

Cellular structure of wreath product \overline{S}_n using signed Brauer diagrams

Gayathri K. S. and M. Rajeshwari

Gayathri K. S., Scholar in Presidency University, Itagalpura, Rajanukunte, Yelahanka, Bengaluru, India-560 064,

Assistant Professor, A.E.S. National Degree College, Gauribidanur, India -561 208 M. Rajeshwari, Assistant Professor, Presidency University, Itagalpura, Rajanukunte, Yelahanka, Bengaluru, India-560 064

Abstract: In this paper we prove that the wreath product $\overrightarrow{S_n} = Z_2 \wr S_n$ with symmetric group S_n , is cellular for algebra $Z_2(x)$. We obtain simple cell modules which satisfy semi-simplicity conditions. We make use of method of iterated inflations for this purpose.

Keywords: cellular algebra, signed Brauer algebras, symmetric groups, wreath product.

1. Introduction:

The wreath product $\overrightarrow{S_n} = Z_2 \wr S_n$ is a semi-direct product of group algebras Z_2 and S_n whose elements are represented by using signed Brauer diagrams. A new class of algebras namely signed Brauer's algebras denoted by $\overrightarrow{B_n}(x)$ for a positive integer n and a complex number x was first introduced by Parvathi and Kamaraj [2]. $\overrightarrow{B_n}(x)$ contain the Brauer algebras $B_n(x)$ and the group algebras $\overrightarrow{CS_n}$ where $\overrightarrow{S_n} = Z_2 \wr S_n$ is a wreath product of Z_2 by S_n . In a graph, if every edge is labelled by either a plus sign or a minus sign then it is called the signed diagram. These edges are called signed edges. An edge labelled by plus sign is called a *positive* edge, denoted by $\downarrow (\rightarrow)$ and an edge labelled by negative sign is called a *negative* edge denoted by $\uparrow (\leftarrow)$. $\overrightarrow{B'_n}(x)$ is an associative algebra with a basis of signed diagrams and multiplication defined in it. Elements of $\overline{S'_n}$ are represented by the signed diagrams with no horizontal edges. Thus the structure of semi-simple algebras $\overrightarrow{CS_n}$ helps to understand the structure of signed Brauer algebra. $\overrightarrow{S_n}$ is a wreath product of group algebras Z_2^n and S_n where $Z_2^n = \{f | f : \{1, 2, ..., n\} \xrightarrow{\rightarrow} Z_2\}$ is an associative unital algebra and S_n is a symmetric group of order n. For $n \ge 2$, $\overrightarrow{S_n}$ becomes a subgroup of the symmetric group S_{2n} . Graham Leherer in [1] introduced the cellular algebra and since then it has its wide applications in many fields like the representation theory of wreath product algebra. R. Green [3, 4] has proved that for any cellular algebra A, the wreath product $A \wr S_n$ is cellular if it is an iterated inflation of tensor products of group algebras of symmetric groups. Konig and Xi [5, 6] were the first to introduce the concept of iterated inflation of tensor products and R. Green [4] has applied it for cellular algebras. Sharma R.P., Parmar R. and Kapil V.S. [7] have constructed a complete set of inequivalent irreducible $\overrightarrow{S_n}$ -modules and used it to understand cellular structure of $\overrightarrow{B_n}(x)$. T.Geetha and F.M. Goodman [8] have proved that the wreath product algebras $A \wr G_n$ and A-Brauer algebras $D_n(A)$ both are cyclic cellular algebras if A is a cyclic cellular algebra. In this paper we prove that wreath product algebra $S'_n = Z_2 \wr S_n$ cyclic cellular algebra provided the group algebra $Z_2^n(x)$ with symmetric group S_n is a cyclic cellular algebra. We obtain the simple modules and cell modules which satisfy a semi-simplicity condition for $\overrightarrow{S_n}$. We make use the method of iterated inflations to acheive this.

2. Priliminaries: For a field R of characteristic p, let $Z_2^n(x)$ be an unital associative

R-algebra whose dimension is finte. We consider the right modules of finite R- dimension

and denote \otimes_R by \otimes . For all $f, g \in \mathbb{Z}_2^n$, a self-inverse R-linear isomorphism $g \to g^*$ such that $(fg)^* = g^* f^*$ is an anti-involution on R-algebra \mathbb{Z}_2^n .

Definition 2.1.[7] Let n be a non-negative integer. An ordered sequence $a = (a_1, a_2, ..., a_s)$ such that $\sum_j a_j = n$ is called a composition or tuple of non-negative integers of order n. If two compositions $a = (a_1, a_2, ..., a_s)$ and $b = (b_1, b_2, ..., b_s)$ are such that $\sum_j a_j \ge \sum_j b_j$ for each j = 1, 2, ..., s, then $a \ge b$. Also if $a_j > b_j$, then a > b. Thus for $a_1 \ge a_2 \ge ... \ge a_s$, a composition of non-negative integers $a = (a_1, a_2, ..., a_s)$ represents a partition. In particular, when n = 0, there is only one partition ().

Definition 2.1. [3] Let R be commutative ring with unit 1 and $Z_2^n(x)$ be an associative,

unital R-algebra. Let Λ be a finite set with partial order \leq and for each $\lambda \in \Lambda$, let $M(\lambda)$ be a finite right indexing set. Then for all $(s,t) \in M(\lambda) \times M(\lambda)$, there is an element $C_{s,t}^{\lambda} \in \mathbb{Z}_2^n$ such that there is an injective map $(\lambda, s, t) \to C_{s,t}^{\lambda}$ and

$$C_{s,t}a = \sum_{p \in M(\lambda)} R(t,p) C_{s,p}^{\lambda} \dots \dots (1)$$

is a free R-basis for \mathbb{Z}_2^n . The action of \mathbb{Z}_2^n on the right cell module Δ^{λ} is

$$C_t a = \sum_{p \in M(\lambda)} R_a(t, p) C_p \dots \dots (2)$$

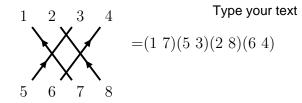
Definition 2.2. [7] The wreath product $\overrightarrow{S_n}$ can be redefined as

$$\overline{S'_n} = \{ \alpha \in S_{2n} | \text{ if } \alpha(r) = s \text{ then } \theta(r^*) = s^* \}$$

where for each $r \in (1, 2, ..., 2n), r^*$, is given by :
$$r^* = \begin{cases} r+n, & 1 \le r \le n \\ r-n, & n < r \le 2n \end{cases}$$

2.3. Elements of $\overrightarrow{S_4}$ using signed Brauer diagrams: Basis of the natural permutations of $\overrightarrow{S_4}$ are identified with the set of all signed Brauer diagrams consisting 2n dots. There will be two rows each having n dots and there are n signed edges connecting pairs of dots taking one from each row. This can be illustrated with an example:

For n = 4 and 2n = 8, the anti-involution element (17)(53)(28)(64) of \overrightarrow{S}_4 is identified with the signed Brauer diagram



Let $\sigma, \alpha \in \overrightarrow{S_n}$ be any two anti-involution elements. The conjugate of these two anti-involution elements is again an anti-involution element of $\overrightarrow{S_n}$.

