar´e return map is defined. 

It is possible to determine the classical trajectories in the 

coordinate representation connecting two points q and q′ 

(from the phase space) on Σ2 by means of a(n oriented, 

opportunely-normalized) geodesics (of a point-particles 

moving on the defined geodesics with) velocity ˙q at both q 

and q′ with the same orientation on Σ2. 

Correspondingly, the value of the action SE(q′,q) calculated 

along the classical trajectories at a fixed (with respect to the 

phase space) energy E (E being an eigenvalue of the classical 

Hamiltonian problem), as 

(1) 

with p the momentum; the number of degrees of freedom 

minus one corresponds to the dimension N of the Poincar´e 

surface of section (from which N is in the present purposes 

calculated as 2 of Σ2), with the Maslov index of the trajectory 

ν. 

The semiclassical Poincar´e map upgrade TEψ(q′) of the 

function ψ(q) from the point q to the point q′ is therefore 

calculated as 

TE(q′) = Z TE(q′,q)ψ(q)dNq. (2) 

Σ2 

The quantum limit can be implemented. The Hamiltonian 

problem is here thus obtained after the semiclassical upgrade 

with quantized energy levels determined after the condition 

that the spectrum contain the eigenvalue 1. At the value E of 

the energy (level) there corresponds an eigenvalue En of the 

Hamiltonian H. 

The operator TE is this way endowed with an invariant 

function ˜(ψ)(q) which relates to the map as 

ψ˜(q′) = Z TE(q′,q)ψ˜(q)dNq. (3) 

    Σ2 

The compatibility of the construction is demonstrated in [3] 

after the references therein from the vanishing of the 

Fredholm determinant as 

det[1 −TE] = 0 (4) 
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under the suitable conditions (specified in [22] and [23]). 

Under the specified suitable conditions, the determinant in 

Eq. 4 coincides with the dynamical ζ function constructed as 

an infinite product over all periodic orbits. 

The monodromy matrix Mp (in the momentum p 

representation) consists of the linear term of the expansion of 

the Poincar´e maps in powers of the coordinates 

perpendiculars of the periodic-orbit system; in the case of the 

Hamiltonian problem, the specified monodromy matrix Mˆp 

has the property 

Mˆp = 1. (5) 

The study in the above can be specified with respect to the 2- 

dimensional case. 

At each hyperbolic orbit, the monodromy matrix admits two 

(different possibilities of sets of) eigenvalues parameterized 

after the Ljapunov exponent on the periodic orbit λp (as 

spelled out in [3]). 

Hamiltonian systems can therefore be realised as billiard 

systems with constant negative curvature. 

The specification of the analyses allows one to define the 

Markov partitions. Let F be a piece-wise analytic map of an 

interval I, i.e.  

F : I → I. (6) 

The piece-wise analytic map F induces a Markov partition of 

the interval I such that 

 (7) 

with an incidence matrix S(i ← j). 

Let G be the set of local inverse of F, i.e. 

Gi : Ii → I, (8) 

which therefore corresponds to the branches of the inverses 

of the piece-wise analytic map F. 

Accordingly, the Poincar´e surface of section Σ2 associated 

with the study of [3] is therefore chosen as the side a of the 

considered group domain. 

 

VI. SYMBOLIC DYNAMICS OF THE 

DESYMMETRIZED PSL(2,Z) GROUP AND 

REDUCED-SURDS CONJUGACY SUBCLASSES 

The dynamics of the geodesics flow of the free Hamiltonian 

problem taking place on the desymmetrized PSL(2,Z) domain 

is here spelled out after the application of the definition of 

reduced surds [12]. In [12], the conjugacy classes of periodic 

orbits are classified according to the request that both the 

oriented endpoints are defined as reduced. The generators of 

the desymmetrised PSL(2,Z) group are defined as  

(9a) 

(9b) 

(9c) 

 

which are the (hyperbolic) reflections on the sides b, a, and c 

of the group domain, which also corresponds to the operators 

B, A, and C. 

Oriented geodesics are defined according to the oriented 

endpoints u+ and u−, of radius r = (u+ − u−)/2 and centre u0 = 

(u+ + u−)/2. 

An example of the system on the Upper Poincar´e Half plane 

is drawn in Fig. 1. 

Reduced surds are defined in [12] as the velocity-normalised 

oriented geodesics whose endpoints are classified as 

− 2 ≤ u− ≤ 1, (10a)  

u+ ≥ 1 (10b) 

an corresponds to the periodic orbits whose cutting trajectory 

is the first ba trajectory of the system. 

