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Abstract: In this paper we prove that the wreath product S, = Z5.5, with symmetric group
Sy, is cellular for algebra Zs(x). We obtain simple cell modules which satisfy semi-simplicity
conditions. We make use of method of iterated inflations for this purpose.
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1. Introduction:

The wreath product g,: = 7515, is a semi-direct product of group algebras Z, and S,, whose
elements are represented by using signed Brauer diagrams. A new class of algebras namely
signed Brauer’s algebras denoted by B,(x) for a positive integer n and a complex number x
was first introduced by Parvathi and Kamaraj [2]. B, (x) contain the Brauer algebras B, (x) and
the group algebras CS_’n> where §n> = 7515, is a wreath product of Z; by S,,. In a graph, if every
edge is labelled by either a plus sign or a minus sign then it is called the signed diagram. These
edges are called signed edges. An edge labelled by plus sign is called a positive edge, denoted by
1 (=) and an edge labelled by negative sign is called a negative edge denoted by 1 (+). B, (z) is
an associative algebra with a basis of signed diagrams and multiplication defined in it. Elements
of S, are represented by the signed diagrams with no horizontal edges. Thus the structur_e> of
semi-simple algebras C'S,, helps to understand the structure of signed Brauer algebra. S, is
a wreath product of group algebras Z3 and S,, where Z} = {f|f : {1,2,..,n} — Z5} is an
associative unital algebra and .S, is a symmetric group of order n. For n > 2, 677: becomes a
subgroup of the symmetric group Ss,. Graham Leherer in [I] introduced the cellular algebra and
since then it has its wide applications in many fields like the representation theory of wreath
product algebra. R. Green[3, 4] has proved that for any cellular algebra A, the wreath product
A S, is cellular if it is an iterated inflation of tensor products of group algebras of symmetric
groups. Konig and Xi [B, [6] were the first to introduce the concept of iterated inflation of
tensor products and R. Green [4] has applied it for cellular algebras. Sharma R.P., Parmar R.
and Kapil V.S. [7] have constructed a complete set of inequivalent irreducible 5—'>n—moduleS and
used it to understand cellular structure of ?n@) T.Geetha and F.M. Goodman [§] have proved
that the wreath product algebras A G,, and A—Brauer algebras D,,(A) both are cyclic cellular
aigebras if A is a cyclic cellular algebra. In this paper we prove that wreath product algebra
Sn = Z3 1S, cyclic cellular algebra provided the group algebra Z'(z) with symmetric group
Sy is a cyclic cellular algebra. We obtain the simple modules and cell modules which satisfy a
semi-simplicity condition for S,,. We make use the method of iterated inflations to acheive this.

2. Priliminaries: For a field R of characteristic p, let ZJ'(x) be an unital associative

R—algebra whose dimension is finte. We consider the right modules of finite R— dimension
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and denote ®p by ®. For all f,g € Z7, a self-inverse R—linear isomorphism g — ¢* such that
(fg)* = ¢g*f* is an anti-involution on R—algebra Z3.
Definition 2.1.[7] Let n be a non-negative integer. An ordered sequence a = (ay,as, ..., as)
such that ) ;a; = nis called a composition or tuple of non-negative integers of order n. If
two compositions a = (ay, as, ..., as) and b = (by, bs, ..., bs) are such that Zj a; > Zj b; for each
j=12,..s, then a®>b. Also if a; > b;, then a > b. Thus for a; > as > ... > a,, a composition
of non-negative integers a = (ay, ay, ..., as) represents a partition. In particular, when n = 0,
there is only one partition ().

