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In this work, we intend to study metacompact spaces and locally metacompact spaces,and study 

their properties and their relations with order topological spaces.Several examples are discussed 

and many wellknown theorems are generalized concerning metacompact [7, 2, 8, 3, 4, 56]. 
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I. INTRODUCTION 

The notion of a metacompact in topological space (X,τ) 

introduced by [Arthur, 1945]. 

Further intensive study of such spaces has been done since 

then see for examples ([Engleking, 1989], [Willard, 1970], 

[Matveev, 1994]). 

In this paper, we study the notion of metacompact, and locally 

metacompact in topological spaces and derive some related 

results. 

In section one, In this section, we study the concept of 

metacompactness in topological spaces, and introduce some 

of their properties, and relate it to other spaces. We study a 

well-known definitions which will be used in the sequel. 

In section two, we study the concept of locally 

metacompactness in topological spaces, and prove several 

properties of these spaces. 

the terms τu, τdis, τcof and τcoc will denote the usual, discrete, 

cofinite and the co-countable topologies, respectively. 

 

II. METACOMPACTNESS IN TOPOLOGICAL 

SPACES 

In this section, we will study the concept of meatcompactness 

in topological spaces,and studt some of their properties. 

Definition 1. [11] A topological spaces (X,τ) is called 

metacompact, if every open cover of the space (X,τ) has point 

a finite parallel refinement. 

Theorem 1. [9] A countable compact metacompact space is 

compact. 

Example 1. The topological space (R,τcof) is metacompact 

space, since (R,τcof) is compact. 

Definition 2. [11] A topological space (X,τ) is called 

separable, if it has a dense countable subset D. It is clear that 

the topological spaces (R,τcof) and (R,τcoc) are separable. 

Theorem 2. [10] A separable metacompact space (X,τ) is 

Lindel¨of. 

Proof. Let U˜ = {Uα : α ∈ ∆} be an open cover of X. Assume 

that U˜ has no countable subcover of X. Let U˜ = {Vβ : β ∈ Γ} 

be a point finite parallel refinement of U˜. Let D be a 

countable dense subset of X. Then Vβ ∩ D 6= φ for each β ∈ 

Γ. Thus D is an uncountable set because U˜ is uncountable, 

which is a contradiction. Hence the claim.  

Definition 3. [11] A topological space (X,τ) is called 

countably metacompact, if every countable-open cover of the 

space (X,τ) has a point finite parallel refinement. 

Example 2. The topological space (N,τdis) is metacompact 

space. It is also countably metacompact. 

Theorem 3. Every Lindel¨of countably metacompact space 

(X,τ) is metacompact space. 

Proof. Let U˜ = {Uα : α ∈ ∆} be an open cover of X. Since X 

is Lindel¨of, then U˜ has a countable subcover, say 

. Since X is countably metacompact. Then 

A˜ has a point finite parallel refinement G of˘ U˜. Hence 

(X,τ) is metacompact.  

Theorem 4. [1] Every metalindel¨of countably metacompact 

space (X,τ) is metacompact space. 

Proof. Let U˜ = {Uα : α ∈ ∆} be an open cover of X. Since X 

is metalindelo¨f, then U˜ has a point countable parallel 

refinement , which is also an open cover of 

(X,τ). Since X is countably metacompact, then A˜ has a point 

finite parallel refinement G of˘ U˜. Hence (X,τ) is 

metacompact.  
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In [9] Engleking defined a cover {As : s ∈ S} of a space X 

to be irreducible, if ∪s∈S◦As 6= X for every proper subset S◦ of 

the set S. The following theorem is easily proved. 

Theorem 5. [11] Every point finite cover {As : s ∈ S} of a 

space X has an irreducible subcover. 

Example 3. The topological space (R,τdis) is metacompact, 

since τdis is open cover V = {{x} : x ∈ R} of R, it is also 

countably metacompact. It is clear that (R,τdis) is 

metaLindel¨of space. 

A. ON METACOMPACTNESS IN TOPOLOGICAL 

SPACES 3 

Theorem 6. [9] Every countably compact metacompact 

topological space (X,τ) is compact. 

