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The respiratory infectious disease Coronavirus Disease 2019 caused by the SARS-CoV-2 virus 

has become a world pandemic. This paper aims to develop a mathematical model of the spread 

of Covid-19 SEIQR (Susceptible-Exposed-Infected-Quarantine-Recovered), then analyse the 

stability of the model and its optimal control. Based on the local stability analysis using the 

Routh-Hurwitz criteria obtained two equilibrium points, namely the local asymptotically stable 

disease-free equilibrium points if reproduction number less than one  and the local 

asymptotically stable endemic equilibrium point if reproduction number more than one. Next, 

to analyze global stability at the equilibrium points is used the Lyapunov method. Further, four 

controls, namely vaccination, physical distancing, treatment of infected individuals, and self-

prevention (wearing masks and hand sanitisers) are applied to reduce the spread of covid-19. 

We applied Pontryagin’s Maximum Principle to obtain the optimal solution for the control. 

Finally, based on numerical result is found that the value of reproduction number is 9,44183. 

By using data from province of East Java, Indonesia, it is obtained that the physical distancing 

control has a better level effectiveness than the others three controls. 
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I. INTRODUCTION 

The World Health Organization (WHO), on March 11, 2020, 

declared that the Covid-19 pandemic had caused various 

problems ranging from health and economy to social 

problems [1]. The characteristics of the highly contagious 

Covid-19 virus have resulted in the rapid and massive spread 

of the Covid-19 virus. The spread of the Covid-19 virus can 

occur through direct physical contact, air exposure to droplets 

of people with Covid-19, to objects exposed to the Covid-19 

virus [2]. 

The Covid-19 case in Indonesia was first recorded on March 

2 2020, and until now, the confirmed number of Covid-19 is 

still increasing and decreasing in line with policies that are 

able to limit the growth of Covid-19 cases. According to data 

compiled by the National Covid-19 Task Force of the 

Republic of Indonesia, confirmed Covid-19 sufferers as of 

November 01, 2021, reached 4,245,373, positive cases were 

11,629, recovered cases were 4,090,287, and death cases 

were 143,457 [3]. The case data shows that the Covid-19 

number is quite large, even though there has been a decrease 

in confirmed cases of Covid-19 in Indonesia every day. 

The branch of mathematics that tries to represent or explain 

real-world problems into mathematical statements to gain 

insight into existing problems is mathematical modelling [4]. 

Mathematical models are, in practice, powerful tools used in 

describing, controlling, limiting and minimizing the impact 

of a pandemic. In an optimal control system, optimal control 

tries to obtain an input function that produces an output 

function and fulfils certain requirements as much as possible 

[5]. 

Various studies discussing the spread of the Covid-19 virus 

have been carried out, ranging from time series to 

deterministic. A logistic growth method [6] is used to forecast 

the increase of covid-19 itself. Research conducted by [7] 

discusses the modification of the SIR model with the addition 

of the Q variable so that it becomes the SQIR model and is 

used to analyse the impact of Covid-19. The construction of 

the Covid-19 spread model and its stability analysis using the 

Routh-Hurwitz criteria was also carried out by [8] with a case 

study in Central Java Province with the STQIR model; it is 

known that this model can be applied and produces 

satisfactory results. The optimal control method in [9], which 

discusses the cost-effectiveness analysis for economic health 
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costs and expenditures using the optimal control approach in 

the SEIARB model, uses the Runge Kutta method of order 

four forward and backwards to solve the differential equation 

problem. 

Research by Yujia et al. [10] discussed the application of 

optimal control with treatment uncertainty and transmission 

in the SIR model, then analysed using a stochastic optimal 

control approach. Furthermore, Gustavo et al. [11] with 

model SIR added with two control namely minimizing a 

quantity related to the number of infected individuals and the 

number of vaccines used during the treatment, it shows that 

the controls can be used to determine the spread of covid-19. 

Anwarud et al. [12] applied two control (treatment and 

isolation) to the model SIQ, concluded that the spread od 

covid-19 can be decrease by using these control with proper 

applications. Yang et al. [13] explained the impact of 

vaccination on the spread of Covid-19 in the SVAIR model 

with a backward bifurcation analysis; it was found that giving 

Covid-19 vaccination can control the spread of Covid-19. In 

order to determine the global stability and equilibrium points, 

model SEIR [14, 15] using Lyapunov function to determine 

the global stability and characteristic equation to determine 

the local stability. Another method to determine the spread of 

covid-19 also proposed by using fractional order and 

stochastic models in [16, 17, 18]. 