Definition 2.1. [3] Let R be commutative ring with unit 1 and Z3(x) be an associative,

unital R—algebra. Let A be a finite set with partial order < and for each A € A, let M (\) be a
finite right indexing set. Then for all (s,¢) € M(X) x M(X), there is an element C?, € ZJ such
that there is an injective map (A, s,t) — C2, and

Cspa = ey B2, p)CY, - (1)

is a free R—basis for Z7. The action of ZJ on the right cell module A* is

Cta/ - ZPGM(A) Ra(t’p)Cp ....... (2)

%
Definition 2.2. [7] The wreath product S, can be redefined as

%

Sp={a € Sy, | if a(r) = s then 6(r*) = s*}
where for each r € (1,2, ...,2n), r*, is given by :
r+mn, 1<r<n

r—mn, n<r<?2n

*

r =

2. 3 Elements of S4 using signed Brauer diagrams: Basis of the natural permutations of
S4 are identified with the set of all signed Brauer diagrams consisting 2n dots. There will be
two rows each having n dots and there are n signed edges connecting pairs of dots taking one
from each row. This can be illustrated with an example:

For n =4 and 2n = 8, the anti-involution element (17)(53)(28)(64) of 5'4 is identified with the
signed Brauer diagram

1 9 3 4 Type your text
=(17)(53)(28)(6 4)

Let 0,0 € ST; be any two anti-involution elements. The conjugate of these two anti-involution
elements is again an anti-involution element of .S,,.

For example: for n = 4,2n = 8, if 0 = (12)(56)(34)(78),a = (14)(58)(23)(67) are two anti-
involution elements of §4 then the conjugate o® = (13)(57)(24)(68) in S, is again an anti-
involution element. This can be well understood through the signed Brauer diagrams:
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1 2 3 4

a:>< >< —(12)(5 6)(3 4)(7 8)

5 6 7 8
SERE L2 3 4

a= —(14)(58)(23)(67) 0> = ><>< —(13)(5 7)(2 4)(6 8)
576 7 8 5 6 7 8

3. Cellular algebras of wreath product ?n = Zy1S,:

Let Z% be a finite dimensional unital assocaitive R-algebra. Consider the R-vector space Zo,*"®
RS, A pure tensor o ® f; ® fo ® ... ® f, in this vector space be written as («; f1, f2, ..., fn)-
Then a well defined multiplication is given by

(CY; f17 f27 ) fn)(ﬁ;glag% agn) = (Oéﬁ, flﬂ*lghfZﬁ*nga "'7fn5*1gn>

%
for o, 5 € S, and f;, g; € ZF. A pure tensor («; fi, fa, ..., fn) in S, where a € S,, and f; € Z7,
can be represented by using signed Brauer diagram.
For example:Take n = 6, Let «, 8 € S, such that

(Oé; f17 f27 f37f47 f57 fﬁ) = (17 3767 107578)<7797 12747 117 2)
and

(85 91, 92, 93, 94, 95, 96) = (1,9,4,6,)(7,3,10,12)

_>
are the elements of S,,.
Then their product

(043 f1, fo, f3, fa, 15, fﬁ)(BS g1, 92, 93, 94, g5, 96)
:<77 h’l? h27 h37 h’47 h57 h6)

= (1,10,5,8,9,7,4,11,2,3)(6,12).

. .o
is an element in S,,.
The same is illustrated using signed Brauer diagram where the product is obtained by resolving

the two connected edges and the resulting element is an element of .S,, given by

(77 f6917 f2g27 flg?n f3g47 f5g57 f4gﬁ) = (17 107 57 87 97 77 47 117 27 3)(67 12)
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o= —=(1,3,12,4, 11,2, 7,9, 6, 10, 5, 8)

o e s fa fs  Jo

8= =(1, 6)(7, 12)(2, 3, 4, 11)(8, 9, 10, 5)

[ g2 gs 94 g5 e

of — / =(1, 4,2, 12, 11, 3, 7, 10, 8, 6, 5, 9)

fegr  fog2  figs  fsga  fs595  fage

%
Anti-involution * of S, is given by

(a; fla cey fn)* = (ail; f(*l)aw "'7f(*n)a)

where o € S,, and f1, ..., f,, € Z3. The mapping of anti-involution elements takes place through
the diagram by replacing each element f; with its image f under the anti-involution on Z7,
and then sliding each element f* to the bottom of the row.

