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Abstract: In this paper we prove that the wreath product
−→
Sn = Z2 ≀Sn with symmetric group

Sn, is cellular for algebra Z2(x). We obtain simple cell modules which satisfy semi-simplicity
conditions. We make use of method of iterated inflations for this purpose.

Keywords: cellular algebra, signed Brauer algebras, symmetric groups, wreath product.
1. Introduction:

The wreath product
−→
Sn = Z2 ≀ Sn is a semi-direct product of group algebras Z2 and Sn whose

elements are represented by using signed Brauer diagrams. A new class of algebras namely

signed Brauer’s algebras denoted by
−→
Bn(x) for a positive integer n and a complex number x

was first introduced by Parvathi and Kamaraj [2].
−→
Bn(x) contain the Brauer algebras Bn(x) and

the group algebras C
−→
Sn where

−→
Sn = Z2 ≀Sn is a wreath product of Z2 by Sn. In a graph, if every

edge is labelled by either a plus sign or a minus sign then it is called the signed diagram. These
edges are called signed edges. An edge labelled by plus sign is called a positive edge, denoted by

↓ (→) and an edge labelled by negative sign is called a negative edge denoted by ↑ (←).
−→
Bn(x) is

an associative algebra with a basis of signed diagrams and multiplication defined in it. Elements

of
−→
Sn are represented by the signed diagrams with no horizontal edges. Thus the structure of

semi-simple algebras C
−→
Sn helps to understand the structure of signed Brauer algebra.

−→
Sn is

a wreath product of group algebras Zn
2 and Sn where Zn

2 = {f |f : {1, 2, ..., n} → Z2} is an

associative unital algebra and Sn is a symmetric group of order n. For n ≥ 2,
−→
Sn becomes a

subgroup of the symmetric group S2n. Graham Leherer in [1] introduced the cellular algebra and
since then it has its wide applications in many fields like the representation theory of wreath
product algebra. R. Green[3, 4] has proved that for any cellular algebra A, the wreath product
A ≀ Sn is cellular if it is an iterated inflation of tensor products of group algebras of symmetric
groups. Konig and Xi [5, 6] were the first to introduce the concept of iterated inflation of
tensor products and R. Green [4] has applied it for cellular algebras. Sharma R.P., Parmar R.

and Kapil V.S. [7] have constructed a complete set of inequivalent irreducible
−→
Sn−modules and

used it to understand cellular structure of
−→
Bn(x). T.Geetha and F.M. Goodman [8] have proved

that the wreath product algebras A ≀Gn and A−Brauer algebras Dn(A) both are cyclic cellular
algebras if A is a cyclic cellular algebra. In this paper we prove that wreath product algebra−→
Sn = Z2 ≀ Sn cyclic cellular algebra provided the group algebra Zn

2 (x) with symmetric group
Sn is a cyclic cellular algebra. We obtain the simple modules and cell modules which satisfy a−→

Sn. We make use the method of iterated inflations to acheive this.
2. Priliminaries: For a field R of characteristic p, let Zn

2 (x) be an unital associative

R−algebra whose dimension is finte. We consider the right modules of finite R− dimension
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and denote ⊗R by ⊗. For all f, g ∈ Zn
2 , a self-inverse R−linear isomorphism g → g∗ such that

(fg)∗ = g∗f ∗ is an anti-involution on R−algebra Zn
2 .

Definition 2.1.[7] Let n be a non-negative integer. An ordered sequence a = (a1, a2, ..., as)
such that

∑
j aj = n is called a composition or tuple of non-negative integers of order n. If

two compositions a = (a1, a2, ..., as) and b = (b1, b2, ..., bs) are such that
∑

j aj ≥
∑

j bj for each
j = 1, 2, ..., s, then a⊵ b. Also if aj > bj, then a▷ b. Thus for a1 ≥ a2 ≥ ... ≥ as, a composition
of non-negative integers a = (a1, a2, ..., as) represents a partition. In particular, when n = 0,
there is only one partition ().
Definition 2.1. [3] Let R be commutative ring with unit 1 and Zn

2 (x) be an associative,

unital R−algebra. Let Λ be a finite set with partial order ≤ and for each λ ∈ Λ, let M(λ) be a
finite right indexing set. Then for all (s, t) ∈M(λ)×M(λ), there is an element Cλ

s,t ∈ Zn
2 such

that there is an injective map (λ, s, t)→ Cλ
s,t and

Cs,ta =
∑

p∈M(λ)R(t, p)C
λ
s,p ......(1)

is a free R−basis for Zn
2 . The action of Zn

2 on the right cell module ∆λ is

Cta =
∑

p∈M(λ)Ra(t, p)Cp.......(2)