This study discussing about the mathematical model SEIQR 

and its stability. The purpose of this study was to determine 

the dynamical stability analysis system of SEIQR model by 

using Routh-Hurwitz criterion and Lyapunov function. In this 

study we added optimal control analysis by adding four 

controls namely; Covid-19 vaccination, self-prevention (using 

masks and hand sanitisers), physical distancing, and treatment 

of infected individuals. At the end of the study, we give a 

numerical simulation to give some knowledge about the 

dynamical spread of Covid-19 in west java, Indonesia. 

 

II. MODEL FORMULATION 

The SEIR model based on [19] by adding Quarantine class to 

see more deep the dynamic of the spread of Covid-19 itself. 

The total population at time ( )N t  is divided into five classes 

namely Susceptible class, Exposed class, Infected class, 

Quarantine class, and Recovered class. The process of 

mathematical model of covid-19 is given in Figure 1. 

 
Fig. 1. The process of mathematical modelling of Covid-19 

From Figure 1 we can construct a mathematical model is 

given in 
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Where S, E, I, Q, R are susceptible, exposed, infected, 

quarantine, and recovered respectively at time t. 

2.1 positivity and boundness of the solution 
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 Therefore it shows that ( ), ( ), ( ), ( ), ( )S t E t I t Q t R t are positif. 

□ 

Thorem 2. All the solutions (0), (0), (0), (0), (0)S E I Q R  

from the equations (1) is bounded if and only if 

lim sup ( )
t

N t



 , so ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t Q t R t     . 

Proof. We know that ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t Q t R t     , 

so we get 
( )
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N t
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( ) (0) , 0tN t N e t

 

  
    
 

. It shows that the 

solutions are positive invariant and its proof that the system 

is bounded. □ 

 

III. STABILITY ANALYSIS 

The equilibrium point is a condition where the change in the 

number of populations in each sub-population over time is 

zero. So, the system (1) is said to be balance if 

0
dQdN dS dE dI dR

dt dt dt dt dt dt
      . 

The subpopulation R has no effect on the system because it is 

separate from the others. The solution of the system (1) has 

two equilibrium points, namely 0 0 0 0 0( , , , )S E I Q as the 

disease-free equilibrium and * * * * *( , , , )S E I Q as the 

endemic equilibrium point. 

3.1 Basic Reproduction Number 

The basic reproduction number can be obtaining by 

determine the eigen value from matrix 
1FV 
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Therefore, the basic reproduction number in this paper is 
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3.2 Local stability of the Covid-19 free equilibrium 

Theorem 3. if 
0 1  then the Covid-19 free equilibrium in 

equation (1) is locally asymptotically stable. Otherwise, it is 

unstable if 
0 1  . 

Proof. From equation (1) we obtain a matrix Jacobian is, 
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We have the characteristic equation of (2) as follows 
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based on Routh-Hurwitz criterion [24], [25] we know that 

1 2, , 0a b b  , then it is prove that Covid-19 free equilibrium 

is locally asymptotically. □ 

3.3 Local stability of Covid-19 endemic equilibrium 

 

Theorem 4. if 
0 1   then the Covid-19 endemic 

equilibrium in equation (1) is locally asymptotically stable. 

Otherwise, it is unstable. 

Proof. Based on equation (1) we have Jacobian matrix for 

endemic equilibrium as follows 
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Then we will find the eigenvalues of the matrix (3) by 

calculating *det( ( )) 0X J  I . We obtain the characteristic 

equation of matrix (3) is 

    * 3 2

0 1 2 3 0cX I a X a X a X a        

with 
*

0 1 21; 3 ; 3 2ca a v a S                 

     v v v                       ; 

and      3 0( 1) .a v               Based on 

Routh-Hurwitz criterion [24,25] value of 
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Covid-19 endemic equilibrium is locally asymptotically 

stable. □ 

3.4 Global stability of the Covid-19 free equilibrium 

Theorem 5. [26, 27] If 
0 1   then the Covid-19 free 

equilibrium point 
0 is globally asymptotically stable. 

Otherwise, it is unstable if 
0 1  . 