3.1.Construction of modules for 5_’>n : Let u be the s—part_c)omposition of n, Ay,..., A be
Z;i}nodules and for each j = 1,...,s let B; be kS, module. S, = Z3 1S, be the subalgebra
of S, = Z§ 1S, spanned by all elements («; fi, ..., fn) where f; € Z and a € S,. Then
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%
AP @ ... @ A% ® BY... ® B, is S,-module through the action
(A1 ®..®a, @b @ ... @ bs)(; fr,s [n) = A1)a1 1 @ .. @ Aya—1[n @ bi1oy @ ... s g,

where each a; € S, are such that whenever S, is identified naturally with S, x ... x §,, and
« is identified with (ay, ..., as). R
Therefore by induction, from S, = Z3 1.5, to S, = Z31.S,, we get a module isomorphic to

AP ® ... ® A% ® B, ® ... ® B, ® kR,,

where the basis of vector space kR, is R, which contains coset representatlons of minimal

length. Let 7,6 € R, and 0, € S, such that ya = 69, then the action of S on kR, is given
by

(01 ®..®a; Qb @ ... ® by @) (; f1,...s fn) = a1)p-1[10 ® ... @ A(nyo—1 fnd @ b6y & ... @ bybs,

Let A= (Ay,...,A,) and B = (B, ..., B,) be the tuples and the modules obtained be ©*(A, B).
A pure tensor a; ® ...a, ® b ® ... ® by ® 0 is taken as a pure tensor for 4 € R,. To obtain the
signed Brauer diagram of this tensor, first label the edges in the lower row from left to right
with the elements a(1y5-1, ...a(,)5-1, then link them to the first 1, edges on the top row and label
the linked edges with b; Similarly link the next s edges on the top row and label the linked
edges as by, and so on. N

For example, take n = 5,s = 2,4 = (3,2) and § = (1,5, 3,4,2)(6,10,8,9,7) of S5, then the
tensor

a1®a2®a3®a4®a5®b1®bg®5

can be represented by the diagram

The elements of A; are associated with the edges b; and hence ©#(A, B) can be identified with
the k-vector space by diagram of some element in 12, where we see that for each j = 1,2, ...,
(1 + ... + pj—1 + 1)th to (s + ... + p;j)th edges are connected so as to form a single block
which is labelled by an element of B;. For 6 € R,,, by, ..., bs labels in the top row and uy, ..., u,
labels in bottom row and the permutation diagram is § € R,. This represents pure tensor
U1)s @ .. @ Uys @ by @ ... @ by ® 0. Set of these elements span ©"(A, B) but not linearly
independent. The diagram

Ui U9 us Uy Us
represents the pure tensor

U @ Uz @ Uz X Uy K Uy ><bl®b2®(1,5,3,4,2)(6,10,8,9,7)
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Consider another element ((1,3,4,2)(6,8,9,7); f1, f2, f3, f1, f5) of S—>10 = 731 S5,
i o fs o fs

H _—
Action of element of Sjy on the element of ©#(A, B) is calculated as in the diagram

h R s fa fs
After this action, the element of S_lg from this diagram is (1,5,4)(6,10,9)(2, 3).

/

Upfi uafo urfs usfa usfs

This element is the product of elements from S, and R,,.

That is (1,5,3,4,2)(6,10,8,9,7) = (1,5,4)(2,3).(6,10,9)(7,8) where (1,5,4)(2,3) € S, and
(6,10,9)(7,8) € R,..

Proposition 3.2. If A, ..., A; are Z}— modules, and By, ..., B; are kS,—modules, then for

any composition p which is s part of n with a, and by, as generators of Ay and By, ©#(A, B) is
a cyclic S,— module. The signed Brauer diagram given by

BESRE

a a az as Qg Qg

generates O (A, B).
Proof: Let us denote the diagram in the proposition D . For each a € S, apply (a;7,...,7)

of §n> to replace each element by in D with an arbitrary element of Bj. For some § € R,
apply (d; 7, ..., 7) to arrange the strings of the diagram D. Then replace each element a; with an
arbitrary element of A, by applying an element (e; fi, ..., f,,). These diagrams span ©#(A, B).
This completes the proof.

Let A* be cell module of the cellular algebra Z5. Then for a € S,,,

Q) - Cs)\,t +?2n/\ — C;\ X (Ct/\)*

determines a Z§ — Z% bi-module isomorphism from Z;“/Z”A to 02 @k (AY)*. For all s,t,u,v €
M ()), there exist R—valued bi-linear form (.) such that
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CNCA = (CH.ONC, mod Z,™.