Definition 2.2. [7] The wreath product
−→
Sn can be redefined as

−→
Sn={α ∈ S2n| if α(r) = s then θ(r∗) = s∗}

where for each r ∈ (1, 2, ..., 2n), r∗, is given by :

r∗ =

{
r + n, 1 ≤ r ≤ n

r − n, n < r ≤ 2n

2.3. Elements of
−→
S4 using signed Brauer diagrams: Basis of the natural permutations of−→

S4 are identified with the set of all signed Brauer diagrams consisting 2n dots. There will be
two rows each having n dots and there are n signed edges connecting pairs of dots taking one
from each row. This can be illustrated with an example:

For n = 4 and 2n = 8, the anti-involution element (17)(53)(28)(64) of
−→
S4 is identified with the

signed Brauer diagram

1

5

2

6

3

7

4

8

=(1 7)(5 3)(2 8)(6 4)

Let σ, α ∈
−→
Sn be any two anti-involution elements. The conjugate of these two anti-involution

elements is again an anti-involution element of
−→
Sn.

For example: for n = 4, 2n = 8, if σ = (12)(56)(34)(78), α = (14)(58)(23)(67) are two anti-

involution elements of
−→
S4 then the conjugate σα = (13)(57)(24)(68) in

−→
S4 is again an anti-

involution element. This can be well understood through the signed Brauer diagrams:
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σ =

1

5

2

6

3

7

4

8

=(1 2)(5 6)(3 4)(7 8)

α =

1

5

2

6

3

7

4

8

=(1 4)(5 8)(2 3)(6 7) σα =

1

5

2

6

3

7

4

8

=(1 3)(5 7)(2 4)(6 8)

3. Cellular algebras of wreath product
−→
Sn = Z2 ≀ Sn:

Let Zn
2 be a finite dimensional unital assocaitive R-algebra. Consider the R-vector space Z2

⊗n⊗
RSn, A pure tensor α ⊗ f1 ⊗ f2 ⊗ ... ⊗ fn in this vector space be written as (α; f1, f2, ..., fn).
Then a well defined multiplication is given by

(α; f1, f2, ..., fn)(β; g1, g2, ..., gn) = (αβ; f1β−1g1, f2β−1g2, ..., fnβ−1gn)

for α, β ∈ Sn and fi, gi ∈ Zn
2 . A pure tensor (α; f1, f2, ..., fn) in

−→
Sn where α ∈ Sn and fi ∈ Zn

2 ,
can be represented by using signed Brauer diagram.
For example:Take n = 6, Let α, β ∈ Sn such that

(α; f1, f2, f3, f4, f5, f6) = (1, 3, 6, 10, 5, 8)(7, 9, 12, 4, 11, 2)

and

(β; g1, g2, g3, g4, g5, g6) = (1, 9, 4, 6, )(7, 3, 10, 12)

are the elements of
−→
Sn.

Then their product

(α; f1, f2, f3, f4, f5, f6)(β; g1, g2, g3, g4, g5, g6)

=(γ;h1, h2, h3, h4, h5, h6)

= (1, 10, 5, 8, 9, 7, 4, 11, 2, 3)(6, 12).

is an element in
−→
Sn.

The same is illustrated using signed Brauer diagram where the product is obtained by resolving

the two connected edges and the resulting element is an element of
−→
Sn given by

(γ; f6g1, f2g2, f1g3, f3g4, f5g5, f4g6) = (1, 10, 5, 8, 9, 7, 4, 11, 2, 3)(6, 12).
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α =

.

f1

.

f2

.

f3

.

f4

.

f5

.

f6

=(1, 3, 12, 4, 11, 2, 7, 9, 6, 10, 5, 8)

β =

.

g1

.

g2

.

g3

.

g4

.

g5

.

g6

=(1, 6)(7, 12)(2, 3, 4, 11)(8, 9, 10, 5)

αβ =

.

f6g1

.

f2g2

.

f1g3

.

f3g4

.

f5g5

.

f4g6

=(1, 4, 2, 12, 11, 3, 7, 10, 8, 6, 5, 9)

Anti-involution * of
−→
Sn is given by

(α; f1, ..., fn)
∗ = (α−1; f ∗

(1)α, ..., f
∗
(n)α)

where α ∈ Sn and f1, ..., fn ∈ Zn
2 . The mapping of anti-involution elements takes place through

the diagram by replacing each element fi with its image f ∗
i under the anti-involution on Zn

2 ,
and then sliding each element f ∗

i to the bottom of the row.

3.1.Construction of modules for
−→
Sn : Let µ be the s-part composition of n, A1, ..., As be

Zn
2 modules and for each j = 1, ..., s let Bj be kSµ module.