Proof. Let U˜ = {Uα : α ∈ ∆} be any open cover of X, where 

{Uα : α ∈ ∆} is a set of open members of U˜. Now, since f is 

perfect, then for every y ∈ Y , we have f−1(y) is compact 

subset of X. So there exist finite subsets of ∆, such that

 
is an open subset of Y and 

. So, O˜ 

= {O˜ = {Oy : y ∈ Y }} is an open cover of Y . Since Y is 

metacompact, then O˜ has a point finite parallel refinement 

. Now,  is an open subset of 

X. Since f is perfect, then the set  is a 

point finite parallel refinement of X. Then, X is metacompact.  

Definition 4. [11] Let (X,τ) and (Y,σ) be topological spaces. 

Then the cartesian product of (X,τ) and (Y,σ) is the 

topological space (X × Y,τ × σ). 

Lemma 1. [9] If A is a compact subset of a topological space 

(X,τ) and B is a compact subset of a topological space (Y,σ) 

and A×B ⊆ W, where W is open subset of X ×Y , then there 

exist open sets U and V in X and Y respectively, such that A 

× B ⊆ U × V ⊆ W. 

Theorem 7. [9] If X is a compact, then the projection function 

f : X×Y → Y is closed, where (X,τ) and (Y,σ) are topological 

space. 

Proof. To show that the projection function f : X ×Y → Y is 

closed, we show that the projection function f : (X × Y,τ × σ) 

→ (Y,σ) is closed. 

Let y ∈ Y and let U be an open set in (X×Y,τ×σ), such that 

f−1({y}) ⊆ U. Then, by (Wallace Lemma), there exists 

σ−open set in Y , say Vy such that f−1({y}) = X×{y}⊆ X×Vy 

⊆ U. Then, y ∈ Vy and f−1({Vy}) = X×{Vy}⊆ U. So f : (X × 

Y,τ × σ) → (Y,σ) is closed function.  

Theorem 8. [9] The product of a compact space X and a 

metacompact space Y is metacompact, where (X,τ) and (Y,σ) 

are topological spaces. 

Proof. Let f : X × Y → Y be the projection function, such that 

(x,y). Then f : X × Y → Y is perfect function. Since Y is 

metacompact, then X × Y is metacompact.  

Theorem 9. [9] Let f : (X,τ) → (Y,σ) be a continuous, closed 

and onto function. Then Y is metacompact if X is so. 

Proof. Let A˜ = {Uα : α ∈ ∆) ∪{Vβ : β ∈ Γ} be any open cover 

of Y , where {Uα : α ∈ ∆} is σ−open members of A˜. Since f 

is continuous and onto function. Then, the set U˜ = {f−1(Uα) : 

α ∈ ∆}∪{f−1(Vβ) : β ∈ Γ} is an open cover of X. Since X is 

metacompact space, then there exists a point finite open 

parallel refinement of U˜, say 

. 

Thus,  is a 

point finite open parallel refinement of A˜. Then Y is 

metacompact.  

Lemma 2. [9] Let f : (X,τ) → (Y,σ) be a continuous and onto 

function. If A˜ = {Aα : α ∈ ∆} is a point finite family subset of 

X, then {f(Aα) : α∆} is a point finite family subset 

Definition 5. [9] A space (X,τ) is said to be metacompact, if 

every open cover of x has an open locally finite refinement. 

Definition 6. [11] A subset z of a space (X,τ) is said to be 

paracompact relative to X, if every open cover of z by 

members of τ has a locally finite parallel refinement in X by 

members of τ. 

Corollary 1. [11] Every paracompact spaces is metacompact. 

Theorem 10. [10] Every closed subspace of a metacompact 

space (X,τ) is metacompact. 

Proof. This result follows directly from the fact that every 

metacompact space (X,τ) is ortho-compact, and every closed 

subspace of an ortho-compact space 

(X,τ) is ortho-compact.  

Theorem 11. [9] Every metacompact subset of a Hausdorff 

locally indiscrete space (X,τ) is closed. 