For example: for n = 4, 2n = 8, if $\sigma = (12)(56)(34)(78), \alpha = (14)(58)(23)(67)$ are two antiinvolution elements of \overrightarrow{S}_4 then the conjugate $\sigma^{\alpha} = (13)(57)(24)(68)$ in \overrightarrow{S}_4 is again an antiinvolution element. This can be well understood through the signed Brauer diagrams:

$$\sigma = \bigvee_{5 \quad 6 \quad 7 \quad 8}^{1 \quad 2 \quad 3 \quad 4} = (1 \ 2)(5 \ 6)(3 \ 4)(7 \ 8)$$

$$\alpha = \bigvee_{5 \quad 6 \quad 7 \quad 8}^{1 \quad 2 \quad 3 \quad 4} = (1 \ 4)(5 \ 8)(2 \ 3)(6 \ 7) \ \sigma^{\alpha} = \bigvee_{5 \quad 6 \quad 7 \quad 8}^{1 \quad 2 \quad 3 \quad 4} = (1 \ 3)(5 \ 7)(2 \ 4)(6 \ 8)$$

3. Cellular algebras of wreath product $\overrightarrow{S_n} = Z_2 \wr S_n$: Let Z_2^n be a finite dimensional unital assocaitive *R*-algebra. Consider the *R*-vector space $Z_2^{\otimes n} \otimes$ RS_n , A pure tensor $\alpha \otimes f_1 \otimes f_2 \otimes ... \otimes f_n$ in this vector space be written as $(\alpha; f_1, f_2, ..., f_n)$. Then a well defined multiplication is given by

$$(\alpha; f_1, f_2, \dots, f_n)(\beta; g_1, g_2, \dots, g_n) = (\alpha\beta; f_{1\beta^{-1}}g_1, f_{2\beta^{-1}}g_2, \dots, f_{n\beta^{-1}}g_n)$$

for $\alpha, \beta \in S_n$ and $f_i, g_i \in \mathbb{Z}_2^n$. A pure tensor $(\alpha; f_1, f_2, ..., f_n)$ in $\overrightarrow{S_n}$ where $\alpha \in S_n$ and $f_i \in \mathbb{Z}_2^n$, can be represented by using signed Brauer diagram. For example: Take n = 6, Let $\alpha, \beta \in S_n$ such that

$$(\alpha; f_1, f_2, f_3, f_4, f_5, f_6) = (1, 3, 6, 10, 5, 8)(7, 9, 12, 4, 11, 2)$$

and

$$(\beta; g_1, g_2, g_3, g_4, g_5, g_6) = (1, 9, 4, 6,)(7, 3, 10, 12)$$

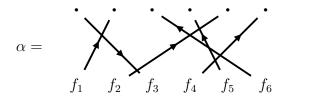
are the elements of $\overrightarrow{S_n}$. Then their product

> $(\alpha; f_1, f_2, f_3, f_4, f_5, f_6)(\beta; g_1, g_2, g_3, g_4, g_5, g_6)$ $=(\gamma; h_1, h_2, h_3, h_4, h_5, h_6)$ = (1, 10, 5, 8, 9, 7, 4, 11, 2, 3)(6, 12).

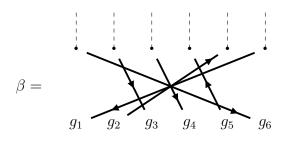
is an element in $\overrightarrow{S_n}$.

The same is illustrated using signed Brauer diagram where the product is obtained by resolving the two connected edges and the resulting element is an element of $\overrightarrow{S_n}$ given by

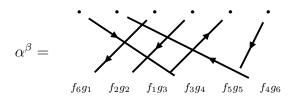
$$(\gamma; f_6g_1, f_2g_2, f_1g_3, f_3g_4, f_5g_5, f_4g_6) = (1, 10, 5, 8, 9, 7, 4, 11, 2, 3)(6, 12)$$



=(1, 3, 12, 4, 11, 2, 7, 9, 6, 10, 5, 8)



$$=(1, 6)(7, 12)(2, 3, 4, 11)(8, 9, 10, 5)$$



=(1, 4, 2, 12, 11, 3, 7, 10, 8, 6, 5, 9)

Anti-involution * of $\overrightarrow{S_n}$ is given by

$$(\alpha; f_1, ..., f_n)^* = (\alpha^{-1}; f^*_{(1)\alpha}, ..., f^*_{(n)\alpha})$$

where $\alpha \in S_n$ and $f_1, ..., f_n \in \mathbb{Z}_2^n$. The mapping of anti-involution elements takes place through the diagram by replacing each element f_i with its image f_i^* under the anti-involution on \mathbb{Z}_2^n , and then sliding each element f_i^* to the bottom of the row.

and then sliding each element f_i^* to the bottom of the row. **3.1.Construction of modules for** $\overrightarrow{S_n}^*$: Let μ be the *s*-part composition of $n, A_1, ..., A_s$ be Z_2^n modules and for each j = 1, ..., s let B_j be kS_{μ} module. $\overrightarrow{S_{\mu}} = Z_2^n \wr S_{\mu}$ be the subalgebra of $\overrightarrow{S_n} = Z_2^n \wr S_n$ spanned by all elements $(\alpha; f_1, ..., f_n)$ where $f_j \in Z_2^n$ and $\alpha \in S_{\mu}$. Then $A_1^{\otimes \mu_1} \otimes \ldots \otimes A_s^{\otimes \mu_s} \otimes B_1^{\otimes} \ldots \otimes B_s$ is $\overrightarrow{S_{\mu}}$ -module through the action

$$(a_1 \otimes \ldots \otimes a_n \otimes b_1 \otimes \ldots \otimes b_s)(\alpha; f_1, \ldots, f_n) = a_{(1)\alpha^{-1}} f_1 \otimes \ldots \otimes a_{(n)\alpha^{-1}} f_n \otimes b_1 \alpha_1 \otimes \ldots \otimes a_s \alpha_s,$$