Proof. Let’s assume that 
0 1   and the Lyapunov function 

4: P  L , we consider the Lyapunov function as 

follow 
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where 
1 2,x x , and 

3x  are positive, then we will check the 

function (4) to know it fulfill the definition Lyapunov [28] 

and the Theorem 5. The Function ℒ is called Lyapunov 

function if only if fulfills the criterion below: 

(i) The function ℒ consists of logarithmic functions, so it is 

clear that the function is a continuous function on P, and that 

the first partial derivative is also a continuous function on P. 
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(ii) The function ℒ have a minimum global at 
0  is related to 

all points in P. then we will investigate whether 

 , , , 0S E I Q L  for  , , ,S E I Q L   0 0 0 0, , ,S E I QL  
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   0 0 0 0, , , , , ,S E I Q S E I QL L . 

For    0 0 0 0, , , , , ,S E I Q S E I QL L  we will prove that 

 , , , 0S E I Q L . 
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will show that the equilibrium point 
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minimum point by using the Hessian matrix, we have 
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Suppose that 
1 1, 0k I Q    so the equation (8) can be 

written as follows 
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0 1  , then the value of 0
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concluded that the Covid-19 free equilibrium point 
0  for 

equation (1) is globally asymptotically stable. □ 

3.5 Global stability of the Covid-19 endemic equilibrium 

Theorem 6. [26, 27] If 0 1  then the Covid-19 endemic 

equilibrium 
* is globally asymptotically stable. Otherwise, 

it’s unstable. 

Proof. To prove the endemic equilibrium point's stability, we 

can implement the Lyapunov methods. Assume 0 1   and 

use an appropriate Lyapunov function  
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the form as follow 
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     1 2 3, ,a a v a              . 

So that the equation (9) can be written as follows: 

 

* * * *

1* *

* * * *

2 3* *

( ) ln ln

ln ln

S E
t S S S a E E E

S E

I Q
a I I I a Q Q Q

I Q

   
         

   

  
       

   

 (10) 

Then we will investigate whether the Lyapunov function in 

eq. (10) fulfills the definition [28] and the Theorem 6. The 

Function ℑ is called Lyapunov function if only if fulfills the 

criterion below: 

(i) The function ℑ consists of logarithmic functions, so it is 

clear that the function is a continuous function on P, and that 

the first partial derivative is also a continuous function on P. 

(ii) The function ℑ have a minimum global at 
*  is related to 

all points in P. then we will investigate whether 
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 , , , 0S E I Q   for    * * * *, , , , , ,S E I Q S E I Q    

and  , , , 0S E I Q   for 

   * * * *, , , , , ,S E I Q S E I Q   . 

For    * * * *, , , , , ,S E I Q S E I Q    we will show that 

 , , , 0S E I Q  , so we have: 

* * * *

* *

* * * *

* *

* * * *

* * * *

* * * *

* * * *

ln ln

ln ln

1 ln 1 ln

1 ln 1 ln

S E
S S S E E E

S E

QI
I I I Q Q Q

I Q

S S E E
S S E E

S S E E

Q QI I
I I Q Q

I I Q Q

   
         

   

  
       
   

   
         

   

  
       

   

 

It shown that the function ℑ will be positive if  

* *

* *
1 ln 0

S S
S S

S S

 
   

 
, * *

* *
1 ln 0

E E
E E

E E

 
   

 
, 

* *

* *
1 ln 0

I I
I I

I I

 
   

 
, and * *

* *
1 ln 0

Q Q
Q Q

Q Q

 
   

 
. 

Suppose that 
* * * *

, , ,
QS E I

b c d e
S E I Q

    , then there are 

functions such as ( ) 1 lng b b b   , ( ) 1 lng c c c   , 

( ) 1 lng d d d   , and ( ) 1 lng e e e   . The functions 

( ), ( ), ( ), ( )g b g c g d g e will reach a minimum at time 

1b c d e     with (1) 0g  , while (1) 0g   and 

'' '' ''

2 2 2

1 1 1
( ) 0,  ( ) 0,  ( ) 0.g b g c g d

b c d
       there was 

we obtained *

* *
( ) 1 ln 0

S S
g b S

S S

 
    
 

 for 
*S S , 

*

* *
( ) 1 ln 0

E E
g c E

E E

 
    
 

 for *E E , 

*

* *
( ) 1 ln 0

I I
g d I

I I

 
    
 

 for *I I , and 

*

* *
( ) 1 ln 0

Q Q
g e Q

Q Q

 
    
 

 for *Q Q . Next, we will 

show that the equilibrium point 
*  is minimum global point 

by using Hessian matrix, below: 

 

*

*
* * * *

*

*

1
0 0 0

1
0 0 0

( , , , )
1

0 0 0

1
0 0 0

S

E
H S E I Q

I

Q

 
 
 
 
 

  
 
 
 
 
  

 (11) 

The matrix (11) is definite positive because 

 * * * *

* * * *

1
det ( , , , ) 0H S E I Q

S E I Q
  . 