This bi-linear form plays an essential role in theory of cellular algebra
Lemma 3.3. Z» be a cellular algebra with cell datum (A, M, C,*). Let A € A and d € A* be

non-zero. Then a — a ® d* is a ZF—module isomorphism of A* onto A* @ d* C A* @p (A*)*.
Proof. (A*)* is a free module and hence torsion free. Thus as Z&—modules,

A* 2 A @i Rd* = A* @ d*.

hence r — x ® d* is an isomorphism.
Definition 3.4.[§] A cellular algebra is said to be cyclic cellular if every cell module of ZJ' is

cyclic.
Lemma 3.5. If Z} is a cellular algebra with cell datum (A, M, C, %) then following are

equivalent.
(i) Z% is cellular.

(ii) For each A € A, there exists an element ay € ZJ* such that

(a) ay = a} mod Z;M

(b) Z3* = Zrap 2y + Z,
(c) (Zyay+ 7?)/7;A ~ A* as Zy—modules.

Proof. Suppose that Z is cyclic cellular. For each A\ € A, let 6 be the generator of the cell
module A*. Let ay € Z3* be any lifting of ;' (6* ® (6*)*). Then (§* @ (0*)*)* = (6* ® (61)*)
implies 2(a) is true. Z3(6* ® (6M)*)Z8 = (A* @ (AM)*) implies 2(b) is true.

We obtain Z7 —module isomorphism zay + 7;/\ — 25>‘®(‘5k)*, by restricting . By lemma 3.3.,
r ® (0*)* — x is an Z8—module isomorphism from A* ® (6*)* onto A*. By composing these
two isomorphisms we get zay + 7;“ — 26" such that (Z3ay + Z;‘A)/EZA >~ A?. This proves
2(c).

Conversely, if (2) holds, then in particular 2(c) implies that each cell module is cyclic. Hence
Z% is cellular.

_>
4.The iterated inflation structure of S, = 7,15,

As stated by Konig and Xi in [5], prove that Brauer algebra is cellular by exhibiting a structure
called iterated inflation. Special cases can be found in the papers of Graham and Lehrer[I].
R.Green[3] has applied iterated inflations to show that the wreath product A S, is cellular
for any cellular algebra A by showing it as an iterated inflation of tensor products of group
algebras of symmetric group.

Let Z5 be a cellular algebra with cell datum (A, M, C, ) where * denotes the anti involution. Let
|A| = s, and Ay, ..., As be the elelments of A such that \; > A; for all ¢ < j. Thus the numbering
is in compatible with partial ordering on A. Let A* be the right cell module for every A € A.
We shall write the elements of cellular basis C’S)"t as Uy ;. Then the basis of S,, = Z51.5,, consists
the elements of the form (a; Cs, 4y, ..., Cs, 1,,) for a € S, and C, 4, is some element in the basis
of Z5. We shall denote this basis as P. The elements of P are represented by the diagrams

SV

051775 CSQat 053775 05471? 055,755
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This can be represented as

S1 52 53 S4 S5

tv ty tz3 ta U5

Thus the elements P can be represented as

U U2 Uus Uy Us

U1 (%) U3 () Us

This diagram represents the element N

((1,3,2,5,4)(6,8,7,10,9); Cusors Cusves Curvsy Cusvgs Cuugus) € S5 = Za 1.Ss.

where u;, v, € M(X) for some A € A. For each [ € {1, ..., s}, let y; be the number of elements v,
in M () such that there exists a composition p = iy, ..., s of n for any such diagram. We call
it layer index of the diagram and also the element which it represents in P. Let kP be the k—
span of all elementsof P with layer index p, and I(n, s) be the set of all s—part composition of
n with non-negative integer entries. Thus S, = Z51.5, = ®u61(n,8) kP,. For layer index p, the
tuple (uq, ..., u,) of n elements of Liyea M () denotes the half diagram such that it has exactly
i, elements of M(\;) for each k. Let U, be the set of all half diagram of type p. Then there
exists a unique element € € R, such that (u()e, ..., ugn)e) lies in the set M (A)#t x ... x M(Ag)*s.
We call this € the shape of the half diagram (uy, ..., u,).