where each $\alpha_i \in S_{\mu}$, are such that whenever S_{μ} is identified naturally with $S_{\mu_1} \times \ldots \times S_{\mu_s}$ and α is identified with $(\alpha_1, ..., \alpha_s)$. Therefore by induction, from $\overrightarrow{S_{\mu}} = Z_2^n \wr S_{\mu}$ to $\overrightarrow{S_n} = Z_2^n \wr S_n$, we get a module isomorphic to

$$A_1^{\otimes \mu_1} \otimes \ldots \otimes A_s^{\otimes \mu_s} \otimes B_1 \otimes \ldots \otimes B_s \otimes kR_{\mu},$$

where the basis of vector space kR_{μ} is R_{μ} which contains coset representations of minimal length. Let $\gamma, \delta \in R_{\mu}$, and $\theta, \alpha \in S_{\mu}$ such that $\gamma \alpha = \theta \delta$, then the action of $\overrightarrow{S_n}$ on kR_{μ} is given by

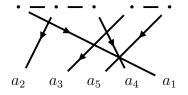
$$(a_1 \otimes \ldots \otimes a_s \otimes b_1 \otimes \ldots \otimes b_s \otimes \delta)(\alpha; f_1, \ldots, f_n) = a_{(1)\theta^{-1}} f_1 \delta \otimes \ldots \otimes a_{(n)\theta^{-1}} f_n \delta \otimes b_1 \theta_1 \otimes \ldots \otimes b_s \theta_s,$$

Let $\overline{A} = (A_1, ..., A_s)$ and $\overline{B} = (B_1, ..., B_s)$ be the tuples and the modules obtained be $\Theta^{\mu}(A, B)$. A pure tensor $a_1 \otimes ... a_n \otimes b_1 \otimes ... \otimes b_s \otimes \delta$ is taken as a pure tensor for $\delta \in R_{\mu}$. To obtain the signed Brauer diagram of this tensor, first label the edges in the lower row from left to right with the elements $a_{(1)\delta^{-1}}, ..., a_{(n)\delta^{-1}}$, then link them to the first μ_1 edges on the top row and label the linked edges with b_1 Similarly link the next μ_2 edges on the top row and label the linked edges as b_2 , and so on.

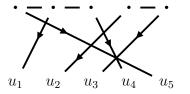
For example, take $n = 5, s = 2, \mu = (3, 2)$ and $\delta = (1, 5, 3, 4, 2)(6, 10, 8, 9, 7)$ of $\overrightarrow{S_5}$, then the tensor

$$a_1 \otimes a_2 \otimes a_3 \otimes a_4 \otimes a_5 \otimes b_1 \otimes b_2 \otimes \delta_1$$

can be represented by the diagram



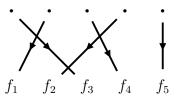
The elements of A_j are associated with the edges b_j and hence $\Theta^{\mu}(\overline{A}, \overline{B})$ can be identified with the k-vector space by diagram of some element in R_{μ} where we see that for each j = 1, 2, ..., s, $(\mu_1 + ... + \mu_{j-1} + 1)$ th to $(\mu_1 + ... + \mu_j)$ th edges are connected so as to form a single block which is labelled by an element of B_j . For $\delta \in R_{\mu}$, $b_1, ..., b_s$ labels in the top row and $u_1, ..., u_n$ labels in bottom row and the permutation diagram is $\delta \in R_{\mu}$. This represents pure tensor $u_{(1)\delta} \otimes \ldots \otimes u_{(n)\delta} \otimes b_1 \otimes \ldots \otimes b_s \otimes \delta$. Set of these elements span $\Theta^{\mu}(A, B)$ but not linearly independent. The diagram



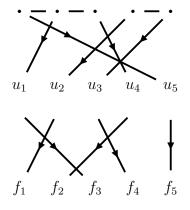
represents the pure tensor

 $u_2 \otimes u_3 \otimes u_5 \otimes u_4 \otimes u_1 \times b_1 \otimes b_2 \otimes (1, 5, 3, 4, 2)(6, 10, 8, 9, 7)$

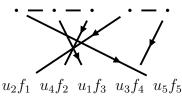
Consider another element $((1, 3, 4, 2)(6, 8, 9, 7); f_1, f_2, f_3, f_4, f_5)$ of $\overrightarrow{S_{10}} = Z_2 \wr S_5$,



Action of element of $\overrightarrow{S_{10}}$ on the element of $\Theta^{\mu}(\overline{A}, \overline{B})$ is calculated as in the diagram



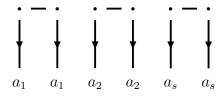
After this action, the element of $\overrightarrow{S_{10}}$ from this diagram is (1, 5, 4)(6, 10, 9)(2, 3).



This element is the product of elements from S_{μ} and R_{μ} .

That is (1, 5, 3, 4, 2)(6, 10, 8, 9, 7) = (1, 5, 4)(2, 3).(6, 10, 9)(7, 8) where $(1, 5, 4)(2, 3) \in S_{\mu}$ and $(6, 10, 9)(7, 8) \in R_{\mu}$.

Proposition 3.2. If $A_1, ..., A_s$ are Z_2^n – modules, and $B_1, ..., B_s$ are kS_{μ} –modules, then for any composition μ which is s part of n with a_k and b_k as generators of A_k and B_k , $\Theta^{\mu}(\overline{A}, \overline{B})$ is a cyclic $\overrightarrow{S_n}$ – module. The signed Brauer diagram given by



generates $\Theta^{\mu}(\overline{A}, \overline{B})$.

Proof: Let us denote the diagram in the proposition D. For each $a \in S_{\mu}$, apply (a; j, ..., j)of $\overrightarrow{S_n}$ to replace each element b_k in D with an arbitrary element of B_k . For some $\delta \in R_{\mu}$, apply $(\delta; j, ..., j)$ to arrange the strings of the diagram D. Then replace each element a_k with an arbitrary element of A_k by applying an element $(e; f_1, ..., f_n)$. These diagrams span $\Theta^{\mu}(\overline{A}, \overline{B})$. This completes the proof.

