International Journal of Mathematics and Computer Research

ISSN: 2320-7167 Volume 11 Issue 04 April 2023, Page no. – 3323-3327 Index Copernicus ICV: 57.55, Impact Factor: 8.187 DOI: 10.47191/ijmcr/v11i4.02

Bi-ideals in Ternary Seminear Rings

R. Vijayakumar¹, A. Dhivya Bharathi²

^{1,2}Department of Mathematics, Government Arts College(Autonomous), (Affiliated to Bharathidasan University, Tiruchirapalli), Kumbakonam - 612 002, Tamil Nadu, India.

ARTICLE INFO	ABSTRACT
Published Online:	In this paper, we introduce the concept of Bi-ideal in ternary seminear rings as a generalization
14 April 2023	of quasi ideals in ternary seminear rings. We also study the notion of minimal bi-ideal in ternary
Corresponding Author:	seminear rings and derive some of their interesting properties.
A. Dhivya Bharathi	
KEYWORDS: Ternary seminear ring, Regular Ternary seminear ring, Ideals in Ternary seminear ring, Quasi ideal in ternary	
seminear rings, Bi-ideal	

AMS Subject Classification code: 16Y30,16Y99,17A40,18A32

1 INTRODUCTION

Algebraic structures take a part in very marvellous role in mathematics which classifies in many area such as control engineering, physics, computer coding, IT, control engineering, etc. In 1952, Good.R.A and Hughes.D.R [2] started the concept of bi-ideals for a semigroup. Szasz.F [14][9] generalized bi-ideals of rings in 1970. In 1983, Pilz Gunter [11] came up with an idea of near ring. Krishna.K.V. [6][7][8] brought up with near-semi rings in 2005.

Kar.S.[4] initiated on quasi-ideals and bi-ideals in ternary semi rings. Dheena.P and Elavarasan.B., [1] were studied about the prime bi-ideals in ternary semi ring. Shique Li and Young He [13] floated on semigroups whose bi-ideals are strongly prime. Iampan.A [3] studied a note on bi-ideals in T-Semigroups. Koteswaramma.N and Venkateswara Rao.J.[5] have studied on bi-ideals and Minimal bi-ideals in ternary semi ring. Many authors worked on bi-ideals [10][12].

The notion of ternary seminear rings was initiated in 2020 by us [15]. Later we worked on [16][17][18][19][20].

In this paper, we define the notion of bi-ideal in ternary seminear rings. We also introduce a minimal bi-ideal in ternary seminear rings and obtained their properties.

2 PRELIMINARIES

Definition 2.1 A ternary seminear ring is a nonempty set T together with a binary operation called addition '+' and a ternary operation called ternary multiplication denoted by juxtaposition, such that

(i)(T, +) is a semigroup.

(*ii*)*T* is a ternary semigroup under ternary multiplication. (*iii*)xy(z + u) = xyz + xyu for all $x, y, z, u \in T$.

Definition 2.2 A ternary seminear ring T is said to have an absorbing zero if there exists an element $0 \in T$ such that i | x + 0 = 0 + x = x for all $x \in T$. ii | xy0 = x0y = 0 for all $x, y \in T$.

Remark 2.3 Throughout this paper T will always stand for the ternary seminear ring will always mean that ternary seminear ring with an absorbing zero.

Definition 2.4 Let T be a ternary seminear ring. A nonempty subset R of T is said to be a ternary subseminear ring of T if R itself is a ternary seminear ring under the same operations of T.

Definition 2.5 Let T be a ternary seminear ring (T, +, .). A non empty subset I of T is said to be a left(lateral and right) ideal of T if it holds the following conditions i) $i + j \in I$ for all $i, j \in I$ ii) t_1t_2i (respectively t_1it_2, it_1t_2) $\in I$ for all $t_1, t_2 \in$ T and $i \in I$. If I is a left, a lateral and a right ideal of T then I is said to be an ideal of T.

Definition 2.6 Let T be a ternary seminear ring. A proper ideal I of T is said to be a prime ideal if whenever $XYZ \subseteq$ I then $X \subseteq I$ or $Y \subseteq I$ or $Z \subseteq I$, for all ideals X,Y,Z of T.

Definition 2.7 Let T be a ternary seminear ring. A proper ideal I of T is said to be s semiprime ideal if whenever $X^3 \subseteq I$ then $X \subseteq I$, for any ideals X of T.

