International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 05 May 2023, Page no. - 3392-3395

Index Copernicus ICV: 57.55, Impact Factor: 7.362

DOI: 10.47191/ijmcr/v11i5.01



Range Labeling for Some Graphs

R. Jahir Hussain¹, J. Senthamizh Selvan²

¹Associate Professor, Department of Mathematics, Jamal Mohamed College (Autonomous), Bharathidasan University, Thiruchirappalli-620020, Tamil Nadu, India

²Research Scholar, Department of Mathematics, Jamal Mohamed College (Autonomous), Bharathidasan University, Thiruchirappalli-620020, Tamil Nadu, India

ARTICLE INFO	ABSTRACT
Published Online:	In this paper, we focus on one type of labeling is called range labeling, we have introduced range
03 May 2023	labeling for certain graphs as for Pz, Cz, Sy,z (Double star), sun graph and for some trees.
Corresponding Author:	
R. JAHIR HUSSAIN	

INTRODUCTION

In this paper consider for all graphs are finite and simple. The graph G is the vertex set S(G) and edge set T(G). A graph labeling G is a function that carries graph elements to integers. The labeling was first introduced by Rosa in 1967.

In this paper range labeling apply for some Graphs. Neelam kumari and Seema mehra was first developed oneedge magic labeling and n-edge magic labeling in 2013(5). Prime edge magic labeling origin in Dr. R. Jahir Hussain and J. Senthamizh Selvan in 2021(2). Range labeling was first developed in J.Senthamizh Selvan and Dr.R.Jahir Hussain in 2023(7).

1. PRELIMINARY

Definition1.1. n-edge magic labeling:

 $\begin{array}{l} \mbox{Let } G=(S,\,T) \mbox{ be a graph } S=\{S_k,\, l\leq k\leq z\} \mbox{ and } T=\{S_kS_{k+1},\, 1\leq k\leq z\text{-}1\}. \mbox{ Let } \alpha\text{: } S\rightarrow [\text{-}1,\,n\text{+}1] \mbox{ and } \alpha^*\text{: } T \end{array}$

→ [n] such that for every $S_k S_{k+1} \in T$, $\alpha^* [S_k S_{k+1}] = \alpha [S_k] + \alpha [S_{k+1}] = n$. This result is called n-edge magic labeling(5).

Definition 1.2. Prime edge magic labelling

Let G= (S, T) be a graph, S = {S_k, $1 \le k \le z$ } and T = {S_kS_{k+1}, $1 \le k \le z-1$ }. Let α : S \rightarrow [-p,2p] and α^* : T \rightarrow [p] such that if p is a Prime number. For every S_kS_{k+1} \in T, α^* [S_kS_{k+1}] = α [S_k]+ α [S_{k+1}] =P. This result is called Prime edge magic labeling (2).

Definition1.3. Graceful labelling

A graceful labeling of a graph G is a vertex labeling $\propto: S \rightarrow [0, m]$ such that \propto is injective and the edge labeling $\alpha^*: T \rightarrow [1, m]$ is defined by $\alpha^*[S_kS_{k+1}] = |\alpha(S_k) - \alpha(S_{k+1})|$ is also

injective. If a graph G admits a graceful labeling. We say G is a graceful graph (4).

Definition1.4. Symmetrical tree

A rooted tree in which every level contains vertices of the same degree is called Symmetrical tree (4).

2.MAIN RESULTS

The idea of graceful labeling and prime edge magic labeling stimulate us to decide coming new result of Range labeling.

2.1Range labeling:

Let G= (S, T) be a graph with n vertices. An injective function on \propto : S \rightarrow {1,3,6,10,15,21,28..., (n²+n)/2} is called a range labeling if the edge labels are \propto^* : T \rightarrow {1,2, 3..., ((n²+n)/2)-1)} and T is defined by \propto^* (T)= Maximum value (S_k,S_{k+1}) – Minimum value (S_k,S_{k+1}). If a graph G admits range labeling,we say G is a range graph(7).

2.2Range Value;

Let G=(S, T) be a range graph, then the range value is Range value of graph G=Maximum edge value of G-Minimum edge value of G.

That is, RV(G)=MAEV(G)-MIEV(G).

Theorem 1. The Path P_z is a Range graph.

Proof:

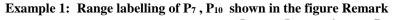
Let G= (S, T) be a graph. Let S(G)= {S_k, $1 \le k \le z$ }, T (G)= {S_kS_{k+1}, $1 \le k \le z$ -1} if α :S \rightarrow {1,3,6,10,15,21,28..., (n²+n)/2}, α^{*} (T)=Maximum value of (S_k,S_{k+1}) – Minimum value of (S_k,S_{k+1}).