Let o € S, be a permutation such that w; is connected to v(x)o. Then there is an element

(Oé; Cu(l)ofl,vla SS) Cu(n)oﬁl,vn)

in ?n which has a layer index p. This element can be split into three parts namely the half
diagrams (uq, ..., u,) of top rows and (vq,...,v,) of bottom rows of type p and the element
(B1, ..., Bs) of the group S, x ... x S, where y, € S,,. This 8 records how the elements of
M (\g) on the top row is connected to the elements of M()) in the bottom row. If €,§ are
the shapes of (uq,...,u,) and (vy, ..., v,) respctively and § is the image of (fy, ..., 55) under the
natural identification of S, X ... x S,,, with Young subgroup S,, of S,,. Then 3 = ¢~ !34. We now
take B,, to be the k—vector space with basis b,. Then the above decomposition has a k—linear
bijection

given by the mapping
(ub aun) & 6 & (’Ul, ...,Un),
to

(6_165; CU(DE*lB(S,vp ey CU(n)671ﬁ67Un>

vllgere e is the shape of (uq, ..., u,,) and ¢ is the shape of (v, ..., v, ). Thus we have a decomposition
S, = ®u S B,®kS,®B,,, and this decomposition will allow us to exhibit the desired iterated
inflation structure.

Now, we need ordering of I, 5. If (1, ..., sy and 71, ..., 7, are elements of I, ), then define
1t >4y such that
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Dok > DTk

where A\, > \; for each k. This is called the partial A—dominance order.
Lemma.4.1. Suppose that we have ay, ..., as, by, ...,bs € {1, ..., s} such that A\,, > X, for each

i in the poset A and let pu = (1, ..., ts) and v = (71, ..., %) so that p,y € I, 5. Then p >y
and if one of the inequalities \,, > A, is strict, then g >, 7.
Proof: For each k, A\, > \; implies

Dok > DTk

where

> = {i: Aa; 2 A,
Do =it A, = M}
But
{i: X, =N CH{is Ay, >N} for Ay, > Ny,
Thus if there is one strict inequality A\,, > A, then we get © # v and hence p >4 7.
Proposition 4.2. Let p € I, 5, and u = (u1, ..., )y, v = (v1,...,v,) € By. Let By,...,6, € S,

be such that the element of basis of Z5 corresponding to the pure tensor © ® 8 ® v has a layer
index p. Also, let f = («; fi1, ..., fn) be a pure tensor in S, = Z51S,. Then (v ® f Q@ v).f =
u® Pou(v, f) @ ,(v, f) modulo elements of basis of Z; whose layer index is strictly less than
u, where ¢, (v, f) € S, and ¢, (v, f) € B, are independent of u and £.

Proof. Let ¢,0 € B, be the shapes of v and v respectively, so that u ® 8 ® v corresponds to

the element

(6_1B57 OU(1)67155,1)17 e Cu(n)eflﬁé,vn)'

Then

1 <u®ﬁ®v)(a7flavfn)
:1(6_ B85 Clugyy (e-186)-1.01)s -+ Clugy (1861 0n))
:<Ei /B(SOZ, O[u(l)(eflﬂé'a)*l,yl]fly ey C[U(n)(671/8601)7111)7L]f7l)'

For k =1,...,n, let s, € {1,...s} be such that ug)(e ' foa) ™, vgya-1 € M(A,). Then from (1),

Clugey (e=1850) 1 0gatlfi = 2pert(n) Lot (Va5 Pr) Clugyy (=1 850) -1 i)

modulo cellular basis elements of lower cell index. Using this we get
(U ® ﬁ ® /U)(Oé; f17 7fn) =

2, 2o, (Lt R (Va1 p)) (€ 5005 Gl 1850y s -5 Clay (1850 1))+ (F)
modulo elements of the basis of Z, of the form
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where for each k A5, > \;, and for atleast one k the the inequality is strict. Let v = (7, ..., 75)be
the layer index of (**). By lemma 4.1. we have p >, 7, so that (v ® f ® v)(e; fi, ..., fn) i8
congruent (*) modulo elements of lower layer index.
Now, pj lies in the same set M(\;,) as vgya-1, and from this we see that the shape of
(p1,-..,pn) is the unique element ¢ of B, such that da = ¢y for ¢ € S,. Thus in (*) we
have (Eflﬁéa; C[uu)(e*lﬂda)*l,pl]? ceey C[u(n)(eflﬁga)fkpn})