−→
Sµ = Zn

2 ≀ Sµ be the subalgebra

of
−→
Sn = Zn

2 ≀ Sn spanned by all elements (α; f1, ..., fn) where fj ∈ Zn
2 and α ∈ Sµ. Then
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A⊗µ1
1 ⊗ ...⊗ A⊗µs

s ⊗B⊗
1 ...⊗Bs is

−→
Sµ-module through the action

(a1 ⊗ ...⊗ an ⊗ b1 ⊗ ...⊗ bs)(α; f1, ..., fn) = a(1)α−1f1 ⊗ ...⊗ a(n)α−1fn ⊗ b1α1 ⊗ ...⊗s αs,

where each αi ∈ Sµ, are such that whenever Sµ is identified naturally with Sµ1 × ...× Sµs and
α is identified with (α1, ..., αs).

Therefore by induction, from
−→
Sµ = Zn

2 ≀ Sµ to
−→
Sn = Zn

2 ≀ Sn, we get a module isomorphic to

A⊗µ1
1 ⊗ ...⊗ A⊗µs

s ⊗B1 ⊗ ...⊗Bs ⊗ kRµ,

where the basis of vector space kRµ is Rµ which contains coset representations of minimal

length. Let γ, δ ∈ Rµ, and θ, α ∈ Sµ such that γα = θδ, then the action of
−→
Sn on kRµ is given

by

(a1 ⊗ ...⊗ as ⊗ b1 ⊗ ...⊗ bs ⊗ δ)(α; f1, ..., fn) = a(1)θ−1f1δ ⊗ ...⊗ a(n)θ−1fnδ ⊗ b1θ1 ⊗ ...⊗ bsθs,

Let A = (A1, ..., As) and B = (B1, ..., Bs) be the tuples and the modules obtained be Θµ(A,B).
A pure tensor a1 ⊗ ...an ⊗ b1 ⊗ ...⊗ bs ⊗ δ is taken as a pure tensor for δ ∈ Rµ. To obtain the
signed Brauer diagram of this tensor, first label the edges in the lower row from left to right
with the elements a(1)δ−1 , ...a(n)δ−1 , then link them to the first µ1 edges on the top row and label
the linked edges with b1 Similarly link the next µ2 edges on the top row and label the linked
edges as b2, and so on.

For example, take n = 5, s = 2, µ = (3, 2) and δ = (1, 5, 3, 4, 2)(6, 10, 8, 9, 7) of
−→
S5, then the

tensor

a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ⊗ b1 ⊗ b2 ⊗ δ

can be represented by the diagram
.

a2

.

a3

.

a5

.

a4

.

a1

The elements of Aj are associated with the edges bj and hence Θµ(A,B) can be identified with
the k-vector space by diagram of some element in Rµ where we see that for each j = 1, 2, ...s,
(µ1 + ... + µj−1 + 1)th to (µ1 + ... + µj)th edges are connected so as to form a single block
which is labelled by an element of Bj. For δ ∈ Rµ, b1, ..., bs labels in the top row and u1, ..., un
labels in bottom row and the permutation diagram is δ ∈ Rµ. This represents pure tensor
u(1)δ ⊗ ... ⊗ u(n)δ ⊗ b1 ⊗ ... ⊗ bs ⊗ δ. Set of these elements span Θµ(A,B) but not linearly
independent. The diagram

.

u1

.

u2

.

u3

.

u4

.

u5

represents the pure tensor

u2 ⊗ u3 ⊗ u5 ⊗ u4 ⊗ u1 × b1 ⊗ b2 ⊗ (1, 5, 3, 4, 2)(6, 10, 8, 9, 7)
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Consider another element ((1, 3, 4, 2)(6, 8, 9, 7); f1, f2, f3, f4, f5) of
−→
S10 = Z2 ≀ S5,

.

f1

.

f2

.

f3

.

f4

.

f5

Action of element of
−→
S10 on the element of Θµ(A,B) is calculated as in the diagram

.

u1

.

u2

.

u3

.

u4

.

u5

f1 f2 f3 f4 f5

After this action, the element of
−→
S10 from this diagram is (1, 5, 4)(6, 10, 9)(2, 3).

.

u2f1

.

u4f2

.

u1f3

.

u3f4

.

u5f5

This element is the product of elements from Sµ and Rµ.
That is (1, 5, 3, 4, 2)(6, 10, 8, 9, 7) = (1, 5, 4)(2, 3).(6, 10, 9)(7, 8) where (1, 5, 4)(2, 3) ∈ Sµ and
(6, 10, 9)(7, 8) ∈ Rµ.
Proposition 3.2. If A1, ..., As are Zn

2− modules, and B1, ..., Bs are kSµ−modules, then for

any composition µ which is s part of n with ak and bk as generators of Ak and Bk, Θ
µ(A,B) is

a cyclic
−→
Sn− module. The signed Brauer diagram given by
.

a1

.

a1

.

a2

.

a2

.

as

.