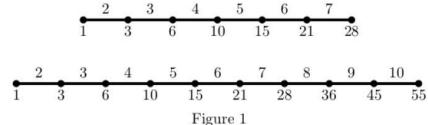
If S_k is a minimum value and S_{k+1} is a maximum value.

 $\alpha^*(T) = S_{k+1} - S_k = Z$ is an integer.

Suppose, S_{k+1} is a minimum value and S_k is a maximum value. $\alpha^*(T)=S_k-S_{k+1}=Z$ \therefore Z is an integer. Hence every path graph is accepting Range labeling.

 \therefore Any path graph is range graph.





"Range Labeling for Some Graphs"

Remark 1:

Range value of P_7 = Maximum edge value of (P_7)-Minimum edge value of (P_7)

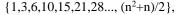
Range value of P_{10} = Maximum edge value of (P_{10})-Minimum edge value of (P_{10})

Theorem 2. The cycle C_z is a Range graph.

Proof:

Let G= (S, T) be a graph. Let S(G)= {S_k, 1 \leq k \leq z}, T(G)= {S_kS_{k+1}, 1 \leq k \leq z-1}. If \propto :S \rightarrow

Example 2: Range labeling of C₅, C₆ shown in the figure 2.



 $\alpha^*(T)$ = Maximum value of (S_k, S_{k+1}) – Minimum value of (S_k, S_{k+1}) .

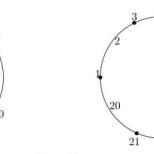
If S_k is a minimum value and S_{k+1} is a maximum value. $\alpha^*(T) = S_{k+1} - S_k = Z$

 \therefore Z is a integer.

Suppose, S_{k+1} is a minimum value and S_k is a maximum value. ${\boldsymbol{\propto}}^*(T)=S_k$ - $S_{k+1}=Z$

 \therefore Z is a integer. Hence, every cycle graph is accepting Range labeling.

∴ Any cycle graph is Range graph.



 $(S_k, S_{k+1}).$

 $\propto^*(T) = S_{k+1} - S_k = Z$

 \therefore Z is an integer.

Figure 2

Remark 2:

Range value of C_5 = Maximum edge value of (C_5)-Minimum edge value of (C_5)

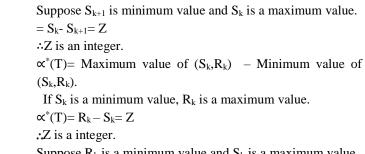
15

Range value of C_6 = Maximum edge value of (C_6)-Minimum edge value of (C_6)

RV(C₆) =20-2 =18.

Theorem 3.A sun graph S_z is a Range graph. **Proof:**

Let G = (S, T) be a graph. Let S₁, S₂, S₃,,S_z is a vertices of cycle S_z and r₁,r₂,...,r_z is a end vertices of every edge fixed to S₁, S₂, S₃,...,S_z. If α :S \rightarrow {1,3,6,10,15,21,28..., (n²+n)/2} & α_1 : R \rightarrow {1,3,6,10,15,21,28..., (n²+n)/2}.



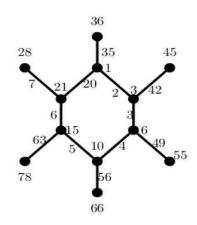
Suppose R_k is a minimum value and S_k is a maximum value. $\alpha^*(T){=}\;S_k{-}R_k{=}\;Z$

 $\propto^*(T)$ = Maximum value of (S_k, S_{k+1}) – Minimum value of

If S_k is a minimum value and S_{k+1} is a maximum value.

∴Z is an integer. ∴Any sun graph is a Range graph. Hence, Every Sun graph is accepting Range labelling.

Example 3:



Remark 3:

Range value of S_6 = Maximum edge value of (S_6)-Minimum edge value of (S_6)

$$RV(S_6) = 63-2$$

=61.

Theorem 4. The double star graph $S_{m,n}$ is a Range graph. Proof:

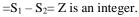
Let G = (S, T) be a double star graph. It is fixed by $S_{m,n}$ and S_1 , S_2 are two vertices in $S_{m,n}$ which are not pendent. Consider r_i 's are m pendent vertices to S_1 and r_j 's are n pendent vertices to S_2 .

Let α :S \rightarrow {1,3,6,10,15,21,28..., (n²+n)/2} and α_1 : R \rightarrow {1,3,6,10,15,21,28..., (n²+n)/2}

 $\alpha^*(T)$ = Maximum value of (S₁, S₂)– Minimum value of (S₁, S₂).