Proof. Let f : (X,τ) → (Y,σ) be a bijection and continuous 

map, if (Y,σ) is Hausdorff and locally indiscrete space and 

(X,τ) is metacompact, then f is homeomorghism. It is 

sufficient to show that f is closed. Let A be a closed proper 

subset of X. Then A is a metacompact subset of X, since f : 

(X,τ) → (Y,σ) is continuous, then we have f(A) is 

metacompact subset of Y . So f(A) is a closed subset of Y . 

Then f : (X,τ) → (Y,σ) is closed function. Hence the resul 

Corollary 2. [9] Let f : (X,τ) → (Y,σ) be a bijection 

continuous map, if (Y,σ) is Hausdorff and locally indiscrete 

space and (X,τ) is paracompact, then f is homeomorphism. 

Corollary 3. [9] Let f : (X,τ) → (Y,σ) be a bijection 

continuous map, if (Y,σ) is Hausdorff and (X,τ) is compact 

then f is homomorphism. 

II. LOCALLY METACOMPACT SPACE 

In this section, we study the concept of locally 

metacompactness in topological space, and prove several 

properties of these spaces. 

A. Definition 7. [11] If (X,τ) is a topological space, then τ 

is said to be locally compact, if each point of X has an open 

neighborhood whose closure is compact. Note: every 

compact space is locally compact. 

Definition 8. [11] If (X,τ) is a topological space, then τ is said 

to be locally metacompact, if each point of X, has an open 

neighborhood whose closure is metacompact. 



“On Metacompactness in Topological Spaces” 

3496                                                                          Mohammad M.Rousan, IJMCR Volume 11 Issue 06 June 2023 

Example 4. The topological space (R,τdis) is locally 

metacompact. 

Theorem 12. [9] If a topological space (X,τ) is metacompact 

and A is a subset of X which is closed, then it is metacompact. 

If moreover A is a proper subset of X, then A is also 

metacompact. 

Proof. Let U˜ be any open cover of the subspace (A,τ∗), where 

τ∗ = {U ∩ A : U ∈ τ}. Then U˜ ∪{X − A} is a open cover of 

the metacompact space (X,τ) which has a point finite open 

parallel refinement for X and hence U˜ for A.  Corollary 4. 

[9] Every metacompact space is locally metacompact. 

Proof. We show that τ is locally metacompact. Let x ∈ X and 

U be any open neighborhood of x. Then CLU is a closed 

proper subset of a metacompact space X. So CLU is 

metacompact. Hence the result. Thus (X,τ) is locally 

metacompact. The following example shows that the 

converse of the above theorem needs not be true.  

Example 5. The topological space (R,τr.r) is locally 

metacompact but not metacompact. 

Theorem 13. [9] A topological space (X,τ) is regular, if for 

each point x ∈ X and open set U containing x, there exists an 

open set V containing x, such that x ∈ V ⊂ CLV ⊂ U. 

Theorem 14. [9] Let f : (X,τ) → (Y,σ) be an onto, continuous 

and open function. If (X,τ) is locally metacompact, then (Y,σ) 

is so. 

Proof. First we show that σ is locally metacompact. Let y ∈ 

Y . Then f−1(y) ∈ X, since (X,τ) is locally metacompact, then 

there is an open set U containing f−1(y), such that CLU is 

metacompact. Now, let f : (X,τ) → (Y,σ) is open, then f(U) is 

an open subset of Y and y ∈ f(U). Since f : (X,τ) → (Y,σ) is 

onto continuous, then f(CLU) is metacompact. Thus y ∈ f(U) 

⊂ CLf(U) ⊂ f(CLU) and f(CLU) is metacompact. So (Y,σ) is 

locally metacompact.  

Theorem 15. [9] Let f : (X,τ) → (Y,σ) be a perfect function. 

Then (X,τ) is locally metacompact if (Y,σ) is so. 

 

CONCLUSIONS 

In this paper,the metacompact spaces and the locally 

metacompact spaces as well as study their properties along 

withe their relations with some other topological spaces have 

been studied and discussed to outline several theoretical 

results.These results are generalization of several well known 

theorems concerning with metacompact spaces. 
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