"Bi-ideals in Ternary Seminear Rings"

Definition 2.8 *Let* (T, +, .) *be a ternary seminear ring. For all* $x, y, u, v \in T$, *T is called*

i) Left cancellative if $u + x = u + y \Rightarrow x = y$ and $uvx = uvy \Rightarrow x = y$

ii) Right cancellative if $x + v = y + v \Rightarrow x = y$ and $xuv = yuv \Rightarrow x = y$

iii) Lateral cancellative if $uxv = uyv \Rightarrow x = y$

iv) Cancellative if T is left, right and laterally cancellative.

Definition 2.9 A congruence ρ on a ternary seminear ring T is said to be a cancellative congruence on T if T/ρ is a cancellative ternary seminear ring.

Remark 2.10 *Multiplicatively cancellative (MC) means it is* enough to show that the ternary cancellative operations in the cancellative ternary seminear ring (ie,. we can omit the binary addition).

Definition 2.11 Let T be a ternary seminear ring. Let U be an additive subsemigroup of T. U is said to be a quasi-ideal of T if $UTT \cap (TUT + TTUTT) \cap TTU \subseteq U$.

Definition 2.12 Let (B, +, *) be a semiring. A bi-ideal C is a subsemiring of B if $CBC \subseteq C$

Definition 2.13 An element x in a ternary seminear ring T is called regular if there exists an element y in T such that xyx=x. A ternary seminear ring T is called regular if all of its elements are regular.

Theorem 2.14 Let T be a ternary seminear ring. Then the following conditions are equivalent

i) T is regular.

ii) For any right ideal A, lateral ideal B, left ideal C of T, $ABC = A \cap B \cap C$.

iii) For $x, y, z \in T, < x >_r < y >_m < z >_l = < x >_r \cap < y >_m \cap < z >_l$

iv) For $x \in T$, $\langle x \rangle_r \langle x \rangle_m \langle x \rangle_l = \langle x \rangle_r \cap \langle x \rangle_m \cap \langle x \rangle_l$

Theorem 2.15 Let I be a ternary subsemigroup of a ternary seminear ring T. Then I is a left(lateral or right)ideal of T if and only if $TTI \subseteq I$

(respectively TIT $\subseteq I$ and $ITT \subseteq I$).

3 BI IDEALS IN TERNARY SEMINEAR RINGS

In this section we discussed about the Bi-ideals in ternary seminear rings.

Definition 3.1 Let T be a ternary seminear ring. A ternary subseminear ring V of T is said to be a bi-ideal of T if $VTVTV \subseteq V$.

Theorem 3.2 Let T be a ternary seminear ring. An intersection of an arbitrary collection of bi-ideals of T is also a bi-ideal of T.

Proof. Let $\{V_i : i \in I\}$ be an arbitrary collection of bi-ideals of a ternary seminear ring *T*. Let $a, b \in \bigcap_{i \in I} V_i$. Then $a, b \in V_i$

for all $i \in I$. Since every V_i is a bi-ideal of T, then we have $a + b \in V_i$, $\forall i \in I$ which implies that $a + b \in \bigcap_{i \in I} V_i$

Let $a, b, c \in \bigcap_{i \in I} V_i$. Then $a, b, c \in V_i$ for all $i \in I$. Since every V_i is a bi-ideal of T, we have $a, b, c \in V_i$ for all $i \in I$ implies that $a, b, c \in \bigcap_{i \in I} V_i$. Now $V_i T V_i T V_i \subseteq V_i$ and $\bigcap_{i \in I} V_i \subseteq V_i$ for all $i \in I$ then we have $\left[\bigcap_{i \in I} V_i\right] T \left[\bigcap_{i \in I} V_i\right] T \left[\bigcap_{i \in I} V_i\right] \subseteq V_i T V_i T V_i \subseteq V_i$ for all $i \in I$. Thus which implies that $\left[\bigcap_{i \in I} V_i\right] T \left[\bigcap_{i \in I} V_i\right] T \left[\bigcap_{i \in I} V_i\right]$. Hence $\bigcap_{i \in I} V_i$ is a bi-ideal of T.

Theorem 3.3 Let T be a ternary seminear ring. Each quasiideal of T is a bi-ideal of T.

