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Constrained algorithms for BED model (Biological Effective Dose) in Head and Neck tumors 

Hyperfractionated TPO optimized with Pareto-Multiobjective (PMO) Genetic Algorithms 

(GA) software are obtained. The mathematical method for constrained GA is applied for a 

number of series of Pareto Functions. Results demonstrate PMO-AI imaging process 

sequences and extensive numerical values of PMO Head and Neck cancer parameters. 

Comparison and review with simple constrained GA Optimization is presented.  Improved RT 

Head and Neck cancer TPO, and tumors in general for Fractional-dose photon dose delivery 

are explained in brief. 

KEYWORDS: Pareto-Multiobjective Optimization (PMO), Mathematical Methods (MM), Biological Models (BM), 

Radiation Therapy (RT), Initial Tumor Clonogenes Number Population ( N0 ), Effective Tumor Population Clonogenes 

Number ( NEffective ),  Linear Quadratic Model (LQM), Integral Equation (IE), Tumor Control Probability (TCP), Normal 

Tissue Complications Probability (NTCP), Biological Effective model (BED), Tumor Control Cumulative Probability 

(TCCP), Radiation Photon-Dose (RPD), Nonlinear Optimization, Radiotherapy Treatment Planning Optimization (TPO), 

Source-Surface Distance (SSD), Software Engineering Methods, Radiation Photon-Dose, Attenuation Exponential Factor 

(AEF), Nonlinear Optimization, Radiotherapy Wedge Filter (WF), Anisotropic Analytic Model (AAA), Fluence Factor (FF), 

Omega Factor (OF), Treatment Planning Optimization (TPO), Breast Tumor (BT), Artificial Intelligence (AI), Pareto-

Multiobjective Optimization (PMO), Genetic Algorithms (GA) . 

 

I. INTRODUCTION 

The objective of the contribution is apply Artificial 

Intelligence with Constrained Genetic Algorithms on 

radiotherapy BED model for Head and Neck tumors [87,88].  

Nonlinear GA-PMO engineering software was 

improved with matrix algebra constraints and designed in 

programs/patterns for PMO-BED models. A review of 

previous research with additional numerical results for two 

types of selected simple-constrained BED model parameters 

is supplemented. Thorough GA hyperfractionated 

radiotherapy TPO findings are presented both in 2D graphics 

and dataset. The matrix-algebra constraints and the extensive 

comparison among several parameters selection constitutes 

the innovation of the study. At 2D graphics, Pareto Optimal 

choice is sharply indicated.  

In brief, a constrained extension of previous Nonlinear 

Pareto-Multiobjective GA optimization was performed for 

radiotherapy BED models in Head and Neck tumors [87,88]. 

Applications for radiotherapy TPO and future improvements 

in RT are explained in short.  

 

II. MATHEMATICAL AND COMPUTATIONAL 

METHODS 

The Pareto-Multiobjective Optimization foundation 

BEDEffective model was set in software, [24,88]. Parameters 

intervals are detailed in Tables 1-3. Algorithms 1-2 and 

Equation 1 set the formulas and constraints [85-88]. Two 

different PMO optimization programming series are 

presented with different parameter intervals magnitudes, 

Tables 1-3. This BED model constitutes the fundamentals 
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for fractionate radiotherapy, although there are variations 

among authors [20-25]. Formulation is based on previous 

studies computational software [1-21,85-88].  The algorithm 

that was set, with Chebyshev L1  norm, [Algorithm 1], 

reads, 

The general 2D Pareto-Multiobjective problem, 

[Algorithm-1] with unequality constraints, either linear or 

nonlinear, reads, 

 
(Algorithm 1) 

 

where 

F(x) : Main function to be optimized. 

fi ( x ) : Every function of same variables ( x ). 

Ki  (x) : Constraints functions such as in general N ≠ M . 

BED model has been adapted on the difficulty to obtain an 

stable and reliable TPot  magnitude. PMO in Head and Neck, 

[ 24,88 ] tumors simplest BED model reads, 

 

 

 

Equation 1 [ developed for software patterns, Casesnoves, 

2022, based on classical author’ BED model, mainly 

Fowler] .-Head and Neck PMO algorithm [1-21,85-88] 

implemented in software. The intervals for optimization 

parameters in software are detailed. It is an improvement 

from a series of previous research in radiotherapy. 

During programming trials it was found that 

precision was increased by using algebraic constraints in 

main patterns. Therefore, the constraints algebraic algorithm 

developed for Pareto-Multiobjective problem, [Algorithm-2, 

Casesnoves 2023] reads, 

 
(Algorithm 2) 

 

where 

SLOWER : Summatory of all lower constraints for parameters  

[ K, d, T ]. 

SUPPER : Summatory of all upper constraints for parameters  [ 

K, d, T ]. 