Let Δ^{λ} be cell module of the cellular algebra \mathbb{Z}_2^n . Then for $\alpha \in S_n$,

$$\alpha_{\lambda}: C_{s,t}^{\lambda} + \overline{Z}_{2}^{\ n\lambda} \to C_{s}^{\lambda} \times (C_{t}^{\lambda})^{*}$$

determines a $Z_2^n - Z_2^n$ bi-module isomorphism from $Z_2^{n\lambda}/\overline{Z}_2^{n\lambda}$ to $\delta^{\lambda} \otimes_R (\Delta^{\lambda})^*$. For all $s, t, u, v \in M(\lambda)$, there exist R-valued bi-linear form $\langle . \rangle$ such that

$$C_{s,t}^{\lambda}C_{u,v}^{\lambda} \equiv \langle C_t^{\lambda}.C_u^{\lambda}\rangle C_{s,v}^{\lambda} \bmod \overline{Z}_2^{n\lambda}$$

This bi-linear form plays an essential role in theory of cellular algebra **Lemma 3.3.** \mathbb{Z}_2^n be a cellular algebra with cell datum $(\Lambda, M, C, *)$. Let $\lambda \in \Lambda$ and $d \in \Delta^{\lambda}$ be non-zero. Then $a \to a \otimes d^*$ is a \mathbb{Z}_2^n -module isomorphism of Δ^{λ} onto $\Delta^{\lambda} \otimes d^* \subseteq \Delta^{\lambda} \otimes_R (\Delta^{\lambda})^*$. **Proof.** $(\Delta^{\lambda})^*$ is a free module and hence torsion free. Thus as Z_2^n -modules,

$$\Delta^{\lambda} \cong \Delta^{\lambda} \otimes_R Rd^* = \Delta^{\lambda} \otimes d^*.$$

hence $x \to x \otimes d^*$ is an isomorphism.

Definition 3.4.[8] A cellular algebra is said to be cyclic cellular if every cell module of \mathbb{Z}_2^n is cyclic.

Lemma 3.5. If \mathbb{Z}_2^n is a cellular algebra with cell datum $(\Lambda, M, C, *)$ then following are equivalent.

(i) Z_2^n is cellular.

(ii) For each $\lambda \in \Lambda$, there exists an element $a_{\lambda} \in \mathbb{Z}_2^{n\lambda}$ such that

(a)
$$a_{\lambda} \equiv a_{\lambda}^* \mod \overline{Z}_2^{n\lambda}$$

(b) $Z_2^{n\lambda} = Z_2^n a_{\lambda} Z_2^n + \overline{Z}_2$
(c) $(Z_2^n a_{\lambda} + \overline{Z}_2^{n\lambda}) / \overline{Z}_2^{n\lambda} \cong \Delta^{\lambda}$, as Z_2 -modules.

Proof. Suppose that Z_2^n is cyclic cellular. For each $\lambda \in \Lambda$, let δ^{λ} be the generator of the cell module Δ^{λ} . Let $a_{\lambda} \in Z_2^{n\lambda}$ be any lifting of $\alpha_{\lambda}^{-1}(\delta^{\lambda} \otimes (\delta^{\lambda})^*)$. Then $(\delta^{\lambda} \otimes (\delta^{\lambda})^*)^* = (\delta^{\lambda} \otimes (\delta^{\lambda})^*)$ implies 2(a) is true. $Z_2^n(\delta^{\lambda} \otimes (\delta^{\lambda})^*)Z_2^n = (\Delta^{\lambda} \otimes_R (\Delta^{\lambda})^*)$ implies 2(b) is true. We obtain Z_2^n -module isomorphism $za_{\lambda} + \overline{Z}_2^{n\lambda} \to z\delta^{\lambda \otimes (\delta^{\lambda})^*}$, by restricting α_{λ} . By lemma 3.3., $x \otimes (\delta^{\lambda})^* \to x$ is an Z_2^n -module isomorphism from $\Delta^{\lambda} \otimes (\delta^{\lambda})^*$ onto Δ^{λ} . By composing these

two isomorphisms we get $za_{\lambda} + \overline{Z}_{2}^{n\lambda} \to z\delta^{\lambda}$ such that $(Z_{2}^{n}a_{\lambda} + \overline{Z}_{2}^{n\lambda})/\overline{Z}_{2}^{n\lambda} \cong \Delta^{\lambda}$. This proves 2(c).

Conversely, if (2) holds, then in particular 2(c) implies that each cell module is cyclic. Hence Z_2^n is cellular.

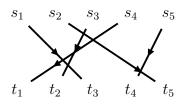
4. The iterated inflation structure of $\overrightarrow{S_n} = Z_2 \wr S_n$

As stated by Konig and Xi in [5], prove that Brauer algebra is cellular by exhibiting a structure called iterated inflation. Special cases can be found in the papers of Graham and Lehrer[1]. R.Green[3] has applied iterated inflations to show that the wreath product $A \wr S_n$ is cellular for any cellular algebra A by showing it as an iterated inflation of tensor products of group algebras of symmetric group.

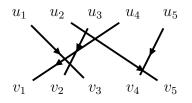
Let Z_2 be a cellular algebra with cell datum $(\Lambda, M, C, *)$ where * denotes the anti involution. Let $|\Lambda| = s$, and $\lambda_1, ..., \lambda_s$ be the elements of Λ such that $\lambda_i > \lambda_j$ for all i < j. Thus the numbering is in compatible with partial ordering on Λ . Let Δ^{λ} be the right cell module for every $\lambda \in \Lambda$. We shall write the elements of cellular basis $C_{s,t}^{\lambda}$ as $C_{s,t}$. Then the basis of $\overrightarrow{S_n} = Z_2 \wr S_n$ consists the elements of the form $(\alpha; C_{s_1,t_1}, ..., C_{s_n,t_n})$ for $\alpha \in S_n$ and C_{s_k,t_k} is some element in the basis of Z_2 . We shall denote this basis as P. The elements of P are represented by the diagrams

 $C_{s_1,t} \ C_{s_2,t} \ C_{s_3,t} \ C_{s_4,t} \ C_{s_5,t_5}$

This can be represented as



Thus the elements P can be represented as



This diagram represents the element

 $((1,3,2,5,4)(6,8,7,10,9); C_{u_4v_1}, C_{u_3v_2}, C_{u_1v_3}, C_{u_5v_4}, C_{u_2v_5}) \in \overrightarrow{S_5} = Z_2 \wr S_5.$

where $u_l, v_m \in M(\lambda)$ for some $\lambda \in \Lambda$. For each $l \in \{1, ..., s\}$, let μ_l be the number of elements u_l in $M(\lambda)$ such that there exists a composition $\mu = \mu_1, ..., \mu_s$ of n for any such diagram. We call it *layer index* of the diagram and also the element which it represents in P. Let kP be the kspan of all elements P with layer index μ , and I(n, s) be the set of all s-part composition of n with non-negative integer entries. Thus $\overrightarrow{S_n} = Z_2 \wr S_n = \bigoplus_{\mu \in I(n,s)} kP_{\mu}$. For layer index μ , the tuple $(u_1, ..., u_n)$ of n elements of $\sqcup_{\lambda \in \Lambda} M(\lambda)$ denotes the half diagram such that it has exactly μ_k elements of $M(\lambda_k)$ for each k. Let U_{μ} be the set of all half diagram of type μ . Then there exists a unique element $\epsilon \in R_{\mu}$ such that $(u_{(1)\epsilon}, ..., u_{(n)\epsilon})$ lies in the set $M(\lambda_1)^{\mu_1} \times ... \times M(\lambda_s)^{\mu_s}$. We call this ϵ the *shape* of the half diagram $(u_1, ..., u_n)$.