Proof. Let T be a ternary seminear ring. U be a quasi-ideal of T. Then $UTUTU \subseteq U(TTT)T \subseteq UTT$,

 $UTUTU \subseteq T(TTT)U \subseteq TTU, \text{ and}$ $UTUTU \subseteq TTUTT. \text{ And } \{0\} \subseteq TUT.$ Therefore $\{0\} + UTUTU \subseteq TUT + TTUTT.$ Hence it follows that $UTUTU \subseteq UTT \cap (TUT + TTUTT) \cap TTU \subseteq U.$ and consequently U is a bi-ideal of T.

Remark 3.4 Generally V be a bi-ideal of T and W is a biideal of V, then W is need not a bi-ideal of T. Yet, in specific case, we have the succeeding theorem.

Theorem 3.5 Let T be a ternary seminear ring. V be a biideal of T and W be a bi-ideal of V such that $W^3 = W$. Then W is a bi-ideal of T.

Proof. As V be a bi-ideal of T, $VTVTV \subseteq V$, and W be a bi-ideal of V, then $WVWVW \subseteq W$. Consequently, WTWTW = (WWW)TWT(WWW)

$$= (WWW)TWT(WWW)$$
$$= WW(WTWTW)WW$$
$$\subseteq WW(VTVTV)WW$$
$$\subseteq WWVWW$$
$$= WWVW(WWW)$$
$$= W(WVWVW)W$$
$$\subseteq WWWW$$
$$\subseteq WWW$$

Definition 3.6 Let T be a ternary seminear ring. $|T| \ge 2$ is said to be a ternary division seminear ring if any non zero element x in T, there exists a non zero element y of T such that xyz = yxz = zxy = zyx = z for all $z \in T$.

Theorem 3.7 Let T be a ternary seminear ring. T has no non zero proper bi-ideals if T is a ternary division seminear ring.

Proof. Let T be a ternary division seminear ring and V be a non zero bi-ideal of T.

Let x be a non zero element in V.

Then there exists a non zero element t in T such that xtz = txz = zxt = ztx = z, $\forall z \in T$, which implies that T =

VTT = TTV.

Т

Now = VTT= V(TTV)(TTV)= V(VTT)(TVT)(TTV)V= V(VTVTV)V $\subseteq VVV$ $\subseteq V.$

Therefore, $T \subset V$ and $V \subset T$ which implies V = T and thus T has no non zero proper bi-ideals.

Theorem 3.8 A Multiplicative Cancellative (MC) ternary seminear ring T is zero divisor.

Proof. Let T be a MC ternary seminear ring and xyz = 0for $x, y, z \in T$. If $y \neq 0$ and $z \neq 0$, then by right cancellativity xyz = 0yz = x = 0. Similarly we can show that y = 0 if $x \neq 0$ and $z \neq 0$ or z = 0 if $x \neq 0$ and $y \neq 0$. Therefore, T is zero divisor.

Theorem 3.9 Let T be a ternary seminear ring. A, B and C be three ternary subseminear rings of T and V = ABC. Then, V is a bi-ideal if atleast one of A, B, C is a right, a lateral or a left ideal of T.

Proof. Let T be a ternary seminear ring and V = ABC. If A be a right ideal of T. Then $(ABC)T(ABC)T(ABC) \subseteq A(TTT)(TTT)TTBC$ $\subseteq A(TTT)TBC$ $\subseteq (ATT)BC$ \subseteq ABC. (By Theorem 2.8) Therefore V = ABC is a bi-ideal of T. Again, B be a right ideal of T. Then $(ABC)T(ABC)T(ABC) \subseteq AB(TTT)(TTT)TTC$ $\subseteq AB(TTT)TC$ $\subseteq A(BTT)C$ $\subseteq ABC$. Consequently V = ABC is a bi-ideal of T. Now, if C be a right ideal of T, then $(ABC)T(ABC)T(ABC) \subseteq (ABC)(TTT)(TTT)TT$ $\subseteq (ABC)(TTT)T$ $\subseteq (ABC)TT$ $\subseteq AB(CTT)$ $\subseteq ABC.$ Therefore V = ABC is a bi-ideal of T. Similarly, if A be a left ideal of T. The $(ABC)T(ABC)T(ABC) \subseteq (TTT)(TTT)TT(ABC)$ $\subseteq TTTTABC$ \subseteq (TTA)BC $\subseteq ABC$. Therefore V = ABC is a bi-ideal of T. Suppose B be a left ideal of T. Then $(ABC)T(ABC)T(ABC) \subseteq A(TTT)(TTT)TTBC$ $\subseteq A(TTT)TBC$ $\subseteq A(TTB)C$ $\subseteq ABC$ Hence V = ABC is a bi-ideal of T. If C be a left ideal. Then