For    0 0 0 0, , , , , ,S E I Q S E I Q    we will show that 

 , , , 0S E I Q  , as follows 

       * * * *

* * * *

0 ln1 0 ln1 0 ln1 0 ln1 0

ln1 ln1 ln1 ln1 0.

S E I Q

S E I Q

        

      

So, it’s proven that  , , , 0S E I Q   while 

   * * * *, , , , , ,S E I Q S E I Q    with  , , ,S E I Q P  , 

and  , , , 0S E I Q   while 

   * * * *, , , , , ,S E I Q S E I Q   , along with 
*  is the 

minimum global point. 

(iii) the derivative function of ( )t is 
( )d t

dt


 fulfill 

( )
0

d t

dt


 for 

all points in P. 

** * *

( )

1 1 1 1

d t dQdS dE dI

dt S dt E dt I dt Q dt

Q dQS dS E dE I dI

S dt E dt I dt Q dt

    
   
   

      
             
       

   

   

* *

1

**

2 3

1 1

1 1

c c

S E
IS S IS a E

S E

QI
E a I I a Q

I Q

  

 

   
          
   

  
       
   

(12) 

by substitute the equation (9) into eq. (12) we have: 

 

* *
* * *

*

* *
* *

* * *

*
*

3 1 2*

( )
2 2

1 1

1 1

c

c

d t S S S
I S S

dt S S S

S E I E E
IS E

E IS E E

Q Q
I a Q a E a I

Q Q

 

 



   
       

   

   
       

   

   
        

   

 

Suppose that *E E  and *I I , we get 
2

* *
* *

*

*
*

*

( )
2

2 .

c

d t S S S S
I S

dt S SS

Q Q
I

Q Q

 



    
      

   

 
   

 

 

Based on Arithmetic Mean-Geometric Mean (AM-GM) 

Theorem [29] we obtained: 

* *

* *

*

*

2

2.

Q Q Q Q

Q QQ Q

Q Q

Q Q

 

 
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So, we obtained that 
( )

0
d t

dt


 , it can be concluded that the 

covid-19 endemic equilibrium point 
*  for the equation (1) 

is globally asymptotically stable. □ 

I. OPTIMAL CONTROL ANALYSIS 

The spread of Covid-19 that is out of control as it is today 

requires prevention efforts so that the virus can be controlled  

[30, 31, 32]. In this paper we propose four controls to add into 

model (1), namely Covid-19 vaccination 
1( ( ))u t , self-

prevention such as wearing masks and hand sanitisers 

2( ( ))u t , treatment for individual who positive Covid-19 

3( ( ))u t , and physical distancing 
4( ( ))u t . Suppose that 

resources are limited and cost function in a quadratic form, so 

we have Covid-19 vaccination as 
1(1 ( ))u t , and for self-

prevention, physical distancing, and treatment for individual 

who positive Covid-19 respectively can be written as 
2( ( ))u t , 

3( ( ))u t , 
4( ( ))u t , So, the model (1) with optimal control can 

be written as 

 

 

 

 

1 1

1 2

2 3

4

4 3

(1 ( )) (1 ( ))

(1 ( )) ( )

( ) ( )

( )

( ) ( )

c

c

dS
IS u t S u t

dt

dE
IS u t u t E

dt

dI
u t E u t I

dt

dQ
I u t Q

dt

dR
u t Q R u t I

dt

 

 

  

 




      


   




     



   



   

 (13) 

With the initial conditions (0) 0, (0) 0,S E  (0) 0,I   

(0) 0,Q  (0) 0R  . To find an optimal control of *

1 ,u  *

2u , *

3u  

and *

4u  then apply * * * *

1 2 3 4( , , , )J u u u u 

1 2 3 4 1 2 3 4min( ( , , , ), , , , )J u u u u u u u u U  where 

  1 2 3 4, , , | 0 ( ) 1, 1, 2,3, 4, ( , )i rU u u u u u t i t o T     . 

We define an objective function for the optimal control in this 

paper as follows as 

 

1 2 3 4

2 2 2 2

0 1 1 2 2 3 3 4 4

( ) ( ) ( ) ( )

min 1
( ) ( ) ( ) ( )

2

T A S t A E t A I t A Q t

J dt
w u t w u t w u t w u t

   
 
    
  

  

where 
1 2 3, , ,A A A and 

4A  are positive weight constants of 

susceptible, exposed, infected, and quarantine respectively. 