= (€71 BOY; Clugyy(e1866)1 11> -+ Cluguy (1 866) 1 pa))-
which corresponds to the pure tensor u ® S¢ @ (py, ..., p,) and hence (*) is equal to

u® ﬁ¢ ® (Zpl T an(nkzlank (U(k’)a_lapk))(pla '-'apn)>'

Thus, by setting ¢, (v, f) to be the unique element ¢ of S, so that da = ¢y for ¢» € B, and
Yu(v, f) to be

(ITiei" Br (Wya—15 2)) (D1, -5 Pn))-

Further we observe that (u® 8®@v)(«; fi, ..., fn) = u® Bo,(v, ) @1, (v, f) modulo lower layers
whose values depend only on v and f as required. [J

Theorem 4.3. Let Z; be the cellular algebra with anti involution % and poset A of cell
indices. Let B,® be the set of all multi partitions of n of length s with the partial order : if
(ay,...,as), (b1, ....,bs) € B,*, then (ay,...,as) > Ql’ ..., bs) implies (|aq], ..., las|) =a (|b1], ..., |bs])
or that |ay| = |bx| and ay <Qby, for each k. Then S,, = Z51.S,, is a cellular algebra for « € S,, and
fis-, fn € Z3 by

(; fr, o fo)* = (@7h F*War o [T (m)a)-

_>
5. The cell modules and simple modules of the wreath product 5,,.
We know that cell modules A); are indexed by the cell indices Ay, ..., A;. These are indexed
by length s multipartitions of n. Let 7, ..., s be such a multipartition and p the composition

(|771|a T 775|), such that i = ;.
A2 a5 a k— vector space may be identified with

5771@...@57%@‘/“7
Let (64, ...,0,) € A such that
(01, .., 05) = (A1, ooy A (patimes), ..., Ag, .oy As(pstimes))

Let (Xi,...,X,,) be half diagram in B,,. Then its shape is the unique element 6 € R, such that
it lies in M(6,671) x --- @ M(6,,671). Hence

B, = Usep, M(0167") x - x M(0,07").

Therefore the half diagram (X1, ..., X,,) is identified with thepure tensor Cx,g..gcy, - and obtain
the natural identification of k—vector spaces

V, = 69563# A0 & o AR
Further for z; € S and u; ® - - - ® u,, is a pure tensor in V,, the pure tensor of An1s) g
a1 @ Qas @ Uy &Q Uy,
Then for ¢, (v, f) € S, it may be verified that the map taking the pure tensor

U1®®Un®b1®bs®0
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in O#((AM, ... A*), (S™, ..., S")) where § € R, to the pure tensor

bl e ® bs ® U(l)%l Q- ® U(n)971

Proposition 5.2. Let nq,...,ns; be non-negative integers. Let B,,, X ... X B, be the poset of

cell indices with the order \; > p; for all i. Then the group algebra k(S,, x ... x S,.) is a

cellular algebra with respect to the mapping (v, ..., as) — (a7, ...,a;t) for all a; € S, and

cell module associated to (Aq, ..., A) is SM ® -+ - ® S* with the action

(11 ® - @x,).(v101) @ - - - (w40r) for z; € S* and o € S,y
The cell form is given on pure tensor by

(11 ® - T, Y1 @ QYs) = (w1,y1) - - (T, Ys)

where each bilinear form on the right hand side is the appropriate cell form of S*i.
Proposition 5.3. From [3] we have that if Zyis a k—algebra with anti involution *, then

Zh = @NGIVM®Bu®V#

of Z"y where I is the partially ordered set, each V), is a k—vector space and each B, is cellular
algebra over k with respect to cell datum (A,, M, C, *). Hence Z} can be identified with this
direct sum of tensor products and V, ® B, ® V,, as the u—th layer of Z7. Also for each p € I
there is unique B,—valued k—bilinear form ¢, on V, such that for any u,v,z,y € V, and
b,c € B,, we have

