Volume 11 Issue 06 June 2023, Page no. – 3479-3493 Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i6.03

Strongly Hopfian Objets and Strongly Cohopfian Objets in the Categories of AGr(A-Mod) and COMP (AGr(A-Mod))

Seydina Ababacar BALDE , Mohamed Ben
 Faraj BEN MAAOUIA Ahmed Ould CHBIH

Laboratoire LACCA, UFR SAT, Université Gaston Berger (UGB), Saint-Louis du Sénégal

Abstract

- 1. Let M be a graded left A-module and M_* the associate complex of M. Then :
 - (a) If M_* is noetherian (resp. artinian) then M_* is strongly hopfian (resp. strongly cohopfian);
 - (b) If M_* is strongly hopfian (resp. cohopfian), then M_* is hopfian (resp. cohopfian);
- 2. Let M be a graded left A-module, M_* the associate complex of M, N a submodule of M, and N_* fully invariant subcomplex of M_* . Then : If N_* and M_*/N_* strongly hopfian, then M_* is strongly hopfian.
- 3. Let M a graded left A-module, N a submodule of M and M_{\ast} the associate complex of M. Then :
 - (a) if all subcomplex of M_* is cohopfian, then M_* is cohopfian.
 - (b) if M_*/N_* is strongly hopfian, then M_* is strongly hopfian

Keywords :

Graded rings, graded module, category, sequence complex, chains complex, strongly cohopfian objects, and strongly hopfian object.

1 Introduction

In this paper, the ring A is supposed to be associative, unitary and not necessarily commutative, every left A-module is unifere.

The aim of this article is to study the strongly hopfian and strongly cohopfian objects in the category of graded left A-modules denoted AGr(A - Mod) and in the category of associated complex of graded left A-modules denoted COMP(AGr(A - Mod)). In particular we give conditions over M_* and N_* such that M_*/N_* be strongly cohopfian (respectively strongly hopfian) and conditions over M_*/N_* and N_* such that M_* be strongly hopfian.

We define AGr(A - Mod) and COMP(AGr(A - Mod)):

- 1. The category of graded of left A-modules denoted AGr(A Mod) where :
 - (a) The objects are the graded left A-modules;
 - (b) The morphisms are the graded morphisms..
- 2. the category of complexes associate of graded left A-modules denoted COMP(AGr(A Mod)) where
 - (a) the objects are the complex sequences associated to a left A-modules;
 - (b) the morphisms are the complex chains associated to a graded morphisms.

The principal results of this article are given in the third and forth section, here are the results :

- 1. Let M be a graded left A-module and M_* the associate complex of M. Then :
 - (a) If M_* is noetherian (resp. artinian) then M_* is strongly hopfian (resp. strongly cohopfian);
 - (b) If M_* is strongly hopfian (resp. cohopfian), then M_* is hopfian (resp. cohopfian);
- Let M be a graded leftA-module, M_{*} the associate complex of M, N a submodule of M, and N_{*} fully invariant subcomplex of M_{*}. Then : If N_{*} and M_{*}/N_{*} strongly hopfian, then M_{*} is strongly hopfian.
- 3. Let M a graded left A-module, N a submodule of M and M_{\ast} the associate complex of M. Then :
 - (a) if all subcomplex of M_* is cohopfian, then M_* is cohopfian.
 - (b) if M_*/N_* is strongly hopfian, then M_* is strongly hopfian

2 Reminder and preliminary results

Définition 2.1

Let A be a ring, we say that A is a graded ring if there exists a family $\{A_n\}_{n\in\mathbb{Z}}$ of additive subgroup of A such that

1.
$$A = \bigoplus_{n \in \mathbb{Z}} A_n$$
;
2. $A_n \cdot A_m \subset A_{n+m}, \forall n, m \in \mathbb{Z}$

In all that follows, A and M are supposed unitary.

Remarque 2.1

Let A be a graded ring. We say that A is positively graded if $A_n = 0, \forall n < 0$.

Définition 2.2 Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring and M be a left A-module, we say that M is a graded left A-module if there exists a suite $(M_n)_{n \in \mathbb{Z}}$ of sub-group of M such that : 1. $M = \bigoplus_{n \in \mathbb{Z}} M_n$;

2. $A_n \cdot M_d \subset M_{n+d}, \forall n, d \in \mathbb{Z}.$

Définition 2.3 Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded left A-module and N is a sub-module of M, then we say that N is a graded sub-module of M, if $\forall x = \sum_{n \in \mathbb{Z}} x_n \in N$, with $x_n \in M_n$, then $x_n \in N$, $\forall n \in \mathbb{Z}$.

Proposition 2.1 Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is graded left A-module, then for all $n \in \mathbb{Z}$ fixed, we have

$$M(n) = \bigoplus_{k \ge n} M_k = \bigoplus_{k \in \mathbb{N}} M_{n+k}$$

is a graded sub-module of M and we have the descendant sequence :

 $\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots$

Proof

For all $n \in \mathbb{Z}$ fixed, $M(n) = \bigoplus_{k \ge n} M_k$ is a sub-group of M and

$$A_s \cdot M(n)_k = A_s \cdot M_{n+k} \subset M_{n+k+s} = M_{n+(k+s)} = M(n)_{k+s}$$

In the other hand, it suffices to remark that

$$M(n) = \bigoplus_{k \ge n} M_k = M_n \bigoplus M(n+1) = \bigoplus_{k \in \mathbb{N}} M_k.$$

Hence $M(n+1) \subset M(n)$. Thus

$$\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots$$

Définition 2.4

Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$ two graded left A-modules and $f: M \longrightarrow N$ is a morphism of left A-modules, then we say that f is a graded morphism if for any $m \in M_s$ then $f(m) \in N_{s+k}$.