If S_2 is a minimum value and S_1 is a maximum value.

Example 4. Range labeling for star graph shown in the figure4



Suppose S_1 is a minimum value and S_2 is a maximum value. = $S_2 - S_1 = Z$ is a integer.

 $\alpha^*(T)$ = Maximum value of (S₁, r_i)– Minimum value of (S₁, r_i). If S₁ is a minimum value and r_i is a maximum value.

 $=r_i - S_1 = Z$ is an integer.

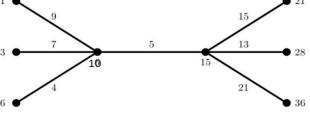
Suppose r_i is a minimum value and S_1 is a maximum value. = S_1 - r_i = Z is an integer.

 $\alpha^*(T)$ = Maximum value of (S₂, r_j) – Minimum value of (S₂, r_j).

If rj is a minimum value and S_2 is a maximum value. = $S_2 - r_i = Z$ is an integer.

Suppose S_2 is a minimum value and r_j is a maximum value. = $r_j - S_2$ = Z is an integer.

Hence, Every Double Star graph $S_{m,n}$ is accept range labeling. \therefore Any Double Star graph is a range graph.



Remark 4:

Range value of $S_{3,3}$ = Maximum edge value of $(S_{3,3})$ -Minimum edge value of $(S_{3,3})$ RV $(S_{3,3})$ =21-4

Theorem 5. The symmetrical tree is a Range graph. Proof:

Let G = (S, T) be a graph.

Let α : $S_1 \rightarrow \{1,3,6,10,15,21,28..., (n^2+n)/2\}, \alpha_1$: $S_{1i} \rightarrow \{1,3,6,10,15,21,28..., (n^2+n)/2\}$, for i=1,2 and α_2 : $S_{1ij} \rightarrow \{1,3,6,10,15,21,28..., (n^2+n)/2\}$, for i,j=1,2.

 $\alpha^*(T)$ = Maximum value of (S₁, S_{1i})– Minimum value of (S₁, S_{1i}).

If S_{1i} is a minimum value and S_1 is a maximum value.

 $=S_1 - S_{1i} = Z$ is an integer.

Suppose S_1 is a minimum value and S_{1i} is a maximum value.

 $= S_{1i} - S_1 = Z$ is an integer.

"Range Labeling for Some Graphs"

 $\alpha^*(T)$ = Maximum value of (S_{1i}, S_{1ij})– Minimum value of (S_{1i}, S_{1ij}).

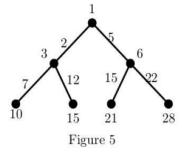
If S_{1ij} is a minimum value and S_{1i} is a maximum value. = $S_{1i} - S_{1ij} = Z$ is an integer.

Suppose $S_{1i} \mbox{is}$ a minimum value and $S_{1ij} \mbox{ is a maximum value.}$

= S_{1ij} - S_{1i}= Z is an integer.

Hence, every symmetrical tree is accepting range labeling. .: Any symmetrical tree is a range graph.

Example 5: Range labeling of symmetrical tree shown in the



Remark 5: Range value of symmetrical tree= Maximum edge value of symmetrical tree-Minimum edge value of symmetrical tree $RV(S_{1,2})=22-2$ =20.

CONCLUSION

In this paper we have discussed some graphs which accept Range labeling.Further investigation can be done to obtain

the condition at which some special graph accept range 'labeling.

REFERENCES

- 1. J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatories 18 (2011).
- 2. R. Jahir Hussain and J. Senthamizh Selvan "Prime edge magic labeling for some graphs" Advances and Application in Mathematical Science, Volume 20, issue 6, April 2021, 1093-1100.
- R. Jahir Hussain and J. Senthamizh Selvan "Coefficient of range labeling for some graphs" Journal of algebraic statistics, Volume 13, May 2022, P.3792-3805.
- Md. Moinin Al Aziz, Md Forhad Hussain "Graceful labeling of trees, methods and applications" 17th International Conference on Computer and Information Technology, 22-23 Dec 2014.
- Neelam Kumari and Seema Mehra "n-edge magic labeling for some graphs" International Journal of Innovative Research in Sciences, 10 Oct 2013.
- A. Rosa, On certain valuation of the vertices of a graph, Theory of Graphs (Interact Symposium, Rome, July 1966) Gordon and Breach, N, Y and Dynod Pairs (1967) 349-355.
- J. Senthamizh Selvan and R.Jahir Hussain "Some results on range labeling " Ratio Mathematica, Volume 46, March 2023, P.3792-3805.