1 2 3, , ,w w w  and 
4w  are positive weight constants for control 

variables 
1 2 3( ), ( ), ( ),u t u t u t  and 

4 ( )u t . For the quadratic 

costs 2 2 2 2

1 1 2 2 3 3 4 4( ) ( ) ( ) ( )w u t w u t w u t w u t    are associated 

with four controls respectively vaccination, self-prevention 

such as wearing masks and hand sanitisers, treatment for 

individual who positive Covid-19, and physical distancing. 

Then we can construct the Hamiltonian function as 

 

     

    

1 1 1

2 1 2 3 2 3

4 4 5 4 3

(1 ( )) (1 ( ))

(1 ( )) ( ) ( ) ( )

( ) ( ) ( )

c

c

f IS u t S u t

IS u t u t E u t E u t I

I u t Q u t Q R u t I

  

      

    

      

        

     

H

the optimal control problems can be solved by using 

Pontryagin’s Maximum Principle [33,34] as follows as: 

Theorem 7. Consider optimal control variables of 
* * * *

1 2 3 4, , ,u u u u  and solutions * * * * *, , , ,S E I Q R  of the system 

(1) for minimizing 
1 2 3 4( , , , )J u u u u  over U . Then there exist 

adjoint variables 
1 2 3 4, , ,     satisfied 

   

 

   

 

 

1

1 1 1 1 2 1

2

2 2 2 3 2

3

3 1 1 2 1

3 3 4 5 3

4

4 4 4 5 4

5

5

(1 ( )) (1 ( )) (1 ( )

( ) ( )

(1 ( )) (1 ( ))

( ) ( )

( ) ( )

c c

c c

d
A I u t u t I u t

dt

d
A u t u t

dt

d
A S u t S u t

dt

u t u t

d
A u t u t

dt

d

dt


    


  


   

      


  


 

       

    

     

     

    



with conditions 

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) 0r r r r r rT T T T T T            

We have stationer conditions for control variables 

1 2 3 4, , ,u u u u  as 

    1 1 2

1

1
c cu IS S IS

w
         

 

 

 

2 2 3

2

3 3 5

3

4 4 5

4

1

1

1

u E E
w

u I I
w

u Q Q
w

 

 

 

 

 

 

 

The boundary conditions are met, because of 

0 ( ) 1; 0i ru t t T    , so we have: 
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    

 

1

*

1 1 1

1

1max 1 2

1

2

*

2 2 2

2

2 max 2 3

2

*

3

0,  jika 0

( ) ,  jika 0 1

1,  jika 1

1
min , max 0,

0,  jika 0

( ) ,  jika 0 1

1,  jika 1

1
min , max 0,

( )

c c

u

u t u u

u

u IS S IS
w

u

u t u u

u

u E E
w

u t

    

 




  
 

   
     

   




  
 

   
   

   

 

 

3

3 3

3

3 max 3 5

3

4

*

4 4 4

4

4 max 4 5

4

0,  jika 0

,  jika 0 1

1,  jika 1

1
min , max 0,

0,  jika 0

( ) ,  jika 0 1

1,  jika 1

1
min , max 0,

u

u u

u

u I I
w

u

u t u u

u

u Q Q
w

 

 




  
 

   
   

   




  
 

   
   

   

 

IV. NUMERICAL SIMULATIONS 

Numerical simulations are used to verify the proposed 

dynamical model of the Covid-19 spread. Based on data of 

the Covid-19 transmission in the East Java province, 

Indonesia from March 1 until May 31, 2022 and by using 

nonlinear least square method, we found the parameters of the 

model eq. (1) in Table 1. 

 

Table 1. Value of parameters in this model 

Parameter Value Unit Source 

𝚲 492,4869 Individual.day-1 Estimated 

c  1,033x10-5 Individual.day-1 
Estimated 

σ 0,01076 day-1 Estimated 

μ 0,00004 day-1 [35] 

α 0,38146 day-1 Estimated 

δ 0,0913 day-1 Estimated 

θ 0,125 day-1 Estimated 

  0,100 day-1 Estimated 

  

The initial conditions are S(0)=11.114.198, E(0)=2.367.770, 

I(0)=536.173, Q(0)=70.250, and R(0)=479.668. Using Runga 

Kutta four order method [36] for solving the differential 

equation (1), Pontryagin’s Maximum Principle for solving 

the optimal control (13), and using the Matlab 2016a software 

package, we presented numerical simulation of the dynamical 

behavior model COVID-19 transmission; 

 
Fig. 2. The simulation of Covid-19 with control and 

without control in susceptible population 

In Figure 1 it can be seen that the effect of giving Covid-19 

vaccination control for susceptible individuals over a period 

of 60 days there is no significant impact. the susceptible 

populations with controls tend to be stable at their initial 

values due to the magnitude of the recruitment parameter 

compared to the reduction value itself, so the graphs for 

susceptible population with control tend to be stable at their 

initial values. 