Théorème et Définition 2.1

Let A be a graded ring, then the following information :

- 1. The objects are the graded left A-modules;
- 2. The morphisms are the graded morphisms..

constitute a category called the category of graded left A-module and which is denoted by Gr(A - Mod)-Mod.

Proof

Lets M, N be two objects of $G_r(A - Mod)$, then M and N are two graded left A-modules and :

- 1. $Hom_{G_r(A-Mod)}(M, N) = \{ \text{ Set of graded morphisms of } M \text{ to } N \};$
- 2. The morphisms are the graded morphisms then we have :
 - (a) $\forall f \in Hom_{G_r(A-Mod)}(M,N); \forall g \in Hom_{G_r(A-Mod)}(N,P); \forall h \in Hom_{G_r(A-Mod)}(P,Q)$ we have : $(h \circ g) \circ f = h \circ (g \circ f)$, because f, g, h are a morphisms of left A-modules and if $m \in M$, then $f(m) \in N$ then $g(f(m)) \in P$, Hence $g \circ f$ is a graded morphism.

 $1_M: M \longrightarrow M$

(b) Let M be an object of $G_r(A - Mod)$ then we have :

$$m \longmapsto m$$

$$1_M \text{ verifies } f \circ 1_M(m) = f(m), \quad \forall \ m \in M$$

$$\Rightarrow f \circ 1_M = f, \quad \forall \ f \in Hom_{G_r(A-Mod)}(M, N).$$
Moreover $1_M \circ g(n) = 1_M(g(n)) = g(n), \quad \forall \ n \in N,$
thus $1_M \circ g = g \quad \forall \ g \in Hom_{G_r(A-Mod)}(N, M).$

Thus Gr(A - Mod) is a category.

Définition 2.5

A complex sequence $(C,d) : \ldots \to C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \ldots$ is a sequence of morphisms of A-modules satisfying $d_n \circ d_{n+1} = 0$, for all $n \in \mathbb{Z}$.

Définition 2.6

A complex chain $f : (C,d) \to (C',d')$ is a sequence of homomorphisms $(f_n : C_n \longrightarrow C'_n)_{n \in \mathbb{Z}}$ of A-modules making the following diagram commute :

$$(C, d) : \cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

$$f \downarrow \qquad f_{n+1} \downarrow \qquad f_n \downarrow \qquad f_{n-1} \downarrow$$

$$(C', d') : \cdots \longrightarrow C'_{n+1} \xrightarrow{d'_{n+1}} C'_n \xrightarrow{d'_n} C'_{n-1} \longrightarrow \cdots$$

i.e $d'_{n+1} \circ f_{n+1} = f_n \circ d_{n+1}$, for all $n \in \mathbb{Z}$.

Proposition et Définition 2.1

We called the category of complexes of A-modules and we denote COMP(A - Mod), the category whose :

- 1. The objects are the sequences complex;
- 2. The morphisms are the complex chains.

Proof

See [4]

Proposition 2.2

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded left A-module, then we

have the following associate complex sequence M_* of a grade A-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$:

$$M_*: \dots \to M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \to \dots$$

with $M(n) = \bigoplus_{k \in \mathbb{Z}} M_{n+k}$ and

$$d_n: M(n) \longrightarrow M(n-1)$$
$$x = y + z \longmapsto y$$

with $(y, z) \in M_n \times M(n+1)$.

Proof

We have
$$M(n) = \bigoplus_{k \in \mathbb{Z}} M_{n+k} = \bigoplus_{k \ge n} M_k = M_n \bigoplus M_{n+1}$$
 and
$$M(n-1) = M_{n-1} \bigoplus M(n) = M_{n-1} \bigoplus M_n \bigoplus M(n+1).$$

Let $x \in M(n)$, then it exists a unique $(y, z) \in M_n \times M(n+1)$ such that x = y + z. Put

$$d_n: M(n) \longrightarrow M(n-1)$$
$$x = y + z \longmapsto y$$

so $Im(d_n) = M_n$; on the other hand

$$d_{n-1}: M(n-1) \longrightarrow M(n-2)$$

 $w = u + v \longmapsto u$
 $w = u + v \longmapsto u$
 $w = w + v \mapsto u$

$$d_{n-1} \circ d_n = 0$$

thus

$$M_*: \dots \to M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \to \dots$$

is a complex sequence.

with $(u, v) \in M_{n-1} \times M(r)$

Proposition 2.3

Let M be a graded leftA-module, N a graded submodule of M, M_* the complex associate to M and for all $n \in \mathbb{Z}$, N(n) is a submodule of M(n). Then

$$N_*: \dots \to N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_n} N(n-1) \to \dots \text{ with } d_n(x) = \delta_n(n)(x)$$

is a subcomplex of M_*

Proof

We have $\delta_n : N(n+1) \longrightarrow N(n)$ let $x, y \in N(n+1) : x = y$ then $d_n(x) = d_n(y)$ $\implies \delta_n(x) = \delta_n(y)$ \implies is well defined. Let's calculate $\delta_n \circ \delta_{n+1}$ Let $x \in N(n+1)$, we have : $\delta_n \circ \delta_{n+1}(x) = \delta_n(\delta_{n+1}(x))$ $= \delta_n(d_{n+1}(x)) = d_n(d_{n+1}(x)) = d_n \circ d_{n+1}(x) = 0$ Thus $\delta_n \circ \delta_{n+1} = 0$ hence N_* is a subcomplex of M_* .