The conjugacy subclasses needed to compare the trajectory of 

the system to the definition of reduced surds are worked out 

of [? ]. In [? ], the conjugacy subclasses are encoded in 

Formula J15; Formula J15 of [? ] is spelled out as 

 (11) 

for the coordinates z = u + iv of the Upper Poincar´e Halp 

Plane. 

 

VII.  ARBITRARY POINCARE SURFACES OF 

SECTION´ 

It is possible to define an arbitrary 1-dimensional Poincar´e 

surface of section of a graoup domain on which the dynamics 

of the solutions of the free Hamiltonian system occurs. In 

particular, the arbitrary Poincar´e surface of section is chosen 

as not corresponding with one (preferred) side of the groups 

domain. 

More in detail, the following definition is worked out. 

Definition 1 the arbitrary 1-dimensional Poincar´e surface of 

section of the desymmetrized PSL(2,Z) group domain is here 

chosen as a (degenerate) geodesics u = u∗ = const, with 

                          (12) 

 .   
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Figure 1: The desymmetrized domain of the PSL(2,Z) group domain on th Upper Poincar´e Half Plane, endowed with a 

Poincar´e surface of section (grey degenerate geodesics), on which the return map of the solutions of the Hamiltonian 

problem (an example is the green solid segment of geodesic) are defined. The parameterization of the return map is term of 

the radius of the geodesics solutions of the Hamiltonian problem is evidentiated. 

 

VIII.  NEW REDUCED 2-DIMENSIONAL ORIENTED 

BIRKHOFF SECTIONS 

It is the purpose of the present Section to newly investigate 

the description of 2-dimensional oriented Birkhoff surfaces 

of section according to the number of degrees of freedom 

calculated after [12] after the specifications of Section VII. 

The specifications of the Markov partitions in Section V 

from [3] allow one to analyse the Anosov-related problem. 

The definition of the Birkhoff section of the first return map 

of the (normalized) geodesics (whose flow is demonstrated in 

[15] as a pseudo-Anosov homeomorphism) can be 

considered, within the present framework, after the definition 

of the complete Artin system (billiard) [1]. 

The finitely many periodic orbits defined in [9] can be 

classified according to the definition of reduced surds in [12]. 

The definition of the Birkhoff surfaces of section results as 

redundant after the study of the definition of reduced surds. 

Indeed, the definition of reduced surds encodes the conjugacy 

subclasses of the desymmetrized PSL(2,Z) group which are 

needed to reconstruct the geodesics flow as with the oriented 

cutting trajectory as one defined in [12], i.e. as one defined as 

connecting the side b with the side a, whose oriented 

endpoints are in the opportune, with unit velocity. 

The definition of reduced surds allows one therefore to 

eliminate one degree of freedom of the Hamiltonian system, 

i. e. the definition allows one to consider 2-dimensional 

surfaces of sections of the complete phase space. 

In [3], the surfaces of sections are chosen as two-dimensional 

surfaces of the phase-space Σa(u), i. e. as coinciding with the 

side a: u = 0, v ≥ 1 of the billiard system independently of the 

intervals of the u direction in which the oriented endpoints 

are defined. In the present case, the definition of (oriented) 

reduced surds thus allows one to consider the lower-

dimensional surface of section a: u = 0, v ≥ 1. 

 

The definition of an arbitrary surface of section Σ∗ of reduced 

surds is constructed after encoding the needed conjugacy 

subclass ’on the left’ of the definition of the reduced-surd of 

the surface of section Σa. 

The definition of the Markov decomposition of the Anosov 

flow of a 3-manifold is here specified for arbitrary surfaces 

of section, defined after the values of u and θ. 

The return map of the periodic orbits on an arbitrary surface 

of section does not therefore modify the the τE operator after 

the insertion of all the items of transformations needed after 

considering the surface Σcosθ u.. Therefore, the return maps can 

be considered. 

According to the developped analyses, the following 

definitions holds. 

Definition 2: a 2-dimensional oriented Birkhoff surface of 

section is a 2 dimensional surface embedded in the reduced 

3-dimansional phase space of the Hamiltonian system, of 

which one side corresponds to the arbitrarily-chosen one-

dimensional Poincar´e surface of section, and the other side 

is such that the orientation of the Birkhoff surface is defined 

positive in the outward direction of the ba outgoing velocity-

normalised oriented geodesics. 

Definition 3: The 2-dimensional reduced Birkhoff section is 

therefore specified as a 2-dimensional surface whose 

frontiers are defined after the chosen u∗ degenerated 

geodesics and the side of the reduced phase space specified 

after the angle θ comprehended within the axis of abscissae 

and the radius r of the geodesics connecting the center of the 

geodesics u0 with the intersection point between the 

generalized Poincar´e surface of section u∗ and the same 

geodesics, such that cosθ = (u0 − u∗)/r. ✷. 