Let $\alpha \in S_n$ be a permutation such that u_k is connected to $v_{(k)\alpha}$. Then there is an element

 $(\alpha; C_{u_{(1)}\alpha^{-1}, v_1}, ..., C_{u_{(n)}\alpha^{-1}, v_n})$

in $\overrightarrow{S_n}$ which has a layer index μ . This element can be split into three parts namely the half diagrams $(u_1, ..., u_n)$ of top rows and $(v_1, ..., v_n)$ of bottom rows of type μ and the element $(\beta_1, ..., \beta_s)$ of the group $S_{\mu_1} \times ... \times S_{\mu_s}$ where $\mu_k \in S_{\mu_k}$. This β_k records how the elements of $M(\lambda_k)$ on the top row is connected to the elements of $M(\lambda_k)$ in the bottom row. If ϵ, δ are the shapes of $(u_1, ..., u_n)$ and $(v_1, ..., v_n)$ respectively and β is the image of $(\beta_1, ..., \beta_s)$ under the natural identification of $S_{\mu_1} \times ... \times S_{\mu_s}$ with Young subgroup S_{μ} of S_n . Then $\beta = \epsilon^{-1}\beta\delta$. We now take B_{μ} to be the k-vector space with basis b_{μ} . Then the above decomposition has a k-linear bijection

$$B_{\mu} \otimes kS_{\mu} \otimes B_{\mu} \to kZ_2^n - \mu$$

given by the mapping

$$(u_1,...,u_n)\otimes\beta\otimes(v_1,...,v_n)$$

to

$$(\epsilon^{-1}\beta\delta; C_{u_{(1)}\epsilon^{-1}\beta\delta, v_1}, ..., C_{u_{(n)}\epsilon^{-1}\beta\delta, v_n})$$

where ϵ is the shape of $(u_1, ..., u_n)$ and δ is the shape of $(v_1, ..., v_n)$. Thus we have a decomposition $\overrightarrow{S_n} = \bigoplus_{\mu \in I_{(n,s)}} B_\mu \otimes k S_\mu \otimes B_\mu$, and this decomposition will allow us to exhibit the desired iterated inflation structure.

Now, we need ordering of $I_{(n,s)}$. If $(\mu_1, ..., \mu_s)$ and $\gamma_1, ..., \gamma_s$ are elements of $I_{(n,s)}$, then define $\mu \succeq_{\Lambda} \gamma$ such that

$$\sum \mu_k \ge \sum \gamma_k$$

where $\lambda_k \geq \lambda_l$ for each k. This is called the partial Λ -dominance order.

Lemma.4.1. Suppose that we have $a_1, ..., a_s, b_1, ..., b_s \in \{1, ..., s\}$ such that $\lambda_{a_i} \ge \lambda_{b_i}$ for each i in the poset Λ and let $\mu = (\mu_1, ..., \mu_s)$ and $\gamma = (\gamma_1, ..., \gamma_s)$ so that $\mu, \gamma \in I_{(n,s)}$. Then $\mu \ge_{\Lambda} \gamma$ and if one of the inequalities $\lambda_{a_i} \ge \lambda_{b_i}$ is strict, then $\mu \triangleright_{\Lambda} \gamma$. **Proof.** For each k, $\lambda \ge \lambda$ implies

Proof: For each $k, \lambda_k \ge \lambda_l$ implies

$$\sum \mu_k \ge \sum \gamma_k$$

where

$$\sum \mu_k = |\{i : \lambda_{a_i} \ge \lambda_l\}|,$$
$$\sum \gamma_k = |\{i : \lambda_{b_i} \ge \lambda_l\}|.$$

But

$$\{i: \lambda_{a_i} \ge \lambda_l\} \subset \{i: \lambda_{b_i} \ge \lambda_l\} \text{ for } \lambda_{a_i} \ge \lambda_{b_i}.$$

Thus if there is one strict inequality $\lambda_{a_i} > \lambda_{b_i}$, then we get $\mu \neq \gamma$ and hence $\mu \triangleright_{\Lambda} \gamma$. **Proposition 4.2.** Let $\mu \in I_{(n,s)}$, and $u = (u_1, ...,)u_n, v = (v_1, ..., v_n) \in B_{\mu}$. Let $\beta_1, ..., \beta_s \in S_{\mu}$

be such that the element of basis of Z_2 corresponding to the pure tensor $u \otimes \beta \otimes v$ has a layer index μ . Also, let $f = (\alpha; f_1, ..., f_n)$ be a pure tensor in $\overrightarrow{S_n} = Z_2 \wr S_n$. Then $(u \otimes \beta \otimes v) f \cong$ $u \otimes \beta \phi_{\mu}(v, f) \otimes \psi_{\mu}(v, f)$ modulo elements of basis of Z_2 whose layer index is strictly less than μ , where $\phi_{\mu}(v, f) \in S_{\mu}$ and $\psi_{\mu}(v, f) \in B_{\mu}$ are independent of u and β .