Proposition 2.4 Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$ are two graded left A-module $f: M \longrightarrow N$ is a graded morphism of a graded left A-modules, then for all $n \in \mathbb{Z}$ $f(n): M(n) \longrightarrow N(n)$ $m \longmapsto f(n)(m) = f(m)$

is graded morphism of graded left A-modules.

Proof

We have $f: M \longrightarrow N$ is graded morphism of graded left A-modules, and M(n) is a sub-module of graded left A-module M then let $m \in M(n)$, so

$$m = \sum_{i \in \mathbb{Z}} m_{i+n} \Longrightarrow f(n)(m) = f(m) = f(\sum_{i \in \mathbb{Z}} m_{i+n}) = \sum_{i \in \mathbb{Z}} f(m_{i+n})$$

or $f(m_{i+n}) \in N_{i+n+k} = (N(n))_{i+k}$ thus f is graded morphism of a graded left A-modules.

Corollaire 2.1 Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$ are two graded left A-module $f: M \longrightarrow N$ is a graded morphism of a graded left A-modules, then $f: M \longrightarrow N(k)$ is graded morphism of graded left A-modules.

Proof

We have $f: M \longrightarrow N$ is graded morphism of graded left A-modules, and N(k) is a sub-module of graded left A-module N then let $m \in M$, so

$$m = \sum_{i \in \mathbb{Z}} m_i \Longrightarrow f(m) = f(\sum_{i \in \mathbb{Z}} m_i) = \sum_{i \in \mathbb{Z}} f(m_i)$$

or $f(m_i) \in N_{i+k} = (N(k))_i$ thus f is graded morphism of a graded left A-modules.

Proposition 2.5

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$, $N = \bigoplus_{n \in \mathbb{Z}} N_n$ are two graded left A-modules and $f : M = \bigoplus_{n \in \mathbb{Z}} M_n \longrightarrow N = \bigoplus_{n \in \mathbb{Z}} N_n$ is a graded morphism of a graded A-modules, then we have the following associated chain complex f_* of graded morphism $f : M = \bigoplus_{n \in \mathbb{Z}} M_n \longrightarrow$

 $N = \bigoplus_{n \in \mathbb{Z}} N_n$ of a graded A-modules :

$$\begin{array}{c|c} M_* : \cdots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \cdots \\ f_* \middle| & f(n+1) \middle| & f(n) \middle| & f(n-1) \middle| \\ N_* : \cdots \longrightarrow N(n+1) \xrightarrow{d'_{n+1}} N(n) \xrightarrow{d'_n} N(n-1) \longrightarrow \cdots \end{array}$$

Proof

Prove that for all $n \in \mathbb{Z}$,

$$f(n) \circ d_{n+1} = d'_{n+1} \circ f(n+1).$$

Let $x \in M(n+1)$, then it exists the unique couple $(y, z) \in M_{n+1} \times M(n+2)$ such that x = y + z so

$$(f(n) \circ d_{n+1})(x) = f(n)[d_{n+1}(x)] = f[d_{n+1}(x)] = f[y] = f(y)$$

and

 $\begin{aligned} (d'_{n+1} \circ f(n+1))(x) &= d'_{n+1}[f(n+1)(x)] = d'_{n+1}[f(x)] = d'_{n+1}[f(y+z)] = d'_{n+1}[f(y) + f(z)] = f(y) \\ f(y) \\ \text{because } f(y) \in N_{n+1} \text{ and } f(z) \in N(n+2) \end{aligned}$

$$\implies (f(n) \circ d_{n+1})(x) = (d'_{n+1} \circ f(n+1))(x), \quad \forall \ x \in M(n+1)$$

 \mathbf{SO}

$$f(n) \circ d_{n+1} = d'_{n+1} \circ f(n+1)$$

thus f_* is a complex chain.

Théorème et Définition 2.2

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, then the following information :

- 1. The objets are the associated complex sequences of a graded left A-modules;
- 2. The morphisms are the associate complex chains of a graded morphism of a graded left A-modules.

formed a category called the category of associate complex of a graded left A-modules and denoted by COMP(AGr(A - Mod)).

Proof

1. Lets M_* and N_* two complex sequences associated with graded left A-module Mand N respectively. Put $Hom \operatorname{gauge}(M, N) = \text{the class of complex chains associate to gra-$

Put $Hom_{COMP(AGr(A-Mod))}(M_*, N_*)$ = the class of complex chains associate to graded morphism of $M \longrightarrow N$. Then $Hom_{COMP(Gr(A-Mod))}(M_*, N_*)$ is a set, because the class of complex chain of $M_* \longrightarrow N_*$ of the category $COMP(A-Mod)(M_*, N_*)$ is a set (it suffices to remark also the class of graded of $M \longrightarrow N$ is a set).