as

generates Θµ(A,B).
Proof: Let us denote the diagram in the proposition D . For each a ∈ Sµ, apply (a; j, ..., j)

of
−→
Sn to replace each element bk in D with an arbitrary element of Bk. For some δ ∈ Rµ,

apply (δ; j, ..., j) to arrange the strings of the diagram D. Then replace each element ak with an
arbitrary element of Ak by applying an element (e; f1, ..., fn). These diagrams span Θµ(A,B).
This completes the proof.
Let ∆λ be cell module of the cellular algebra Zn

2 . Then for α ∈ Sn,

αλ : C
λ
s,t + Z2

nλ → Cλ
s × (Cλ

t )
∗

determines a Zn
2 −Zn

2 bi-module isomorphism from Zn
2
λ/Z2

nλ
to δλ⊗R (∆λ)∗. For all s, t, u, v ∈

M(λ), there exist R−valued bi-linear form ⟨.⟩ such that
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Cλ
s,tC

λ
u,v ≡ ⟨Cλ

t .C
λ
u⟩Cλ

s,v mod Z2
nλ
.

This bi-linear form plays an essential role in theory of cellular algebra
Lemma 3.3. Zn

2 be a cellular algebra with cell datum (Λ,M,C, ∗). Let λ ∈ Λ and d ∈ ∆λ be

non-zero. Then a→ a⊗ d∗ is a Zn
2−module isomorphism of ∆λ onto ∆λ ⊗ d∗ ⊆ ∆λ ⊗R (∆λ)∗.

Proof. (∆λ)∗ is a free module and hence torsion free. Thus as Zn
2−modules,

∆λ ∼= ∆λ ⊗R Rd∗ = ∆λ ⊗ d∗.

hence x→ x⊗ d∗ is an isomorphism.
Definition 3.4.[8] A cellular algebra is said to be cyclic cellular if every cell module of Zn

2 is

cyclic.
Lemma 3.5. If Zn

2 is a cellular algebra with cell datum (Λ,M,C, ∗) then following are

equivalent.

(i) Zn
2 is cellular.

(ii) For each λ ∈ Λ, there exists an element aλ ∈ Zn
2
λ such that

(a) aλ ≡ a∗λ mod Z
n

2

λ

(b) Zn
2
λ = Zn

2 aλZ
n
2 + Z2

(c) (Zn
2 aλ + Z

n

2

λ
)/Z

n

2

λ ∼= ∆λ, as Z2−modules.

Proof. Suppose that Zn
2 is cyclic cellular. For each λ ∈ Λ, let δλ be the generator of the cell

module ∆λ. Let aλ ∈ Zn
2
λ be any lifting of α−1

λ (δλ ⊗ (δλ)∗). Then (δλ ⊗ (δλ)∗)∗ = (δλ ⊗ (δλ)∗)
implies 2(a) is true. Zn

2 (δ
λ ⊗ (δλ)∗)Zn

2 = (∆λ ⊗R (∆λ)∗) implies 2(b) is true.

We obtain Zn
2−module isomorphism zaλ + Z

n

2

λ → zδλ⊗(δλ)∗ , by restricting αλ. By lemma 3.3.,
x ⊗ (δλ)∗ → x is an Zn

2−module isomorphism from ∆λ ⊗ (δλ)∗ onto ∆λ. By composing these

two isomorphisms we get zaλ + Z
n

2

λ → zδλ such that (Zn
2 aλ + Z

n

2

λ
)/Z

n

2

λ ∼= ∆λ. This proves
2(c).
Conversely, if (2) holds, then in particular 2(c) implies that each cell module is cyclic. Hence
Zn

2 is cellular.

4.The iterated inflation structure of
−→
Sn = Z2 ≀ Sn

As stated by Konig and Xi in [5], prove that Brauer algebra is cellular by exhibiting a structure
called iterated inflation. Special cases can be found in the papers of Graham and Lehrer[1].
R.Green[3] has applied iterated inflations to show that the wreath product A ≀ Sn is cellular
for any cellular algebra A by showing it as an iterated inflation of tensor products of group
algebras of symmetric group.
Let Z2 be a cellular algebra with cell datum (Λ,M,C, ∗) where * denotes the anti involution. Let
|Λ| = s, and λ1, ..., λs be the elelments of Λ such that λi > λj for all i < j. Thus the numbering
is in compatible with partial ordering on Λ. Let ∆λ be the right cell module for every λ ∈ Λ.

We shall write the elements of cellular basis Cλ
s,t as Cs,t. Then the basis of

−→
Sn = Z2 ≀Sn consists

the elements of the form (α;Cs1,t1 , ..., Csn,tn) for α ∈ Sn and Csk,tk is some element in the basis
of Z2. We shall denote this basis as P. The elements of P are represented by the diagrams

.