(ABC)T(ABC)T(ABC) $\subseteq AB(TTT)(TTT)TTC$ $\subseteq AB(TTT)TC$ $\subseteq AB(TTC)$ = ABCTherefore V = ABC is a bi-ideal of T. If A be a lateral ideal of T. Then $(ABC)T(ABC)T(ABC) \subseteq (TTT)TA(TTT)TBC$ $\subseteq T(TAT)TBC$ \subseteq (TAT)BC $\subseteq ABC$. Therefore A be a lateral ideal of T. V = ABC be a bi-ideal of T. Again B be a lateral ideal of T. Then $(ABC)T(ABC)T(ABC) \subseteq A(TTT)TBT(TTT)C$ $\subseteq AT(TBT)TC$ $\subseteq A(TBT)C$ $\subseteq ABC.$ Therefore V = ABC be a bi-ideal of T. Suppose C be a lateral ideal of T. Then $(ABC)T(ABC)T(ABC) \subseteq AB(TTT)TCT(TTT)$ $\subseteq ABT(TCT)T$ $\subseteq AB(TCT)$ $\subseteq ABC.$

Therefore V = ABC be a bi-ideal of T.

Theorem 3.10 A ternary subseminear ring V of T be a biideal of T if V = ABC, where A is a right ideal, B is a lateral ideal and C is a left ideal of T.

Proof. Let V be a ternary subseminear ring of T. Suppose V = ABC, where A is a right ideal, B is a lateral ideal and C is a left ideal of T, then

V $= (ATT)(TBT)(TTC) \forall A, B, C \in V$ $\subseteq A(TTT)B(TTT)C$ $\subseteq ATBTC$ $\subseteq V$ = ABC.Therefore V is a bi-ideal of T.

Theorem 3.11 Let T be a ternary seminear ring. Let V be a ternary subseminear ring of T. If A be a right ideal, B be a lateral ideal and C be a left ideal of T such that $ABC \subseteq$ $V \subseteq A \cap B \cap C$ then V be a bi-ideal of T.

Proof. VTVTV $\subseteq (A \cap B \cap C)T(A \cap B \cap C)T(A \cap B \cap C)$ $\subseteq A(TBT)C$ $\subseteq ABC$ $\subseteq V$. Therefore V is a bi-ideal of T.

Theorem 3.12 The following criteria in a ternary seminear ring T are eqivalent.

i) T be regular.

ii) Each bi-ideal V of T, VTVTV = V.

iii) Each quasi-ideal U of T, UTUTU = U.

Proof. $(i) \Rightarrow (ii)$ Suppose T is regular. Let V is a bi-ideal of T. Let $x \in V$. Then there exists an element y in T such that xyx = x. Thus implies that $x = xyxyx \in VTVTV$.

Therefore $V \subseteq VTVTV$. Since V is a bi-ideal of T, $VTVTV \subseteq V$. Hence $VTVTV = (ii) \Rightarrow (iii)$ Obviously it is true. $(iii) \Rightarrow (i)$

If (*iii*) holds. Let A be a right ideal B be a lateral ideal and C be a left ideal of T. Then $U = A \cap B \cap C$ is a quasi ideal of T (by theorem 3.3). Hence UTUTU = U. Suppose $A \cap B \cap C = U = UTUTU \subseteq ATBTC \subseteq ABC$. Clearly $ABC \subseteq A \cap B \cap C$. Therefore $A \cap B \cap C = ABC$ and thus from (theorem 2.7). T is a regular ternary seminear ring.

Theorem 3.13 A ternary subseminear ring V of a regular ternary seminear ring T is a bi-ideal of $T \Leftrightarrow V = VTV$.