Ki  : Dose fraction number parameter for [ i = 1, 2 ] . 

di : Dose fraction magnitude parameter for [ i = 1, 2 ] . 

TTREATMENT : Treatment time magnitude parameter for [ i = 

1, 2 ] . 

The programming method(s) applied for this 

research are based on previous papers [1-20,24,74,88]. For 

GA-PMO modeling,  Equation 1 and Algorithms 1-2 are 

implemented on 2D programs. However, Algorithm 2 was 

programmed with constraints functions. Table 1 shows 

Constrained GA Optimization selected parameters according 

to Algorithm 2. Tables 2-3 show the 2D GA-PMO simple 

programming method variations to obtain acceptable better 

calculations, and 2D Graphical Optimization processing 

images, error determinations, and get good approximations 

for the PMO-BED model. For simple simulations, the 

difference between the first and second simulations is given 

by Dose Fraction and Dose Interval parameters, Tables 2-3. 
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Table 1.-Matlab Constrained GA optimization dataset. Note 

the values of Matlab constraints matrix in Algorithm 2. In 

Matlab and other similar systems, the constraints can be set 

as a matrix equation. As in Tables 2-3, the simulations were 

done with approximate numerical-experimental data from 

several authors. TPotential in Head and Neck cancer is about 4 

days as average. Simulation dataset from [20-

25,74,75,80,81,85-88] . 

 
 

Table 2.-First GA optimization dataset. The simulations 

were done with approximate numerical-experimental data 

from several authors. TPotential in head and neck cancer is 

about 4 days as average. Simulation dataset from [20-

25,74,75,80,81,85-88] . 

 

 

 

 
 

Table 3.-The second simulations were done with 

approximate numerical-experimental data from several 

authors. TPotential is taken [ 3.5, 4.5] days.  

 

III. OPTIMIZATION GRAPHICAL RESULTS 

2D Graphical results for first constrained optimization are 

shown in Figures 1-2. The simple constrained optimization 

results are presented in Figures 3-7. In general, constrained 

optimization with algorithm 2 shows be better than simple 

constrained one. However, differences are not very high. 

Algebraic constrained Model Results  

 

 

Figure 1.-Constrained optimization Multifunctional GA 2D 

graph (100 generations). This is the most important graph 

given by software when PMO is performed to check the 

optimization accuracy. The fundamentals of Nonlinear PMO 

calculations are usually based on 2D PMO functions charts. 

In this study both f 1 and f 2 show low residuals. Therefore, 

results are acceptable in first optimization for function 1 and 

function 2 . Enhanced in Appendix. 
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Figure 2.-Constrained optimization Multifunctional GA 

2D graph (100 generations). This is the most important 

graph given by software when PMO is performed to 

check the optimization accuracy. The fundamentals of 

Nonlinear PMO calculations are usually based on 2D 

PMO functions charts. In this study both f 1 and f 2 

show low residuals. 

Review Simple Constrained 2D Simulations Model 

Results  

Figures 3-7 show PMO results. Tables 4-6 present details of 

both numerical PMO optimization results. Table 4 shows the 

constrained optimization results (100 generations, optimal 

fraction dose (d ϵ [1.6 , 1.7] Gy). The most important to 

validate the results are those ones that show the Pareto 

Front. Average distance among generation individuals, 

stopping criteria, are also important. The other details are 

complementary and shown in additional 2D charts for first 

and second PMO optimization. For simple constrained 

optimization maximum number of generations selected was 

300-800. Score histograms also prove the validity of the 

software and PMO done. Running time for both processes is 

about 2-4 minutes. Numerical results, Tables 5-6, resume for 

PMO in simple constrained optimization BED model. For 

this simple constrained optimization dose fraction 

magnitude should be less than 2 Gy approximately [19-

21,75,85-88].   

Review PMO-GA  2D Imaging Processing First Simple 

Constrained Optimization Results 

First optimization results are shown in Figures 3-4, Table 5. 

Pareto function 2 results are more accurate than Pareto 

function 1. Every chart of Artificial Intelligence GA is 

detailed with further explanations. 

 

 

 

 

 
Figure 3.-First optimization Multifunctional GA 2D 

graph. This is the most important graph given by 

software when PMO is performed to check the 

optimization accuracy. The fundamentals of Nonlinear 

PMO calculations are usually based on 2D PMO 

functions charts. In this study both f 1 and f 2 show low 

residuals. Therefore, results are acceptable in first 

optimization for function 1 and function 2 . The number 

of points on the Pareto front was: 18. The number of 

generations was : 300. 

 

 

Figure 4.-First optimization Multifunctional GA 2D 

graph. This is the complementary multifunctional graph 

given by software when PMO is performed to check the 

optimization accuracy. The fundamentals of Nonlinear 

PMO calculations are usually based on 2D PMO 

functions charts. In this study both f 1 and f 2 show low 

residuals. Therefore, results are acceptable in first 

optimization for function 1 and function 2 The number 

of points on the Pareto front was: 18. The number of 

generations was : 300. 