Cs1,t1

.

Cs2,t2

.

Cs3,t3

.

Cs4,t4

.

Cs5,t5
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This can be represented as

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

Thus the elements P can be represented as

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

This diagram represents the element

((1, 3, 2, 5, 4)(6, 8, 7, 10, 9);Cu4v1 , Cu3v2 , Cu1v3 , Cu5v4 , Cu2v5) ∈
−→
S5 = Z2 ≀ S5.

where ul, vm ∈M(λ) for some λ ∈ Λ. For each l ∈ {1, ..., s}, let µl be the number of elements ul
in M(λ) such that there exists a composition µ = µ1, ..., µs of n for any such diagram. We call
it layer index of the diagram and also the element which it represents in P. Let kP be the k−
span of all elementsof P with layer index µ, and I(n, s) be the set of all s−part composition of

n with non-negative integer entries. Thus
−→
Sn = Z2 ≀ Sn =

⊕
µ∈I(n,s) kPµ. For layer index µ, the

tuple (u1, ..., un) of n elements of ⊔λ∈ΛM(λ) denotes the half diagram such that it has exactly
µk elements of M(λk) for each k. Let Uµ be the set of all half diagram of type µ. Then there
exists a unique element ϵ ∈ Rµ such that (u(1)ϵ, ..., u(n)ϵ) lies in the set M(λ1)

µ1 × ...×M(λs)
µs .

We call this ϵ the shape of the half diagram (u1, ..., un).
Let α ∈ Sn be a permutation such that uk is connected to v(k)α. Then there is an element

(α;Cu(1)α−1,v1 , ..., Cu(n)α
−1,vn)

in
−→
Sn which has a layer index µ. This element can be split into three parts namely the half

diagrams (u1, ..., un) of top rows and (v1, ..., vn) of bottom rows of type µ and the element
(β1, ..., βs) of the group Sµ1 × ... × Sµs where µk ∈ Sµk . This βk records how the elements of
M(λk) on the top row is connected to the elements of M(λk) in the bottom row. If ϵ, δ are
the shapes of (u1, ..., un) and (v1, ..., vn) respctively and β is the image of (β1, ..., βs) under the
natural identification of Sµ1× ...×Sµs with Young subgroup Sµ of Sn. Then β = ϵ−1βδ.We now
take Bµ to be the k−vector space with basis bµ. Then the above decomposition has a k−linear
bijection

Bµ ⊗ kSµ ⊗Bµ → kZn
2 − µ

given by the mapping

(u1, ..., un)⊗ β ⊗ (v1, ..., vn),

to

(ϵ−1βδ;Cu(1)ϵ−1βδ,v1 , ..., Cu(n)ϵ
−1βδ,vn)

where ϵ is the shape of (u1, ..., un) and δ is the shape of (v1, ..., vn). Thus we have a decomposition
−→
Sn =

⊕
µ∈I(n,s)

Bµ⊗kSµ⊗Bµ, and this decomposition will allow us to exhibit the desired iterated

inflation structure.
Now, we need ordering of I(n,s). If (µ1, ..., µs) and γ1, ..., γs are elements of I(n,s), then define
µ⊵Λ γ such that
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∑
µk ≥

∑
γk

where λk ≥ λl for each k. This is called the partial Λ−dominance order.
Lemma.4.1. Suppose that we have a1, ..., as, b1, ..., bs ∈ {1, ..., s} such that λai ≥ λbi for each

i in the poset Λ and let µ = (µ1, ..., µs) and γ = (γ1, ..., γs) so that µ, γ ∈ I(n,s). Then µ ⊵Λ γ
and if one of the inequalities λai ≥ λbi is strict, then µ▷Λ γ.
Proof: For each k, λk ≥ λl implies ∑

µk ≥
∑
γk

where ∑
µk = |{i : λai ≥ λl}|,∑
γk = |{i : λbi ≥ λl}|.

But

{i : λai ≥ λl} ⊂ {i : λbi ≥ λl} for λai ≥ λbi .

Thus if there is one strict inequality λai > λbi , then we get µ ̸= γ and hence µ▷Λ γ.
Proposition 4.2. Let µ ∈ I(n,s), and u = (u1, ..., )un, v = (v1, ..., vn) ∈ Bµ. Let β1, ..., βs ∈ Sµ
be such that the element of basis of Z2 corresponding to the pure tensor u⊗ β ⊗ v has a layer

index µ. Also, let f = (α; f1, ..., fn) be a pure tensor in
−→
Sn = Z2 ≀ Sn. Then (u ⊗ β ⊗ v).f ∼=

u⊗ βϕµ(v, f)⊗ ψµ(v, f) modulo elements of basis of Z2 whose layer index is strictly less than
µ, where ϕµ(v, f) ∈ Sµ and ψµ(v, f) ∈ Bµ are independent of u and β.
Proof. Let ϵ, δ ∈ Bµ be the shapes of u and v respectively, so that u⊗ β ⊗ v corresponds to

the element

(ϵ−1βδ;Cu(1)ϵ−1βδ,v1 , ..., Cu(n)ϵ
−1βδ,vn).