Proof. If V = VTV, then obviously V is a bi-ideal of T. Conversely, V is a bi-ideal of a regular ternary seminear ring T. Let $x \in V$, then there exists an element y in T such that x = xyx. This implies that $x \in VTV$ and consequently $V \subseteq VTV$. Now, $VTV \subseteq VTVTV \subseteq V$. Therefore V = VTV.

Theorem 3.14 A ternary subseminear ring V of a regular ternary seminear ring T is a bi-ideal of $T \Leftrightarrow V$ is a quasi ideal of T.

Proof. Let T is a regular ternary seminear ring. If V is a quasi-ideal of T, then (by theorem 3.3), V is a bi-ideal of T. Conversely, let V be a bi-ideal of T (by theorem 2.7), we have T be a regular ternary seminear ring then $A \cap B \cap C = ABC$, for any right ideal A, lateral ideal B and left ideal C.

Also, $VTT \cap (TVT + TTVTT) \cap TTV$ = VTT(TVT + TTVTT)TTV = (VTT)(TVT)(TTV) + (VTT)(TTVTT)(TTV) = V(TTT)V(TTT)V + V(TTT)TV(TTT)TV $\subseteq VTVTV + VTTVTTV$ $\subseteq V + VTV$ (by theorem 3.13) = V + V $\subseteq V$.

Therefore V is a quasi-ideal of T.

Theorem 3.15 Let T be a ternary seminear ring. R is a ternary subseminear ring of T. If V is a bi-ideal of T then $V \cap R$ is a bi-ideal of R.

Proof. Let T be a ternary seminear ring R be a ternary subseminear ring of T. Let $A = V \cap R \Rightarrow A \subseteq V$ and $A \subseteq R$.

Consider $ARARA \subseteq VRVRV \subseteq VTVTV \subseteq V$, and $ARARA \subseteq RRRRR \subseteq R$. Consequently, $ARARA \subseteq V \cap R = A$. Hence $A = V \cap R$ is a bi-ideal of R.

Theorem 3.16 Let T be a ternary seminear ring. If V_1, V_2 and V_3 are three bi-ideals of T, then $V_1V_2V_3$ is a bi-ideal of T.

Proof. Let T, be a ternary seminear ring. V_1, V_2 and V_3 are three bi-ideals of T.

 $\Rightarrow VTVTV \subseteq V.$ $\Rightarrow (V_1V_2V_3)T(V_1V_2V_3)T(V_1V_2V_3)$ $\subseteq (V_1TT)T(TV_2T)T(TTV_3)$ $\subseteq (V_1TT)(TTV_2TT)(TTV_3)$ $\subseteq V_1V_2V_3.$ Consequently, $V_1V_2V_3$ be a bi-ideal of T.

Theorem 3.17 Let T be a ternary seminear ring. If I be an ideal and U be a quasi-ideal of T then $I \cap U$ be a bi-ideal of T.

Proof. Let T be a ternary seminear ring. I be an ideal. U be a quasi ideal of T. Clearly $I \cap U$ be a ternary subseminear ring of T.

 $\Rightarrow (I \cap U)T(I \cap U)T(I \cap U)$ $\subseteq (ITITI) \cap (UTUTU)$ $\subseteq I \cap U.$

Hence $I \cap U$ is a bi-ideal of T.

Theorem 3.18 Let T be a ternary seminear ring. R, S be ternary subseminear ring of T, then V = RTS be a bi-ideal of T.

Proof. Let T be a ternary seminear ring. R, S be two ternary subseminear ring of T, then V = RTS is a subseminear ring of T.

```
VTVTV \subseteq (RTS)T(RTS)T(RTS)\subseteq R(TTT)(TTT)(TTT)S\subseteq RTS\subseteq V.
```

Then V = RTS be a bi-ideal of T.

Definition 3.19 Let T be a ternary seminear ring. A proper bi-ideal V of T is called prime bi-ideal if $XYZ \subseteq V$ which implies that $X \subseteq V$ or $Y \subseteq V$ or $Z \subseteq V$ for bi-ideals X, Y and Z of T.

Definition 3.20 Let T be a ternary seminear ring. A proper bi-ideal V of T is called semi prime bi-ideal if $X^3 \subseteq V$ which implies that $X \subseteq V$ for bi-ideal $X \in T$.

Definition 3.21 Let T be a ternary seminear ring. A non zero bi-ideal V of T is said to be a minimal bi-ideal of T if V does not properly contain any non zero bi-ideal.