Review PMO-GA  2D Imaging Processing Second Simple 

Constrained Optimization Results 

Second optimization results are shown in Figures 5-7, Table 

6. Pareto function 2 results be more accurate than pareto 

function 1. Every chart of Artificial Intelligence GA is 

detailed with further explanations. 
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Figure 5.-Second simulation. Multifunctional GA 2D 

graph. This is the most important graph given by 

software when PMO is performed to check the 

optimization accuracy. 

The fundamentals of Nonlinear PMO calculations are 

usually based on 2D PMO functions charts. In this study 

both f 1 and f 2 show low residuals. Therefore, results are 

acceptable. The number of points on the Pareto front 

was: 18. The number of generations was : 300. 

 

 
Figure 6.-This is the most important graph given by 

software when PMO is performed to check the 

optimization accuracy. 

The fundamentals of Nonlinear PMO calculations are 

usually based on 2D PMO functions charts. In this study 

both f1 and f2 show low residuals. Objective 2 is more 

accomplished. Therefore, results are acceptable. The 

number of points on the Pareto front was: 18. The 

number of generations was : 300. Enhanced in 

Appendix. 

 

 
Figure 7.-This is important complementary graph given 

by software when PMO is performed to check the 

optimization accuracy. 

Average Distances is an significant parameter. The 

fundamentals of Nonlinear PMO calculations are usually 

based on 2D PMO functions charts. In this study both f 1 

and f 2 show low average distances, less than 2. 

Therefore, results are acceptable. The number of points 

on the Pareto front was: 18. The number of generations 

was : 300. 

IV. NUMERICAL RESULTS 

Constrained optimization numerical data is shown in Table 

4. Large numbers for simple constrained optimization are 

shown in Tables 5-6. 

Numerical Results Constrained Optimization 

Constrained optimization show be acceptable within 

numerical intervals, Table 4. 

Table 4. Constrained Optimization Algorithm 2 

numerical results. 

 
 

Numerical Results Simple Constrained Optimization 

Review  

 

PMO-GA Numerical Results 

Examples of Numerical results resume for PMO in BED 

model are detailed in Tables 5-6. Chebyshev norms were set 

for [ 55 , 65 ] Gy interval. Dose fraction magnitude should 

be less than 2 Gy approximately. Numerical Results for 

model are developed and reviewed from the innovation from 

[20,21,75,85-88].   
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Table 5.-First simulation. Brief of PMO Artificial 

Intelligence with GA optimization numerical results in 

Head and Neck tumors for advanced TPO.  

 
 

Table 6.-Second simple constrained simulation. Brief of 

PMO Artificial Intelligence with GA optimization 

numerical results in Head and Neck tumors for 

advanced TPO. These numerical results are an example, 

the dataset got is much bigger. 

V. RADIOTHERAPY PHYSICS APPLICATIONS 

Table 7 shows a resume of radiotherapy applications in head 

and neck tumors. Medical physics principal applications for 

radiotherapy TPO are explained briefly.  

 

Table 7 .- Some radiotherapy and radioprotection for 

RT head and neck cancer TPO Medical Physics study 

applications derived from results. 

 
 

VI. DISCUSSION AND CONCLUSIONS 

The objective of the study was to apply further constrained 

GA Optimization for Head and Neck Hyperfractionated RT 

treatment with BED model. Secondly to compare/review to 

simple constrained results [87,88].  

Results comprise a series of 2D GA graphical 

series and numerical dataset, Tables 4-6. Constrained 

Optimization with Algorithm 2 shows a Pareto Distance of 

about 10-2 magnitude order. When number of generations 

increases from 150, the running time of the constrained 

programs rises to approximately 4-6 minutes.    

Software and programming was based on previous 

contributions [87,88]. The Matlab function handle have to 

be carefully programmed to get acceptable results. In plain 

language, handle functions got to get built with same 

precision than the classical FORTRAN subroutines. 

In summary, a constrained RT-BED 

Hyperfractionated model with GA was performed and 

compared to simple constrained Pareto-Optimization. 

Applications for optimal RT planning emerge form results.    
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APPENDIX 

 

Figure 1. ( Enhanced ) .-Constrained optimization Multifunctional GA 2D graph (100 generations). This is the most 

important graph given by software when PMO is performed to check the optimization accuracy. The fundamentals of 

Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this study both f 1 and f 2 show low 

residuals. Therefore, results are acceptable in first optimization for function 1 and function 2. 

 

 
Figure 6. (Enhanced).-This is the most important graph given by software when PMO is performed to check the 

optimization accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. 

In this study both f1 and f2 show low residuals. Objective 2 is more accomplished. Therefore, results are acceptable. The 

number of points on the Pareto front was: 18. The number of generations was : 300. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