2. $\forall f_* \in Hom_{COMP(Gr(A-Mod))}(M_*, N_*); g_* \in Hom_{COMP(Gr(A-Mod))}(N_*, P_*) \text{ and } h_* \in Hom_{COMP(Gr(A-Mod))}(P_*, Q_*) \text{ we have }:$

$$\begin{split} M_* &: \cdots \longrightarrow M(n+1) \stackrel{d_{n+1}}{\longrightarrow} M(n) \stackrel{d_n}{\longrightarrow} \cdots \\ f_* \middle| & f(n+1) \middle| & \downarrow f(n) \\ N_* &: \cdots \longrightarrow N(n+1) \stackrel{d'_{n+1}}{\longrightarrow} N(n) \stackrel{d'_{n+}}{\longrightarrow} \cdots \\ & \downarrow g_* & \downarrow g(n+1) & \downarrow g(n) \\ Q_* & \vdots \cdots \longrightarrow P(n+1) \stackrel{d''_{n+1+k+r}}{\longrightarrow} P(n) \stackrel{d''_{n+k+r}}{\longrightarrow} \cdots \\ & \downarrow h_* & \downarrow h(n+1) & \downarrow h(n) \\ Q_* &: \cdots \longrightarrow Q(n+1) \stackrel{d'''_{n+1}}{\longrightarrow} Q(n) \stackrel{d'''_{n+k+r}}{\longrightarrow} \cdots \end{split}$$

So $(h_* \circ g_*) \circ f_* = h_* \circ (g_* \circ f_*);$

3. Let M_* the object of COMP(Gr(A - Mod)) we have :

$$1_{M_*}: M_* \longrightarrow M_*$$

$$\begin{array}{c|c} M_* : \cdots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} \cdots \\ 1_{M_*} & & & \downarrow 1_{(n+1)} & & \downarrow 1_{(n)} \\ M_* : \cdots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} \cdots \end{array}$$

 $1_{M_*} \text{ verified } f_* \circ 1_{M_*} = f_* \quad \forall \quad f_* \in Hom_{COMP(Gr(A-Mod))}(M_*, N_*).$ Furthermore $1_{M_*} \circ g_* = g_* \quad \forall \quad g_* \in Hom_{COMP(Gr(A-Mod))}(N_*, M_*).$ 4. $\forall (M_*, N_*) \neq (M'_*, N'_*) \Longrightarrow Hom_{COMP(Gr(A-Mod))}(M_*, N_*) \neq Hom_{COMP(Gr(A-Mod))}(M'_*, N'_*)$ Thus COMP(Gr(A - Mod)) is a category.

Remarque 2.2

COMP(AGr(A - Mod)) is a subcategory of COMP(A - Mod)

Proposition et Définition 2.2

Let $(C, d) : \cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$ be a complex sequence of left Amodules and (E_n) be a family of left A-modules such that for all n, E_n is a submodule of C_n . If $d_n(E_n) \subset E_{n-1}$, then the complex sequence of induced morphisms $(d_n : E_n \longrightarrow E_{n-1})$ is complex sequence of left A-modules called subcomplex of C

Proof

Suppose that $\delta_n : E_n \longrightarrow E_{n-1}$ the induced morphism of d_n , we show that δ_n is well defined.

Suppose that $x \in E_n$, hence $d_n(x) \in E_n$, then δ_n is well defined. δ_n is a morphism, since it's composed of two morphisms. Let's verify that $\delta_n \circ \delta_{n+1} = 0$ Let be $x \in E_{n+1}$, hence $\delta_{n+1}(x) = d_{n+1}(x) \in E_n$ and $\delta((d_{n+1})(x) = d_n \circ d_{n+1}(x) = 0$, then $\delta_n \circ \delta_{n+1} = 0$, for all $n \in \mathbb{Z}$.

Proposition et Définition 2.3

Let C be a complex and E be a subcomplex of C. Suppose that $K = (K_n)_{n \in \mathbb{Z}}$, where $K_n = C_n/E_n$. Then K is a complex sequence called quotient complex of C by E and denoted C/E

Proof

See [13]

Théorème 2.1

let (C, d), (C', d') two objects of COMP(A - Mod) and $f : C \longrightarrow C'$ be a complex chain. Then

f is a monomorphism of COMP(A - Mod) if, and only, if kerf = 0.

Proof

Suppose that f is a monomorphism of C into C', hence $f \circ u = f \circ v \Longrightarrow u = v$, then for all $n \in \mathbb{Z}$, $f_n \circ u_n = f_n \circ_n \Longrightarrow u_n = v_n$, so f_n is a monomorphism, thus $kerf_n = 0$, hence kerf = 0.

Reciprocally, suppose kerf = 0, hence kerf is a zero complex, so each term is zero, thus f_n is a monomorphism of left A-modules then for all $n \in \mathbb{Z}$ it gives if $f_n \circ u_n = f_n \circ v_n$ hence $u_n = v_n$, so $(f \circ u)_n = (f \circ v)_n \Longrightarrow (u)_n = (v)_n$, finally, f is a monomorphism of complex chains

Théorème 2.2

let (C, d), (C', d') two objects of COMP(A - Mod) and $f : (C, d) \longrightarrow (C', d')$ be a complex chain. Then f is an epimorphism of COMP(A - Mod) if, and only, if Imf = C'.

Proof

Suppose that f is an epimorphism of COMP(A - Mod), then $u \circ f = v \circ f \Longrightarrow u = v$, hence for all $n \in \mathbb{Z}$, $(u \circ f)_n = (v \circ f)_n \Longrightarrow u_n = v_n$, f_n is an epimorphism of left Amodules, then $Imf_n = C'_n$ for all $n \in \mathbb{Z}$, so Imf = C'. Reciprocally, suppose that Imf = C', hence for all $n \in \mathbb{Z}$, $Imf_n = C'_n$, then f_n is an epimorphism of left A-modules so for all $n \in \mathbb{Z}$, $u_n \circ f_n = v_n \circ f_n$, then $(u \circ f)_n =$ $(v \circ f_n) \Longrightarrow u_n = v_n$ then f is an epimorphism of complex chains.