Proof. Let $\epsilon, \delta \in B_{\mu}$ be the shapes of u and v respectively, so that $u \otimes \beta \otimes v$ corresponds to the element

$$(\epsilon^{-1}\beta\delta; C_{u_{(1)}}\epsilon^{-1}\beta\delta, v_1, ..., C_{u_{(n)}}\epsilon^{-1}\beta\delta, v_n}).$$

Then

$$(u \otimes \beta \otimes v)(\alpha; f_1, ..., f_n) = (\epsilon^{-1}\beta\delta; C_{[u_{(1)}(\epsilon^{-1}\beta\delta)^{-1}, v_1]}, ..., C_{[u_{(n)}(\epsilon^{-1}\beta\delta^{-1}, v_n]}) = (\epsilon^{-1}\beta\delta\alpha; C_{[u_{(1)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, v_1]f_1}, ..., C_{[u_{(n)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, v_n]f_n})$$

For k = 1, ..., n, let $s_k \in \{1, ..., s\}$ be such that $u_{(k)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, v_{(k)\alpha^{-1}} \in M(\lambda_{s_k})$. Then from (1),

$$C_{[u_{(k)}(\epsilon^{-1}\beta\delta\alpha)^{-1},v_{(k)\alpha^{-1}}]f_{k}} \equiv \sum_{p \in M(\lambda)} R_{f_{k}}(v_{(k)\alpha^{-1}},p_{k}) C_{[u_{(k)}(\epsilon^{-1}\beta\delta\alpha)^{-1},p_{k}]}$$

modulo cellular basis elements of lower cell index. Using this we get $(u \otimes \beta \otimes v)(\alpha; f_1, ..., f_n) \equiv$ $\sum_{p_1} \cdots \sum_{p_n} (\prod_{k=1}^n R_{f_k}(v_{(k)\alpha^{-1}}, p_k))(\epsilon^{-1}\beta\delta\alpha; C_{[u_{(1)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, p_1]}, ..., C_{[u_{(n)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, p_n]})....(*)$ modulo elements of the basis of Z_2 of the form

$$\left(\epsilon^{-1}\beta\delta\alpha; C_{s_1,t_1}^{\lambda_{t_1}}, \dots, C_{s_n,t_n}^{\lambda_{t_n}}\right) \dots (**)$$

where for each $k \lambda_{s_k} \geq \lambda_{t_k}$ and for atleast one k the the inequality is strict. Let $\gamma = (\gamma_1, ..., \gamma_s)$ be the layer index of (**). By lemma 4.1. we have $\mu \triangleright_{\Lambda} \gamma$, so that $(u \otimes \beta \otimes v)(\alpha; f_1, ..., f_n)$ is congruent (*) modulo elements of lower layer index.

Now, p_k lies in the same set $M(\lambda_{s_k})$ as $v_{(k)\alpha^{-1}}$, and from this we see that the shape of $(p_1, ..., p_n)$ is the unique element ψ of B_{μ} such that $\delta \alpha = \phi \psi$ for $\phi \in S_{\mu}$. Thus in (*) we have $(\epsilon^{-1}\beta\delta\alpha; C_{[u_{(1)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, p_1]}, ..., C_{[u_{(n)}(\epsilon^{-1}\beta\delta\alpha)^{-1}, p_n]})$

 $= (\epsilon^{-1}\beta\phi\psi; C_{[u_{(1)}(\epsilon^{-1}\beta\phi\psi)^{-1}, p_1]}, ..., C_{[u_{(n)}(\epsilon^{-1}\beta\phi\psi)^{-1}, p_n]}).$

which corresponds to the pure tensor $u \otimes \beta \phi \otimes (p_1, ..., p_n)$ and hence (*) is equal to

$$u \otimes \beta \phi \otimes (\sum_{p_1} \cdots \sum_{p_n} (\prod_{k=1}^n R_{f_k}(v_{(k)\alpha^{-1}}, p_k))(p_1, ..., p_n)).$$

Thus, by setting $\phi_{\mu}(v, f)$ to be the unique element ϕ of S_{μ} so that $\delta \alpha = \phi \psi$ for $\psi \in B_{\mu}$ and $\psi_{\mu}(v, f)$ to be

$$(\prod_{k=1}^{n} R_{f_k}(v_{(k)\alpha^{-1}}, p_k))(p_1, ..., p_n))$$

Further we observe that $(u \otimes \beta \otimes v)(\alpha; f_1, ..., f_n) \equiv u \otimes \beta \phi_\mu(v, f) \otimes \psi_\mu(v, f)$ modulo lower layers whose values depend only on v and f as required. \Box

Theorem 4.3. Let Z_2 be the cellular algebra with anti involution * and poset Λ of cell indices. Let B_n^s be the set of all multi partitions of n of length s with the partial order : if $(a_1, ..., a_s), (b_1, ..., b_s) \in B_n^s$, then $(a_1, ..., a_s) \ge (b_1, ..., b_s)$ implies $(|a_1|, ..., |a_s|) \ge_{\Lambda} (|b_1|, ..., |b_s|)$ or that $|a_k| = |b_k|$ and $a_k \le b_k$ for each k. Then $\overline{S_n} = Z_2 \wr S_n$ is a cellular algebra for $\alpha \in S_n$ and $f_1, ..., f_n \in Z_2^n$ by

$$(\alpha; f_1, ..., f_n)^* = (\alpha^{-1}; f^*{}_{(1)\alpha}, ..., f^*{}_{(n)\alpha}).$$

5. The cell modules and simple modules of the wreath product $\overrightarrow{S_n}$.

We know that cell modules $\Delta \lambda_j$ are indexed by the cell indices $\lambda_1, ..., \lambda_s$. These are indexed by length s multipartitions of n. Let $\eta_1, ..., \eta_s$ be such a multipartition and μ the composition $(|\eta_1|, ..., |\eta_s|)$, such that $\mu_j = \eta_j$.

 $\Delta^{(\eta_1,\ldots,\eta_s)}$ as a k- vector space may be identified with

$$S^{\eta_1} \otimes \cdots \otimes S^{\eta_s} \otimes V_{\mu},$$

Let $(\theta_1, ..., \theta_n) \in \Lambda$ such that

$$(\theta_1, ..., \theta_n) = (\lambda_1, ..., \lambda_1(\mu_1 times), ..., \lambda_s, ..., \lambda_s(\mu_s times))$$

Let $(X_1, ..., X_n)$ be half diagram in B_{μ} . Then its shape is the unique element $\delta \in R_{\mu}$ such that it lies in $M(\theta_1 \delta^{-1}) \times \cdots \otimes M(\theta_n \delta^{-1})$. Hence

$$B_{\mu} = \sqcup_{\delta \in B_{\mu}} M(\theta_1 \delta^{-1}) \times \cdots \times M(\theta_n \delta^{-1}).$$

Therefore the half diagram $(X_1, ..., X_n)$ is identified with the pure tensor $C_{X_1 \otimes \cdots \otimes C_{X_n}}$. and obtain the natural identification of k-vector spaces

$$V_{\mu} = \bigoplus_{\delta \in B_{\mu}} \Delta^{(\theta_1 \delta^{-1})} \otimes \cdots \otimes \Delta^{(\theta_n \delta^{-1})}.$$