 
Fig. 3. The simulation of Covid-19 with control and 

without control in exposed population 

Figure 2 shows that the provision of self-prevention controls 

such as wearing masks and hand sanitizers to exposed 

subpopulations shows that between the period of 0-5 days it 

has decreased towards its equilibrium point until the 60th day 

and will enter the infected subpopulation. Meanwhile, for the 

exposed subpopulation without control, it shows that the 

number of exposed subpopulations tends to increase over the 

same time period compared to the control. 
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Fig. 4. The simulation of Covid-19 with control and 

without control in infected population 

In Figure 3 it can be seen that the graph with control and 

without control has decreased cases. The reduction in infected 

cases with treatment control takes a little longer than without 

control because there are a number of exposed 

subpopulations that enter the infected stage, then the number 

of infected subpopulations will reach its equilibrium point. 

Furthermore, the infected sub-population will enter the 

quarantine stage before being declared cured of Covid-19 and 

some are immediately declared cured without having to carry 

out quarantine first. 

 
Fig. 5. The simulation of Covid-19 with control and 

without control in quarantine population 

In Figure 4 it can be seen that there was an increase at the 

beginning of the graph, this happened because the infection 

rate was high on the same day so that infected individuals 

were quarantined. The provision of physical distancing 

controls or physical distancing for the quarantine sub-

population shows that there has been a decrease in the 

quarantine sub-population and will then enter a period of 

recovery from Covid-19. Whereas for those without control, 

it can be seen that during the same period the quarantine 

subpopulation tends to increase and is stable at its initial 

value, so it takes a long time to reach its equilibrium point. 

 
Fig. 6. The simulation of Covid-19 with control and 

without control in recovered population 

Figure 5 shows that there has been an increase in individuals 

recovering from Covid-19. This is due to the effectiveness of 

providing the four controls, namely Covid-19 vaccination, 

self-prevention, treatment of Covid-19 sufferers, and physical 

distancing. Compared with no control, it can be seen that the 

recovered population did not increase in the same period. 

 
Fig. 7. Graph of control effectiveness level against time 

In Figure 6, the first graph shows that the administration of 

Covid-19 vaccination control within 100 days has not shown 

satisfactory results because the administration of the vaccine 

must be gradual, starting from dose 1 to dose 3 or boosters, 

so it takes more than 100 days to be effective. reduce the 

number of Covid-19 cases. In Figure 6 the second graph 

shows that the application of self-prevention controls such as 

wearing masks and hand sanitizers correctly and correctly 

will be able to reduce the number of infected with Covid-19 

after the 100th day. 

In Figure 6, the third graph shows that giving optimal control 

of treatment to positive Covid-19 individuals is able to reduce 

positive cases of Covid-19 after the 100th day. In Figure 6, 

the fourth graph shows that the control of maintaining 
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physical distance or physical distancing for the quarantined 

subpopulation can be seen that after 15 days there has been a 

decrease in Covid-19 cases. 

 

V. CONCLUSION 

The basic reproduction number was determined using the 

NGM (Next Matrix Generation) method and it was found that 

the value of the basic reproduction number was more than 

one, this means that the asymptotically stable model equation 

at the endemic equilibrium point or the spread of Covid-19 

occurs, so it is necessary policies that can reduce the spread 

of Covid-19. In this case, the application of four controls has 

been discussed to control the spread of COVID-19 i.e. 

vaccination, self-prevention, treatment of Covid-19 sufferers, 

and physical distancing. 

Numerical solving by using the fourth order Runge Kutta 

method with MATLAB software. Based on the simulation 

results, these indicates that the controls application of 

vaccination, self-prevention such as wearing masks and hand-

sanitizers, treatment of positive individuals with Covid-19, 

and maintaining physical distancing is within the period 0 - 

100 days will be able to reduce infections caused by Covid-

19. Further, based on the effectiveness of each control it is 

obtained that the implementation of physical distancing 

controls has a better level of effectiveness than the 

vaccination, self-prevention, and treatment. 
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