3 Strongly hopfian objects in the catégories AGr(A - Mod) and COMP(AGr(A - Mod))

Définitions 3.1

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$\begin{array}{cccc} M_* : \cdots & \longrightarrow & M(n+1) \xrightarrow{d_{n+1}} & M(n) \xrightarrow{d_n} & M(n-1) \longrightarrow \cdots \\ f_* & & & f_{(n+1)} & & f_{(n)} & & f_{(n-1)} \\ M_* : \cdots & \longrightarrow & M(n+1) \xrightarrow{d_{n+1}} & M(n) \xrightarrow{d_n} & M(n-1) \longrightarrow \cdots \end{array}$$

We call $f_* \circ f_*$ the chain complex compounded of f_* by itself denoted f_*^2 . We also define $(f^2)_n = f_n \circ f_n$, for all $n \in \mathbb{Z}$. We also define f_*^k such that $f^k(n) = f(n) \circ f(n) \circ \ldots f(n)$, with k factors, for all $n \in \mathbb{Z}$.

Proposition 3.1

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$\begin{array}{c|c} M_* : \cdots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \cdots \\ f_* \middle| & f(n+1) \middle| & f(n) \middle| & f(n-1) \middle| \\ M_* : \cdots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \cdots \end{array}$$

Given $\Delta^k(n+1) : kerf^k(n+1) \longrightarrow kerf^k(n)$ $x \mapsto d_{n+1}(x)$ where $f^k(n+1) = f(n+1) \circ f(n+1) \circ \ldots \circ f(n+1)$, with k factors, then $\Delta^k(n+1)$ is the induced morphism by $\Delta^{k+1}(n+1)$.

Proof

Considering $\Delta^k(n+1) : kerf^k(n+1) \longrightarrow kerf^k(n)$ $\begin{array}{c} x\longmapsto d_{n+1}(x)\\ \text{and } \Delta^{k+1}(n+1): kerf^{k+1}(n+1) \longrightarrow kerf^{k+1}(n) \end{array}$ $x \mapsto d_{n+1}(x)$ We obtain $kerf^k(n+1) \subset kerf^{k+1}(n+1)$ and $kerf^k(n) \subset kerf^{k+1}(n)$, therefore $\Delta^k(n+1)$

is the induced by Δ_{k+1}^{k+1} .

Définitions 3.2

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$M_* : \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \dots$$

$$f_* \downarrow \qquad f(n+1) \downarrow \qquad f(n) \downarrow \qquad f(n-1) \downarrow$$

$$M_* : \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \dots$$

Then the chain complex

$$(kerf_*^k):\ldots \to kerf^k(n+1) \stackrel{\Delta_{n+1}^k}{\to} kerf^k(n) \stackrel{\Delta_n^k}{\to} kerf^k(n-1) \stackrel{\Delta_{n-1}^k}{\to} \ldots$$

is stationary if, and only if, it exists $k_0 \in \mathbb{N}^*$ such that $(kerf_*^{k_0}) = (kerf_*^{k_0+s})$ for all $s \in \mathbb{N}$.

Proposition 3.2

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$M_* : \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \dots$$

$$f_* \downarrow \qquad f(n+1) \downarrow \qquad f(n) \downarrow \qquad f(n-1) \downarrow$$

$$M_* : \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \dots$$

Then $(ker f_*^k)$ is stationary if, and only if, $(ker f^k(n))$ stabilizes for all $n \in \mathbb{Z}$

Proof

If $(kerf_*^k)$ is stationary, then it exists $k_0 \in \mathbb{N}^*$ such that $(kerf_*^k) = (kerf_*^{k+s})$, for all $s \in \mathbb{N}$, hence $kerf^{k_0}(n) = kerf^{k_0+s}(n)$, for all $n \in \mathbb{Z}$. This implies that $(kerf^k(n))$ stabilizes for all $n \in \mathbb{Z}$.

Reciprocally, assume that $(kerf^k(n))$ for all $n \in \mathbb{Z}$, then it exists $k_0 \in \mathbb{N}^*$ such that for all $s \in \mathbb{N}$ then $kerf^{k_0}(n) = kerf^{k_0+s}(n)$, for all $n \in \mathbb{Z}$. So $(kerf^k_*)$ is stationary for all $k \in \mathbb{N}$

Définitions 3.3

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* . M_* is said to be strongly hopfian, if for any endomorphism f_* of M_* , $(ker f_*^k)$ is stationary.

Théorème 3.1

Let M be a graded left A-module. Then we have the following equivalences :

- 1. All nonempty set of submodules of M, contains a maximal element;
- 2. all increase sequence of submodules of M is stationary.

Proof

Assume that all nonempty set of submodules of M, contains a maximal element.

We consider the increase sequence $N_1 \subset N_2 \subset N_3 \subset \ldots$ of submodules of M. Then the family $(N_n)_{n>0}$ contains a maximal element N_p , so, for all $n \geq$, we have $N_s = N_p$, hence $(N_n)_{n>1}$ is stationary.

Reciprocally, assume that all increase sequence of submodule of M is stationary, we consider Λ nonempty set of submodules of M. Suppose that, by contradiction Λ doesn't contain a maximal element, thus if $N \in \Lambda$, then it exists $N' \in \Lambda$ such that $N \subset N'$. hence, we can build an increase sequence $N_1 \subset N_2 \subset N_3 \ldots$ of submodules of Λ non stationarily of Λ . This is a contradiction.