Further for $x_j \in S^{\eta_j}$ and $u_1 \otimes \cdots \otimes u_n$ is a pure tensor in V_{μ} the pure tensor of $\Delta^{(\eta_1,\ldots,\eta_s)}$ is

$$a_1 \otimes \cdots \otimes a_s \otimes u_1 \cdots \otimes u_n,$$

Then for $\phi_{\mu}(v, f) \in S_{\mu}$ it may be verified that the map taking the pure tensor

 $v_1 \otimes \cdots \otimes v_n \otimes b_1 \cdots \otimes b_s \otimes \theta$

in $\Theta^{\mu}((\Delta^{\lambda_1}, ..., \Delta^{\lambda_s}), (S^{\eta_1}, ..., S^{\eta_s}))$ where $\theta \in R_{\mu}$ to the pure tensor

$$b_1 \cdots \otimes b_s \otimes v_{(1)\theta^{-1}} \otimes \cdots \otimes v_{(n)\theta^{-1}}$$

in $\Delta^{(\eta_1,...,\eta_s)}$ is an isomorphism of $\overrightarrow{S_n}$ – modules. Thus by [3] we have the following remark, **Remark 5.1** The cell module $\Delta^{(\eta_1,...,\eta_s)}$ is isomorphic to the module $\Theta^{\mu}((\Delta^{\lambda_1},...,\Delta^{\lambda_s}),(S^{\eta_1},...,S^{\eta_s}))$

Proposition 5.2. Let $n_1, ..., n_s$ be non-negative integers. Let $B_{n_1} \times ... \times B_{n_s}$ be the poset of cell indices with the order $\lambda_i \geq \mu_i$ for all *i*. Then the group algebra $k(S_{n_1} \times ... \times S_{n_s})$ is a cellular algebra with respect to the mapping $(\alpha_1, ..., \alpha_s) \rightarrow (\alpha_1^{-1}, ..., \alpha_s^{-1})$ for all $\alpha_i \in S_{n_i}$ and cell module associated to $(\lambda_1, ..., \lambda_s)$ is $S^{\lambda_1} \otimes \cdots \otimes S^{\lambda_s}$ with the action

$$(x_1 \otimes \cdots \otimes x_s).(x_1 \alpha_1) \otimes \cdots (x_s \alpha_s)$$
 for $x_i \in S^{\lambda}$ and $\alpha_i \in S_{n_i}$.

The cell form is given on pure tensor by

$$\langle x_1 \otimes \cdots \otimes x_s, y_1 \otimes \cdots \otimes y_s \rangle = \langle x_1, y_1 \rangle \cdots \langle x_s, y_s \rangle$$

where each bilinear form on the right hand side is the appropriate cell form of S^{λ_i} . **Proposition 5.3.** From [3] we have that if Z_2 is a k-algebra with anti involution *, then

$$Z_2^n \cong \bigoplus_{\mu \in I} V_\mu \otimes B_\mu \otimes V_\mu$$

of Z^n_2 where I is the partially ordered set, each V_{μ} is a k-vector space and each B_{μ} is cellular algebra over k with respect to cell datum $(\Lambda_{\mu}, M_{\mu}, C, *)$. Hence Z_2^n can be identified with this direct sum of tensor products and $V_{\mu} \otimes B_{\mu} \otimes V_{\mu}$ as the μ -th layer of Z_2^n . Also for each $\mu \in I$ there is unique B_{μ} -valued k-bilinear form ϕ_{μ} on V_{μ} such that for any $u, v, x, y \in V_{\mu}$ and $b, c \in B_{\mu}$ we have

$$\phi_{\mu}(y,u) = \phi_{\mu}(u,y)^{*} \text{ and}$$
$$(x \otimes c \otimes y)(u \otimes b \otimes v) \equiv x \otimes c\phi_{\mu}(y,u)b \otimes v \mod H(<\mu).$$

where $H(<\mu) = \bigoplus_{\gamma < \mu} V_{\gamma} \otimes B_{\gamma} \otimes V_{\gamma}$ Further, for $(\mu, \lambda) \in \Lambda$, let $\Delta^{(\mu, \lambda)}$ denoted as Δ^{λ} be the right cell module of Z_2 so that for any $x, y \in V_{\mu}$ and $z, w \in \Delta^{\lambda}$, we have

$$\langle z \otimes x, w \otimes y \rangle = \langle z, w \phi_{\mu}(y, x) \rangle_{\lambda}$$

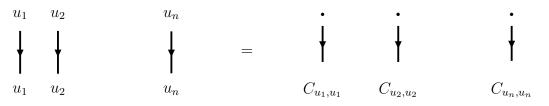
as the cell form.

Proposition 5.4. The wreath product $\overrightarrow{S_n} = Z_2 \wr S_n$ is cyclic cellular if Z_2^n is cyclic cellular.

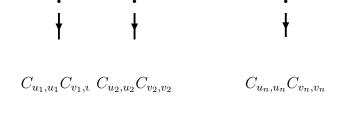
Proof. By Proposition 5.2., we understand that the multiplication within each layer of $\overrightarrow{S_n} = Z_2 \wr S_n$ is determined by a bilinear form ϕ_{μ} . Let $(u_1, ..., u_n), (v_1, ..., v_n)$ be the half diagram in V_{μ} , so that $u = C_{u_1} \otimes \cdots \otimes C_{u_n}$ and $v = C_{v_1} \otimes \cdots \otimes C_{v_n}$ are pure tensors V_{μ} . Then

$$(u \otimes e \otimes u)(v \otimes e \otimes v) \equiv u\phi_{\mu}(u, v) \otimes v.....(***)$$

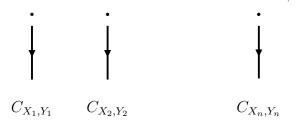
modulo lower layers. The element $(u \otimes e \otimes u)$ of $\overrightarrow{S_n} = Z_2 \wr S_n$ is represented by the diagram



Exactly the similar way can represent the element $v \otimes e \otimes v$ by a diagram. The product $(u \otimes e \otimes u)(v \otimes e \otimes v)$ will now be represented as



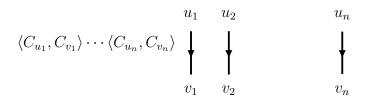
For i = 1, ..., n, and $u_i \in M(\lambda_{s_i})$, we can expand the products $C_{u_i, u_i} C_{v_i, v_i}$ in terms of the linear combination of cellular basis elements $C_{X,Y}^{\lambda_{t_i}}$ where $\lambda_{t_i} \leq \lambda_{s_i}$ we get the diagrams the form