A Poincar´e surface of section is depicted in Fig. 1 according 

to Definition 3. 

From Definition 2 and from Definition 3, the following 

theorems hold. 

Theorem 1: From Theorem A in [15], a positive Birkhoff 

section is therefore admitted after the specifications imposed 

on the considered system.  

Proof: to prove the Theorem 1, it is sufficient to apply the 

consideration that the application of the composition of 

operators corresponding to the composition of hyperbolic 

reflections of which the conjugacy subclasses implied after 
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the definition of reduced surds do not modify the TE operator. 

✷. 

Theorem 2 The multiplicity of the finitely-many periodic 

orbit is investigated after the composition of operators 

corresponding to the composition of hyperbolic reflections 

which defined the reduced surds. Proof: by construction. ✷ 

The definition of return maps depends on the number of 

operators of hyperbolic reflections which constitute the each 

conjugacy subclass which correspond to the description of the 

periodic orbits within the framework of the symbolic 

dynamics. 

 

IX.  2-DIMENSIONAL REDUCED BIRKHOFF 

SURFACE OF SECTION AND THE RETURN MAPS 

The return maps of the Poincar´e surface of section on the a 

side of the desymmetrized PSL(2,Z) domain are constructed 

after the symbolic dynamics. 

Theorem 3: the first return map is defined after the operator 

C which precedes the first occurrence of the A operator in the 

conjugacy subclass corresponding to the periodic orbit of a 

reduced surd.  

Proof: by construction. ✷.  

Corollary 3.1: The first return map therefore corresponds to 

the cutting trajectory of a reduced periodic surd.  

Theorem 4: the successive n-th return map is defined by 

means of the occurrence of the operators which precede the 

n-th occurrence of the A operator corresponding to conjugacy 

subclass of the periodic orbit corresponding to a reduced surd.  

Proof: by construction. ✷. 

The features of the reduced surds allow one to chose an 

orientation of the 2-dimensional reduced Birkhoff surface of 

section. 

Definition 4: The orientation of the 2-dimensional reduced 

Birkhoff surface of section is chosen as positive as the 

outgoing directionof the trajectory defining the return maps. 

 

XI.   OUTLOOK AND PERSPECTIVES 

The unfolding of the perturbations of periodic orbits lead to 

non-periodic configurations, which allows one to complete 

tessellate the Poincar´e Upper Half Plane rather than 

obtaining tori. To study this construction, it is useful to 

consider the topological entropy associated with geodesics 

flows and that associated with Anosov flows [24]. The 

comparison of the topological entropy of the 

diffeomorphisms and that of continuous maps has been 

investigated in [25] as far as the eigenvalues of the continuous 

maps the topological entropy induces in real homology. 

Sectional-Anosov flows are demonstrated to define 

incompressible transverse tori after certain types of periodic 

configurations [26]. 

The definition of reduced Birkhoff surfaces allows therefore 

one to relate the Artin symbolic-dynamics description with 

the Anosov problem, where the chosen maps have been 

illustrated. 

Due to the properties of the Artin system(s), the perturbations 

of the periodic orbits provide with an unfolding able to 

reconstruct the complete tesselation of the Upper Poincar´e 

Hal Plane. 

The study of the topological entropy of the corresponding 

systems allows one to chose the perturbation to be applied on 

a chosen periodic configuration. 

The relation between the dynamics of pseudo-Anosov 

mapping classes and that of H´enon mappings is still 

proposed as an open question [27]. 

The application of the H´enon map is useful in the study of 

quadratic surds. 
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APPENDIX A: COMPLEMENTS OF GEODESICS 

FLOWS 

The study of a compact Riemann manifold of negative 

constant curvature allows one to define homology classes for 

geodesics [28]. The number of prime closed geodesics on the 

considered Riemann surface is asymptotically calculated as 

an exponential function of the topological entropy of the 

geodesics flow and a suitable positive constant [29]. 

In [30], the deomnstration is provided with that, with an 

Anosov flow leaving the smooth volume element of a 

compact Riemann manifold m as invariant, the union of 

periodic orbits is dense in m. 

In [31], after the study of asymptotic cycles and the features 

of the space of invariant measures for hyperbolic flows of a 

volume-preserving Anosov flow on a compact manifold, the 

closed orbits are proven to span the first homology (with real 

coefficients). 

In [32], for transitive Anosov flows, an asymptotic formula 

for the number of definite closed orbits in a fixed homology 

class if found. 

From [33], the basic notion of mapping class groups are 

introduced. Further properties of Anosov flows are collected 

in [34]. 
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