Définitions 3.4

Let M be a graded left A-module with verifies one of conditions of Theorem (3.1) is said to be noetherian

Théorème 3.2

Let M a graded left A-module. Then we have the following equivalences :

- 1. All nonempty set of submodules of M contains a minimal element.
- 2. All decrease sequence of submodules of M is stationary.

Définitions 3.5

Let M a graded left A-module which one of conditions of Theorem(3.2) is said to be artinian.

Définitions 3.6

Let M be graded left module, M_* the associate graded complex of M. Then M_* is said to be noetherian (respectively artinian) if for all $n \in \mathbb{Z}$, M(n) is noetherian (respectively artinian).

Théorème 3.3

Let M a graded left module, M_* the associate graded complex of M. Then M_* is noetherian if, and only, for all $n \in \mathbb{Z}$, all submodule of M(n) is finitely generated.

Proof

 M_* is noetherian, if for all $n \in \mathbb{Z}$, M(n) is noetherian. Since M(n) noetherian is equivalent to M(n) is finitely generated is verified in the category AGr(A - Mod).

Proposition 3.3

Let M a graded left A-module and M_* the associated complex à M. Then :

- 1. If M_* is noetherian (resp. artinian) then M_* is strongly hopfian;
- 2. If M_* is strongly hopfian, then M_* is hopfian.

Proof

- 1. Suppose that M_* is noetherian (resp. artinian), then for all $n \in \mathbb{Z}$, M(n) is noetherian (resp. artinian) so, it exists $n \ge 1$ such that $kerf^k(n) = kerf^{k+1}(n) \forall n \in \mathbb{Z}$, hence M_* is strongly hopfian.
- 2. Suppose that M_* is strongly hopfian, let f_* an epimorphism of M_* . Then, it exists $k \ge 1$ and $n \in \mathbb{Z}$ such that $ker^k(n) = kef^{k+1}(n)$. Let $x \in M(n)$ such that f(n)(x) = 0; since f(n) is an epimorphism, then $f^k(n)$ is an epimorphism, therefore it exists $y \in M(n)$ such that $x = f^k(n)(y) \Longrightarrow 0 = f^{k+1}(n)(y)$. Thus, $y \in kerf^{n+1} = kerf^k(n)$. Then x = 0 and f(n) is a monomorphism for all $n \in \mathbb{Z}$, so f_* is an automorphism, M_* is hopfian.

Proposition 3.4

Let M a graded left A-module and M_* the associate complex of M and N a submodule of M et N_* invariant fully in M_* . Then : If N_* and M_*/N_* are strongly hopfian, then M_* is strongly hopfian.

Proof

Let f_* an endomorphism of M_* and N_* a fully invariant subcomplex of M_* . Then, for all $n \in \mathbb{Z}$, $f(n)(N) \subset M(n)$ and f(n) induces two endomorphisms $f_1(n)$ of N(n) and $\overline{f}(n)$ of M(n)/N(n) such that the following diagram commutes :

$$\begin{array}{c|c} N(n) \xrightarrow{i(n)} M(n) \xrightarrow{\pi(n)} M(n)/N(n) \\ f_1(n) & f(n) & \overline{f}(n) \\ N(n) \xrightarrow{i(n)} M(n) \xrightarrow{\pi(n)} M(n)/N(n) \end{array}$$

If N_* and M_*/N_* are strongly hopfian, then it exists $s \ge 1$, for all $n \in \mathbb{Z}$ such that $ker\overline{f}^k(n) = ker\overline{f}^s(n)$ and that $kerf_1(n) = kerf_1(s)$ for all $k \ge s$. Let $x \in kerf^{2s+1}(n)$,

then $f^{2s+1}(n+1)(x) = 0 \in N(n)$ thus $\overline{f}^{2s+1}(n)(\overline{x}) = \overline{0}$ this implies that $\overline{x} \in \ker \overline{f}^{2s+1}(n) = \ker \overline{f}^n(s)$, and so $\overline{f}^s(n)(\overline{x}) = \overline{0}$, i.e., $y = f^s(n)(x) \in N(n)$.. Since $f^{s+1}(n)(y) = 0$, therefore $y \in \ker f_1^{s+1}(n) = \ker f_1^{2s}(n)$. Hence, $\ker f^{2s+1}(n) = \ker f^{2s}(n)$ for all $n \in \mathbb{Z}$. Thus M_* is strongly hopfian.

Proposition 3.5

Let M a graded left A-module, N a submodule and M_* the associate complex to M. if M_*/N_* is strongly hopfian, then M_* is strongly hopfian.

Proof

Assume on the contrary that M_* is not strongly hopfian, then for all $n \in \mathbb{Z}$ it exists $f \in end(M(n))$ such that $kerf^k(n) \neq kerf^{k+1}(n+1)$ for all $k \geq 1$. In particular, f(n) is not a monomorphism, thus $N = kerf(n) \neq 0$. f(n) induces an endomorphism $\overline{f}(n)$ of M(n)/N(n) such that $\overline{f}(n)(\overline{x}) = \overline{f(n)(x)}$. By hypothesis, M(n)/N(n) is strongly hopfian for all $n \in \mathbb{Z}$, so it exists $m \geq 1$ such that $ker\overline{f}^m(n) = ker\overline{f}^k(n)$ for all $k \geq m$. Let $x \in kerf^{m+2}(n)$, then $\overline{x} \in ker\overline{f}^{m+2}(n) = ker\overline{f}^m(n)$ this implies that $f^m(n)(x) \in N(n)$. Hence $f(n)(f^m(n)(x) = 0$ ie., $x \in kerf^{m+1}(n)$. Therefore, we have $kerf^{m+1}(n) \neq kerf^{m+2}(n)$ this contradicting the no stationary of the sequence $kerf(n) \subset kerf^2(n) \subset \ldots$. We deduce that M(n) is strongly hopfian, so M_* is strongly hopfian.