Then

(u⊗ β ⊗ v)(α; f1, ..., fn)
=(ϵ−1βδ;C[u(1)(ϵ

−1βδ)−1,v1], ..., C[u(n)(ϵ
−1βδ−1,vn])

=(ϵ−1βδα;C[u(1)(ϵ
−1βδα)−1,v1]f1 , ..., C[u(n)(ϵ

−1βδα)−1,vn]fn).

For k = 1, ..., n, let sk ∈ {1, ...s} be such that u(k)(ϵ
−1βδα)−1, v(k)α−1 ∈M(λsk). Then from (1),

C[u(k)(ϵ
−1βδα)−1,v(k)α−1 ]fk ≡

∑
p∈M(λ)Rfk(v(k)α−1 , pk)C[u(k)(ϵ

−1βδα)−1 , pk]

modulo cellular basis elements of lower cell index. Using this we get
(u⊗ β ⊗ v)(α; f1, ..., fn) ≡∑

p1
· · ·

∑
pn
(
∏

k=1
nRfk(v(k)α−1 , pk))(ϵ

−1βδα;C[u(1)(ϵ
−1βδα)−1,p1], ..., C[u(n)(ϵ

−1βδα)−1,pn]).....(*)
modulo elements of the basis of Z2 of the form

(ϵ−1βδα;Cs1,t1
λt1 , ..., Csn,tn

λtn ) ......(**)
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where for each k λsk ≥ λtk and for atleast one k the the inequality is strict. Let γ = (γ1, ..., γs)be
the layer index of (**). By lemma 4.1. we have µ ▷Λ γ, so that (u ⊗ β ⊗ v)(α; f1, ..., fn) is
congruent (*) modulo elements of lower layer index.
Now, pk lies in the same set M(λsk) as v(k)α−1 , and from this we see that the shape of
(p1, ..., pn) is the unique element ψ of Bµ such that δα = ϕψ for ϕ ∈ Sµ. Thus in (*) we
have (ϵ−1βδα;C[u(1)(ϵ

−1βδα)−1,p1], ..., C[u(n)(ϵ
−1βδα)−1,pn])

= (ϵ−1βϕψ;C[u(1)(ϵ
−1βϕψ)−1,p1], ..., C[u(n)(ϵ

−1βϕψ)−1,pn]).
which corresponds to the pure tensor u⊗ βϕ⊗ (p1, ..., pn) and hence (*) is equal to

u⊗ βϕ⊗ (
∑

p1
· · ·

∑
pn
(
∏

k=1
nRfk(v(k)α−1 , pk))(p1, ..., pn)).

Thus, by setting ϕµ(v, f) to be the unique element ϕ of Sµ so that δα = ϕψ for ψ ∈ Bµ and
ψµ(v, f) to be

(
∏

k=1
nRfk(v(k)α−1 , pk))(p1, ..., pn)).

Further we observe that (u⊗β⊗v)(α; f1, ..., fn) ≡ u⊗βϕµ(v, f)⊗ψµ(v, f) modulo lower layers
whose values depend only on v and f as required. □
Theorem 4.3. Let Z2 be the cellular algebra with anti involution ∗ and poset Λ of cell
indices. Let Bn

s be the set of all multi partitions of n of length s with the partial order : if
(a1, ..., as), (b1, ..., bs) ∈ Bn

s, then (a1, ..., as) ≥ (b1, ..., bs) implies (|a1|, ..., |as|) ⊵Λ (|b1|, ..., |bs|)
or that |ak| = |bk| and ak⊴ bk for each k. Then

−→
Sn = Z2 ≀Sn is a cellular algebra for α ∈ Sn and

f1, ..., fn ∈ Zn
2 by

(α; f1, ..., fn)
∗ = (α−1; f ∗

(1)α, ..., f
∗
(n)α).

5. The cell modules and simple modules of the wreath product
−→
Sn.

We know that cell modules ∆λj are indexed by the cell indices λ1, ..., λs. These are indexed
by length s multipartitions of n. Let η1, ..., ηs be such a multipartition and µ the composition
(|η1|, .., |ηs|), such that µj = ηj.
∆(η1,...,ηs) as a k− vector space may be identified with

Sη1 ⊗ · · · ⊗ Sηs ⊗ Vµ,

Let (θ1, ..., θn) ∈ Λ such that

(θ1, ..., θn) = (λ1, ..., λ1(µ1times), ..., λs, ..., λs(µstimes))

Let (X1, ..., Xn) be half diagram in Bµ. Then its shape is the unique element δ ∈ Rµ such that
it lies in M(θ1δ

−1)× · · · ⊗M(θnδ
−1). Hence

Bµ = ⊔δ∈BµM(θ1δ
−1)× · · · ×M(θnδ

−1).