By Lemma 4.1. it follows that all such diagrams have layer index utmost μ and the element v_i do not lie in $M(\lambda_{s_i})$ implies that all the diagrams in the expansion have layer index strictly less than μ . ALso in by (***), in such a case we see that $\phi_{\mu}(u, v) = 0$. Suppose that for each i, v_i lies in $M(\lambda_{s_i})$, then as stated in [3], since

$$C_{u_i,u_i}C_{v_i,v_i} \equiv \langle C_{u_i}, C_{v_i} \rangle C_{u_i,v_i}$$

modulo cellular basis elements of lower index, where $\langle . \rangle$ is the suitable cell form. By lemma 4.1. (****) is congruent modulo lower layers to



representing the element $\langle C_{u_1}, C_{v_1} \rangle \cdots \langle C_{u_n}, C_{v_n} \rangle (u \otimes e \otimes v)$. Therefore in this case

$$\phi(u,v) = \langle C_{u_1}, C_{v_1} \rangle \cdots \langle C_{u_n}, C_{v_n} \rangle.$$

From proposition 5.2., if for $z, w \in \Delta^{\lambda}$, $z_1 \otimes \cdots \otimes z_s \otimes u_1 \otimes \cdots \otimes u_n$ and $w_1 \otimes \cdots \otimes w_s \otimes v_1 \otimes \cdots \otimes v_n$ are pure tensors in the cell module $\Delta^{\eta_1, \dots, \eta_s}$ then

$$\langle z_1 \otimes \cdots \otimes z_s \otimes u_1 \otimes \cdots \otimes u_n, w_1 \otimes \cdots \otimes w_s \otimes v_1 \otimes \cdots \otimes v_n \rangle = \langle z_1, u_1 \rangle \cdots \langle z_s, u_s \rangle \langle w_1, v_1 \rangle \cdots \langle w_1, v_1 \rangle$$

If u_i and v_i lie in the same Δ^{λ} , for each i = 1, ..., n,

$$\langle z_1 \otimes \cdots \otimes z_s \otimes u_1 \otimes \cdots \otimes u_n, w_1 \otimes \cdots \otimes w_s \otimes v_1 \otimes \cdots \otimes v_n \rangle = 0$$

otherwise.

By remark 5.1.,

..(****)

$$\Delta^{(\eta_1,\dots,\eta_s)} \cong S^{\eta_1} \otimes \dots \otimes S^{\eta_s} \otimes V_{\mu} \cong \bigoplus_{\theta \in R_{\mu}} S^{\eta_1} \otimes \dots \otimes S^{\eta_s} \otimes \Delta^{(\theta_1 \delta_{-1})} \otimes \Delta^{(\theta_n \delta^{-1})}$$

For $\theta \in R_{\mu}$ let $\Gamma_{\theta} = S^{\eta_1} \otimes \cdots \otimes S^{\eta_s} \otimes \Delta^{(\theta_1 \delta_{-1})} \otimes \Delta^{(\theta_n \delta^{-1})}$. If θ, β be distinct elements of R_{μ} and $u \in \Gamma_{\theta}$ and $v \in \Gamma_{\beta}$ then (u, v) = 0. This implies that if R_{θ} is the radical restriction of Γ_{θ} of $\langle . \rangle$, then the radical cell of $\Delta^{(\eta_1, \dots, \eta_s)}$ is $\bigoplus_{\theta \in R_{\mu}} R_{\theta}$.

Thus we have the following results on the simple and cell modules $P^{(\eta_1,\ldots,\eta_s)}$ and semi-simplicity of $\overrightarrow{S_n} = Z_2 \wr S_n$.

Theorem 5.4. The set $(\hat{B}_n^s)_0$ consists of exactly those set of elements $(\eta_1, ..., \eta_s) \in \hat{B}_n^s$ such that $\eta_j = ()$ whenever $\lambda_j \in \Lambda \Lambda_0$ so that the cell radical of $\Delta^{(\eta_1, ..., \eta_s)}$ is a proper submodule of $\Delta^{(\eta_1, ..., \eta_s)}$ and $(\hat{B}_n^s)_0$ indexes the simple modules of $\vec{S}_n = Z_2 \wr S_n$.

Theorem 5.5. If $(\eta_1, ..., \eta_s) \in (\hat{B}_n^s)_0$ then from proposition 4.3., there exists an isomorphism of k-vector spaces

$$P^{(\eta_1,\ldots,\eta_s)} \cong Q^{\eta_1} \otimes \cdots \otimes Q^{\eta_s} \otimes P^{\theta_1 \delta^{-1}} \otimes \cdots \otimes P^{\theta_n \delta^{-1}}.$$

Theorem 5.6. If $(\eta_1, ..., \eta_s) \in (\hat{B}_n^s)_0$ then $P^{(\eta_1, ..., \eta_s)} \cong \Delta^{(\eta_1, ..., \eta_s)}$ if and only if $Q^{\eta_j} = S^{\eta_j}$ for j = 1, ..., s and whenever $\eta_j \neq (), P^{\lambda_j} \cong \Delta^{\lambda_j}$.

Theorem 5.7. [3] If Z_2 is a cellular algebra, then $\overrightarrow{S_n} = Z_2 \wr S_n$ is semisimple if and only if both Z_2 and kS_n are semisimple.

References

- [1] J. J. Graham, G.I.Leherer, Cellular algebras, Invent.Math. 123(1)(1996)1-34.
- [2] Parvathi, M., Kamaraj, M.: Signed Brauer's Algebras. Communications In Algebra 26(3), 839-855 (1998).
- [3] R. Green. *Cellular structure of wreath product algebras* Journal of Pure and Applied Algebra 224(2020)819-835.
- [4] R. Green., R. Paget., Iterated inflations of cellular algebras, J. Algebra 493(2018) 341-345.
- [5] S.Konig, C. C. Xi., A charecteristic free approach to Brauer algebras, Transation of the American Mathematical Society, 353(4) 1489-1505.
- S.Konig, C. C. Xi., Cellular algebras: inflations and Morita equivalences, J. Lond. Math. Soc. 60(2)(1980) 173-204.
- [7] Sharma, R.P., Parmar, R., Kapil, V.S., Irreducible $\overrightarrow{S_n}$ Modules and a Cellular Structure of The Signed Brauer Algebras. Southeast Asian Bull. Math(2011) 35: 497-522.
- [8] T.Geetha., F. M. Goodman., Cellularity of wreath product algebras and A-Brauer algebras. Journal of Algebra 389 (2013)151-190.