4 Strongly cohopfian objects in the catégories AGr(A - Mod) and COMP(AGr(A - Mod))

Définitions 4.1

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$\begin{array}{cccc} M_* : \cdots & \longrightarrow & M(n+1) \xrightarrow{d_{n+1}} & M(n) \xrightarrow{d_n} & M(n-1) \longrightarrow \cdots \\ f_* & & & f_{(n+1)} & & f_{(n)} & & f_{(n-1)} \\ M_* : \cdots & \longrightarrow & M(n+1) \xrightarrow{d_{n+1}} & M(n) \xrightarrow{d_n} & M(n-1) \longrightarrow \cdots \end{array}$$

Then the chain complex

$$(Imf_*^k):\ldots \to Imf^k(n+1) \stackrel{\delta_{n+1}^k}{\to} Imf^k(n) \stackrel{\delta_n^k}{\to} Imf^k(n-1) \stackrel{\delta_{n-1}^k}{\to} \ldots$$

is stationary if, and only if, it exists $k_0 \in \mathbb{N}^*$ such that $(Imf_*^{k_0}) = (Imf_*^{k_0+s})$ for all $s \in \mathbb{N}$.

Proposition 4.1

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$M_* : \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \dots$$

$$f_* \downarrow \qquad f(n+1) \downarrow \qquad f(n) \downarrow \qquad f(n-1) \downarrow$$

$$M_* : \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \dots$$

Given $\delta^k(n+1) : Imf^k(n+1) \longrightarrow Imf^k(n)$ $x \longmapsto d_{n+1}(x)$ where $f^k(n+1) = f(n+1) \circ f(n+1) \circ \ldots \circ f(n+1)$, with k factors, then $\delta^k(n+1)$ is the induced morphism by $\delta^{k+1}(n+1)$.

Proof

Considering $\delta^k(n+1) : Imf^k(n+1) \longrightarrow Imf^k(n)$ $x \longmapsto d_{n+1}(x)$ and $\delta^k(n+1) : Imf^{k+1}(n+1) \longrightarrow Imf^{k+1}(n)$ $x \longmapsto d_{n+1}(x)$ We obtain $Imf^{k+1}(n+1) \subset Imf^k(n+1)$ and $Imf^{k+1}(n) \subset Imf^k(n)$, therefore $\delta^{k+1}(n+1)$ is the morphism induced by δ^k_{n+1} .

Proposition 4.2

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* :

$$\begin{array}{cccc} M_* : \cdots & \longrightarrow & M(n+1) \xrightarrow{d_{n+1}} & M(n) \xrightarrow{d_n} & M(n-1) \longrightarrow \cdots \\ f_* & & & f_{(n+1)} & & f_{(n)} & & f_{(n-1)} \\ M_* : \cdots & \longrightarrow & M(n+1) \xrightarrow{d_{n+1}} & M(n) \xrightarrow{d_n} & M(n-1) \longrightarrow \cdots \end{array}$$

Then (Imf_*^k) is stationary if, and only if, $(Imf^k(n))$ stabilizes for all $n \in \mathbb{Z}$

Proof

If (Imf_*^k) is stationary, then it exists $k_0 \in \mathbb{N}^*$ such that $(Imf_*^k) = (Imf_*^{k+s})$, for all $s \in \mathbb{N}$, hence $Imf^{k_0}(n) = Imf^{k_0+s}(n)$, for all $n \in \mathbb{Z}$. This implies that $(Imf^k(n))$ stabilizes for all $n \in \mathbb{Z}$.

Reciprocally, assume that $(Imf^k(n))$ for all $n \in \mathbb{Z}$, then it exists $k_0 \in \mathbb{N}^*$ such that for all $s \in \mathbb{N}$ then $Imf^{k_0}(n) = Imf^{k_0+s}(n)$, for all $n \in \mathbb{Z}$. So (Imf^k_*) is stationary for all $k \in \mathbb{N}$

Définitions 4.2

Let M_* be an object of COMP(AGr(A - Mod)) and f_* a complex endomorphism of M_* . M_* is said to be strongly cohopfian, if for any endomorphism f_* of M_* , (Imf_*^k) is stationary.

Proposition 4.3

Let M a graded left A-module and M_* the associated complex à M. Then :

- 1. If M_* is noetherian (resp. artinian) then M_* is strongly cohopfian;
- 2. If M_* is strongly cohopfian, then M_* is cohopfian.

Proof

- 1. Suppose that M_* is noetherian (resp. artinian), then for all $n \in \mathbb{Z}$, M(n) is noetherian (resp. artinian) so, it exists $n \ge 1$ such that $Imf^k(n) = Imf^{k+1}(n) \forall n \in \mathbb{Z}$, hence M_* is strongly cohopfian.
- 2. Suppose that M_* is strongly cohopfian, let f_* a monomorphism of M_* . Then, it exists $k \ge 1$ and $n \in \mathbb{Z}$ such that $Imr^k(n) = Imf^{k+1}(n)$, since f(n) is injective, then $f^k(n)$ is injective. Let $x \in M(n)$, it exists $y \in M(n)$ such that $f^k(n)(x) = f^{k+1}(n)(y)$. Thus, $x f(n)(y) \in kerf^k(n) = 0$. Hence x = f(n)(y), therefore $f(n) \in Aut(M(n))$, this equivalent to f_* is an automorphism of M_* .