Therefore the half diagram (X1, ..., Xn) is identified with thepure tensor CX1⊗···⊗CXn
. and obtain

the natural identification of k−vector spaces

Vµ =
⊕

δ∈Bµ
∆(θ1δ−1) ⊗ · · · ⊗∆(θnδ−1).

Further for xj ∈ Sηj and u1 ⊗ · · · ⊗ un is a pure tensor in Vµ the pure tensor of ∆(η1,...,ηs) is

a1 ⊗ · · · ⊗ as ⊗ u1 · · · ⊗ un,

Then for ϕµ(v, f) ∈ Sµ it may be verified that the map taking the pure tensor

v1 ⊗ · · · ⊗ vn ⊗ b1 · · · ⊗ bs ⊗ θ
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in Θµ((∆λ1 , ...,∆λs), (Sη1 , ..., Sηs)) where θ ∈ Rµ to the pure tensor

b1 · · · ⊗ bs ⊗ v(1)θ−1 ⊗ · · · ⊗ v(n)θ−1

in ∆(η1,...,ηs) is an isomorphism of
−→
Sn− modules. Thus by [3] we have the following remark,

Remark 5.1 The cell module ∆(η1,...,ηs) is isomorphic to the module Θµ((∆λ1 , ...,∆λs), (Sη1 , ..., Sηs))

Proposition 5.2. Let n1, ..., ns be non-negative integers. Let Bn1 × ... × Bns be the poset of
cell indices with the order λi ≥ µi for all i. Then the group algebra k(Sn1 × ... × Sns) is a
cellular algebra with respect to the mapping (α1, ..., αs) → (α−1

1 , ..., α−1
s ) for all αi ∈ Sni

and
cell module associated to (λ1, ..., λs) is S

λ1 ⊗ · · · ⊗ Sλs with the action

(x1 ⊗ · · · ⊗ xs).(x1α1)⊗ · · · (xsαs) for xi ∈ Sλ and αi ∈ Sni
.

The cell form is given on pure tensor by

⟨x1 ⊗ · · · ⊗ xs, y1 ⊗ · · · ⊗ ys⟩ = ⟨x1, y1⟩ · · · ⟨xs, ys⟩

where each bilinear form on the right hand side is the appropriate cell form of Sλi .
Proposition 5.3. From [3] we have that if Z2is a k−algebra with anti involution ∗, then

Zn
2
∼=

⊕
µ∈I Vµ ⊗Bµ ⊗ Vµ

of Zn
2 where I is the partially ordered set, each Vµ is a k−vector space and each Bµ is cellular

algebra over k with respect to cell datum (Λµ,Mµ, C, ∗). Hence Zn
2 can be identified with this

direct sum of tensor products and Vµ ⊗ Bµ ⊗ Vµ as the µ−th layer of Zn
2 . Also for each µ ∈ I

there is unique Bµ−valued k−bilinear form ϕµ on Vµ such that for any u, v, x, y ∈ Vµ and
b, c ∈ Bµ we have

ϕµ(y, u) = ϕµ(u, y)
∗ and

(x⊗ c⊗ y)(u⊗ b⊗ v) ≡ x⊗ cϕµ(y, u)b⊗ v mod H(< µ).

where H(< µ) =
⊕

γ<µ Vγ ⊗Bγ ⊗ Vγ
Further, for (µ, λ) ∈ Λ, let ∆(µ,λ) denoted as ∆λ be the right cell module of Z2 so that for any
x, y ∈ Vµ and z, w ∈ ∆λ, we have

⟨z ⊗ x,w ⊗ y⟩ = ⟨z, wϕµ(y, x)⟩λ

as the cell form.
Proposition 5.4. The wreath product

−→
Sn = Z2 ≀ Sn is cyclic cellular if Zn

2 is cyclic cellular.

Proof. By Proposition 5.2., we understand that the multiplication within each layer of
−→
Sn = Z2 ≀Sn is determined by a bilinear formϕµ. Let (u1, ..., un), (v1, ..., vn) be the half diagram
in Vµ, so that u = Cu1 ⊗ · · · ⊗ Cun and v = Cv1 ⊗ · · · ⊗ Cvn are pure tensorsin Vµ. Then

(u⊗ e⊗ u)(v ⊗ e⊗ v) ≡ uϕµ(u, v)⊗ v......(***)

modulo lower layers. The element (u ⊗ e ⊗ u) of
−→
Sn = Z2 ≀ Sn is represented by the diagram

u1

u1

u2

u2

un

un

=

.