Theorem 3.22 Let T be a ternary seminear ring. A is a minimal right ideal, B is a minimal lateral ideal and C is a minimal left ideal of T. Then ABC = 0 or ABC be a minimal bi-ideal of T.

Proof. Let T be a ternary seminear ring. A is a minimal right ideal, B is a minimal lateral ideal and C is a minimal left ideal of T. ABC be an additive subseminear ring of T. Suppose $ABC \neq 0$ and let V = ABC. Then (by theorem 3.10), V is a bi-ideal of T.

Let X be any bi-ideal of T, such that $0 \neq X \subseteq V \subseteq A$. Then XTT is a right ideal of T and XTT $\subseteq VTT = (ABC)TT \subseteq ATT \subseteq A$. As A be a minimal right ideal of T. Consequently XTT = 0 or XTT = A.

If XTT = 0 then X = A and ABC = 0 this makes

a contradiction. Consequently XTT = A.

Similarly, we can show TXT = B and TTX = C. Consequently $V = ABC = XTTTXTTTX \subseteq XTXTX \subseteq X$. Therefore V = X. Thus *ABC* be a minimal bi-ideal of *T*.

REFERENCES

- 1. Dheena,P.,ElavaraSan,B.: Prime bi-ideals in ternary semiring. Journal of the Indian Mathematical Society. 74(3-4),221-227(2007).
- Good,R.A.,Hughes,D.R.: Associated groups for a semigroup. Bull.Amer.Math.Soc. 58,624-625 (1952).
- Iampan,A.: Note on bi-ideals in [Semigroups. International Journal of Algebra.3(4),181-188(2009).
- 4. Kar,S.: On quasi-ideals and Bi-ideals in ternary semirings. International Journal of Mathematics and Mathematical Sciences. 18,3015-3023(2005).
- Koteswaramma, N., Venkateswara Rao, J.: Bi-ideals and Minimal Bi-ideals in ternary semiring. 3(2),161-168(2013).
- 6. Krishna,K.V.: Near semirings. Theory and application. Ph.D. thesis. IIT, Delhi 2005.
- Krishna,K.V., Chatterjee.N.: A necessary condition to test the minimality of generalized linear sequential machines using the theory of near semiring. Algebra and Discrete Mathematics. 4(3),30-45(2005).
- Krishna,K.V., Kumar,J.: Radicals and Ideals of Affine near. semirings over Brandt Semigroups. Algebras and operator theory. Springer.123-133(2015).
- 9. Lajos, S., Szasz, F.: Bi-ideals in associative rings.

Acta.Sci.Math. 32,185-193(1971).

- 10. Manishkant Dubey, Anuradha.: On Minimal Biideal in ternary semirings.6(1),15-22(2012).
- 11. Pilz Gunter.: Nearrings. The Theory and its application. Vol.23, North Holland publishing company. (1983).
- Shabir, M., Bano.M.: Prime bi-ideals in ternary semigroups. quasi groups related systems. 16,239-256(2008).
- 13. Shique Li, Young He.: On semigroups whose biideals are strongly prime. International Journal of Algebra. 1, 263-268(2007).
- 14. Szasz, F.: Generalized bi-ideals of rings-I. Diese Nachr. 47,355-369(1970).
- 15. Vijayakumar,R., Dhivya Bharathi,A.: On Ternary Seminear rings. International Journal of Mathematics Trends and Technology. 66(10),170-177(2020).
- Vijayakumar, R., Dhivya Bharathi, A.: Quotient ternary seminear rings. Malaya Journal of Mathematik. 9(1),715-719(2021).
- 17. Vijayakumar, R., Dhivya Bharathi, A.: Structures of ternary seminear rings. Stochastic Modellings and Applications.Vol(25)(2), 83-91(2021).
- 18. Vijayakumar, R., Dhivya Bharathi, A.: Ideals in ternary seminear rings. Proceedings of the National Academy of Sciences (Under Review).
- 19. Vijayakumar, R., Dhivya Bharathi, A.: Quasi-ideals in ternary seminear rings. Indian Journal of Natural Sciences. 13(74), 48823-48827(2022).
- 20. Vijayakumar, R., Dhivya Bharathi, A.: Prime Quasiideals in ternary seminear rings. Indian Journal of Science and Technology. 15(13), 2037-2040 (2022).