Proposition 4.4

Let M a graded left A-module and M_* the associate complex of M and N a submodule of M et N_* invariant fully in M_* . Then : If N_* and M_*/N_* are strongly cohopfians, then M_* is strongly cohopfian.

Prove

Let f_* an endomorphism of M_* and N_* a fully invariant subcomplex of M_* . Then, for all $n \in \mathbb{Z}$, $f(n)(N) \subset M(n)$ and f(n) induces two endomorphisms $f_1(n)$ of N(n) and $\overline{f}(n)$ of M(n)/N(n) such that the following diagram commutes :

$$\begin{array}{c|c}
N(n) & \xrightarrow{i(n)} & M(n) & \xrightarrow{\pi(n)} & M(n)/N(n) \\
f_1(n) & & f(n) & & \overline{f}(n) \\
N(n) & \xrightarrow{i(n)} & M(n) & \xrightarrow{\pi(n)} & M(n)/N(n)
\end{array}$$

If N_* and M_*/N_* are strongly cohopfian, then it exists $s \ge 1$, for all $n \in \mathbb{Z}$ such that $\overline{f}^k(n)(M(n)/N(n) = \overline{f}^s(n)(M(n)/N(n))$. Again, it exists $m \ge 1$ such that $f_1^k(n)(N(n)) = f_1^m(n)(N(n))$ for all $k \ge m$. Put p = s + m. For each $x \in M(n)$, we have $\overline{f}^s(n)(\overline{x}) = \overline{f}^{s+1}(n)(\overline{y})$ for some $y \in M(n)$. This implies $t = f^s(n)(x) - f^{s+1}(n)(y) \in N(n)$. Hence $f^m(n)(t) = f_1^{p+1}(z)$, for some $z \in N(n)$. It becomes that $f^p(n)(x) = f^{p+1}(n)(y+z)$, hence $Imf^p(n) = Imf^{p+1}(n)$. Therefore M(n) is strongly cohopfian for all $n \in \mathbb{Z}$, so M_* is cohopfian.

Proposition 4.5

Let M a graded leftA-module, N a submodule and M_* the associate complex to M. If all subcomplex of M_* is cohopfian, then M_* is cohopfian.

Proof

Suppose that M_* is not strongly cohopfian, then for all $n \in \mathbb{Z}$ it exists an endomorphism $f(n) \in End(M(n))$ such that $Imf^k(n) \neq Imf$ for all $k \geq 1$. In particular, f(n) is not surjective, thus N(n) = Imf(n) is an own submodule of M(n). By hypothesis, N(n) is strongly cohopfian, thus the endomorphism $g(n) = f(n)|_{N(n)}$ of N(n), it exists $m \geq$ such that $Img^k(n) = Img^m(n)$ for all $n \geq m$. Let $x \in Imf^{m+1}(n)$, then it exists $y \in M(n)$ such that $x = f^{m+1}(n)(y) = f^m(n)(f(n)(y))$. Since $f(n)(y) \in N(n)$, thus $x \in Img^m(n) = Img^{2(m+1)}$, ie, it exists $z \in N(n)$ such that $x = g^{2(m+1)}(n)(z) = f^{2(m+1)}(n)(z)$. Therefore $Imf^{m+1}(n) = Imf^{2(m+1)}(n)$, contradicting the strongly cohopfian nature of M_* .

Références

- [1] E. C. Dade, *Group graded rings and modules*, Math. Z., 174 (1980), 241-262.
- [2] G. Renault, Algèbre non commutative, Gauthier-Villars, Paris-Bruxelles-Montréal (1975).
- [3] J. P. Lafon, *Algèbre commutative*, Hermann (1998).
- [4] J. Rotman, Notes on homological algebra, University of Illinois, Uraba (1968).
- [5] M. Artin, *Commutative rings*, cours note, M.I.T, (1966).
- [6] M. Barr and C. Wells, *Categorie Theory for Computing Science*, Prentice Hall (1990).
- [7] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison -Wesley Publishing Company, University of OXFORD.
- [8] M. F. Maaouia and M. Sanghare, Anneau de valuation non Nécessairement commutatif et duo-anneau de Dedekind, Global Journal of Pures and Applied Mathematics, ISSN 0973-1768, Volume 8, Number 1 (2012), pp. 49-63.
- [9] M. F. Maaouia, *Thèse d'état*, Faculté des Sciences et Techniques, UCAD, Dakar, Avril (2011).
- [10] M. Mendelson, Graded rings, modules and algebras, M.I.T, (1970).
- [11] OULD CHBIH Ahmed, Thèse, UFR-SAT, UGB, Saint-Louis, Avril (2016).
- [12] OULD CHBIH Ahmed, M. F. Maaouia and M. Sanghare, Graduation of Module of Fraction on a Graded Domain Ring not Necessarily Commutative, International Journal of Algebra, Vol. 9, 2015, no. 10, 457 - 474.
- [13] Diallo E. O. Maaouia M. F. and Sanghare M., Hopfian Objects, Cohopfian Objects in the category of complexes of left A-Modules, International Mathematical Forum, Vol 8, 2013, no 39, 1903-1920, http://dx.doi.org/10.12988/imf.2013.37128