Cu1,u1

.

Cu2,u2

.

Cun,un
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Exactly the similar way can represent the element v ⊗ e ⊗ v by a diagram. The product
(u⊗ e⊗ u)(v ⊗ e⊗ v) will now be represented as

.

Cu1,u1Cv1,v1

.

Cu2,u2Cv2,v2

.

Cun,unCvn,vn

..(****)
For i = 1, ..., n, and ui ∈M(λsi), we can expand the products Cui,uiCvi,vi in terms of the linear

combination of cellular basis elements C
λti
X,Y where λti ≤ λsi we get the diagramvof the form

.

CX1,Y1

.

CX2,Y2

.

CXn,Yn

By Lemma 4.1. it follows that all such diagrams have layer index utmost µ and the element
vi do not lie in M(λsi) implies that all the diagrams in the expansion have layer index strictly
less than µ. ALso in by (***), in such a case we see that ϕµ(u, v) = 0.
Suppose that for each i, vi lies in M(λsi), then as stated in [3], since

Cui,uiCvi,vi ≡ ⟨Cui , Cvi⟩Cui,vi

modulo cellular basis elements of lower index, where ⟨.⟩ is the suitable cell form. By lemma
4.1. (****) is congruent modulo lower layers to

⟨Cu1 , Cv1⟩ · · · ⟨Cun , Cvn⟩

u1

v1

u2

v2

un

vn

representing the element ⟨Cu1 , Cv1⟩ · · · ⟨Cun , Cvn⟩(u⊗ e⊗ v). Therefore in this case

ϕ(u, v) = ⟨Cu1 , Cv1⟩ · · · ⟨Cun , Cvn⟩.

From proposition 5.2., if for z, w ∈ ∆λ, z1⊗· · ·⊗zs⊗u1⊗· · ·⊗un and w1⊗· · ·⊗ws⊗v1⊗· · ·⊗vn
are pure tensors in the cell module ∆η1,...,ηs then

⟨z1⊗· · ·⊗zs⊗u1⊗· · ·⊗un, w1⊗· · ·⊗ws⊗v1⊗· · ·⊗vn⟩ = ⟨z1, u1⟩ · · · ⟨zs, us⟩⟨w1, v1⟩ · · · ⟨w1, v1⟩

If ui and vi lie in the same ∆λ, for each i = 1, ..., n,

⟨z1 ⊗ · · · ⊗ zs ⊗ u1 ⊗ · · · ⊗ un, w1 ⊗ · · · ⊗ ws ⊗ v1 ⊗ · · · ⊗ vn⟩ = 0

otherwise.
By remark 5.1.,
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∆(η1,...,ηs) ∼= Sη1 ⊗ · · · ⊗ Sηs ⊗ Vµ ∼=
⊕

θ∈Rµ
Sη1 ⊗ · · · ⊗ Sηs ⊗∆(θ1δ−1) ⊗∆(θnδ−1)

For θ ∈ Rµ let Γθ = Sη1 ⊗ · · · ⊗ Sηs ⊗∆(θ1δ−1) ⊗∆(θnδ−1). If θ, β be distinct elements of Rµ and
u ∈ Γθ and v ∈ Γβ then (u, v) = 0. This implies that if Rθ is the radical restriction of Γθ of ⟨.⟩,
then the radical cell of ∆(η1,...,ηs) is

⊕
θ∈Rµ

Rθ.

Thus we have the following results on the simple and cell modules P (η1,...,ηs) and semi-simplicity

of
−→
Sn = Z2 ≀ Sn.

Theorem 5.4. The set (B̂s
n)0 consists of exactly those set of elements (η1, ..., ηs) ∈ B̂s

n such

that ηj = () whenever λj ∈ ΛΛ0 so that the cell radical of ∆(η1,...,ηs) is a proper submodule of

∆(η1,...,ηs) and (B̂s
n)0 indexes the simple modules of

−→
Sn = Z2 ≀ Sn.

Theorem 5.5. If (η1, ..., ηs) ∈ (B̂s
n)0 then from proposition 4.3., there exists an isomorphism

of k− vector spaces

P (η1,...,ηs) ∼= Qη1 ⊗ · · · ⊗Qηs ⊗ P θ1δ−1 ⊗ · · · ⊗ P θnδ−1
.

Theorem 5.6. If (η1, ..., ηs) ∈ (B̂s
n)0 then P (η1,...,ηs) ∼= ∆(η1,...,ηs) if and only if Qηj = Sηj for

j = 1, ..., s and whenever ηj ̸= (), P λj ∼= ∆λj .

Theorem 5.7. [3] If Z2 is a cellular algebra, then
−→
Sn = Z2 ≀ Sn is semisimple if and only if

both Z2 and kSn are semisimple.
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