Gu(y,u) = ¢u(u, y)* and
(z@c@y)(uRb®V)=2® co,(y,u)b®v mod H(< p).
where H(< p) =@, ., V,® B, @V,
Further, for (p, A) € A, let AN denoted as A* be the right cell module of Z, so that for any
z,y €V, and z,w € A*, we have

(z@z,w@y) = (z,whu(y, )

as the cell form. .,
Proposition 5.4. The wreath product S,, = Z31 S, is cyclic cellular if Z7 is cyclic cellular.

Proof. By Proposition 5.2., we understand that the multiplication within each layer of

§n> = 7515, is determined by a bilinear forme¢,,. Let (uy, ..., u,), (v1, ..., v,) be the half diagram

inV,,sothat u=0C, ®---®C,, andv =0, ®---®C,, are pure tensorsin V,. Then

(u®eu)(v®e®v)=ud,(u,v) @ v....(**%)

%
modulo lower layers. The element (u ® e ® u) of S, = Z5 15, is represented by the diagram

U1 (%) Up, . . .
Uy Uz Un Cm U1 Cuz ;U2 Cun JUn,
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Exactly the similar way can represent the element v ® e ® v by a diagram. The product
(u®e®u)(v®e®wv) will now be represented as

. . .
Cul y U1 Cvl s Cu2 U2 Cv2 ;U2 Cu’n. sUn Cvn yUn

Fori=1,...,n, and u; € M(\,), we can expand the products Cy, .,,Cy, », in terms of the linear

combination of cellular basis elements C’j(ty where )\, < )\, we get the diagramvof the form

|

Cx, v Cxyvs Cx, v,

By Lemma 4.1. it follows that all such diagrams have layer index utmost p and the element
v; do not lie in M (),,) implies that all the diagrams in the expansion have layer index strictly
less than p. ALso in by (**%*), in such a case we see that ¢, (u,v) = 0.

Suppose that for each 7, v; lies in M (), ), then as stated in [3], since

Cuui i Cos vy = (Cluy,s Cvi>CU¢,vi

modulo cellular basis elements of lower index, where (.) is the suitable cell form. By lemma
4.1. (****) is congruent modulo lower layers to

Uy U2 U,

<Cu1an1>"'<Cumcvn> { { {

U1 V2 Un

representing the element (C,,,Cy,) -+ - (Cy,, Cy, ) (u ® e ® v). Therefore in this case

gb(u? U) = <CU17 C'U1> T <Oun7 O'Un>

From proposition 5.2., if for z,w € A* 2@+ ®@2,Qu; ® - Qu, and W @+ - W@V &+ - @y,
are pure tensors in the cell module A" then

<Zl®"'®Zs®u1®"'®un7w1®'"®ws®vl®”'®vn> e <Zl,u1>"'<ZS,'U/S><’LU1,'U1>"'<'LU1,'U1>
If u; and v; lie in the same A*, for each i = 1,...,n,
(1@ ®ZAOUO  QUup, W ® QU QU ® - ®Up) =0

otherwise.
By remark 5.1.,
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Foro0e R,letThy=S"®---®S5™® A1) & A" Tf 9 8 be distinct elements of R, and
u €'y and v € I'z then (u,v) = 0. This implies that if Ry is the radical restriction of I'y of (.),

Thgs> we have the following results on the simple and cell modules P »7) and semi-simplicity
of Sn = ZQ l Sn )
Theorem 5.4. The set (B2), consists of exactly those set of elements (71, ...,n5) € B such

that n; = () whenever \; € AAg so that the cell radical of A7) is a proper submodule of

3 —
Almms) and (B?), indexes the simple modules of S, = Z3 1 .5,,.
Theorem 5.5. If (1y,...,ns) € (BZ)o then from proposition 4.3., there exists an isomorphism

of k— vector spaces

j =1,...,s and whenever n; # (), PY = AN, R
Theorem 5.7. [3] If Z, is a cellular algebra, then S, = Z51 S, is semisimple if and only if

both Z, and kS,, are semisimple.
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