International Journal of Mathematics and Computer Research ISSN: 2320-7167

Volume 11 Issue 06 June 2023, Page no. – 3497-3502 Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i6.05

Domination Nirmala Indices of Graphs

V. R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

ARTICLE INFO	ABSTRACT
Published Online:	In this study, we introduce the domination Nirmala index, modified domination Nirmala index
29 June 2023	and their corresponding exponentials of a graph.Furthermore, we compute these domination
Corresponding Author:	Nirmala indices for some standard graphs, windmill graphs, book graphs.
V. R. Kulli	

KEYWORDS: domination degree, domination Nirmala index, modified domination Nirmala index, graph.

I. INTRODUCTION

In this paper, *G* denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and edge set of *G*. The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to *u*. For undefined terms and notations, we refer the books [1, 2].

Graph indices have their applications in various disciplines of Science and Technology. For more information about graph indices, see [3]. Recently, some new graph indices were studied in [4, 5, 6].

The domination degree $d_d(u)$ [7] of a vertex u in a graph G is defined as the number of minimal dominating sets of G which contains u.

Recently, the so-called Nirmala index was put forward, defined as [8]

$$N(G) = \sum_{uv \in E(G)} \sqrt{d_G(u) + d_G(v)}.$$

Ref. [8] was soon followed by a series of publications [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

Inspired by work on Nirmala indices, we introduce the domination Nirmala index of a graph *G* as follows:

The domination Nirmala index of a graph G is defined as

$$DN(G) = \sum_{uv \in E(G)} \sqrt{d_d(u) + d_d(v)}$$

where $d_d(u)$ is the domination degree of a vertex u in G.

Considering the domination Nirmala index, we introduce the domination Nirmala exponential of a graph G and defined it as

$$DN(G, x) = \sum_{uv \in E(G)} x^{\sqrt{d_d(u) + d_d(v)}}$$

We introduce the modified domination Nirmala index of a graph G as follows:

The modified domination Nirmala index of a graph G is defined as

$$^{m}DN(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$

Considering the modified domination Nirmala index, we introduce the modified domination Nirmala exponential of a graph G and defined it as

$$^{m}DN(G,x) = \sum_{uv \in E(G)} x^{\frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}}.$$

We define the product domination Nirmala index of a graph *G* as

$$pDN(G) = \left(\sum_{uv \in E(G)} \sqrt{d_d(u) + d_d(v)}\right) \left(\sum_{uv \in E(G)} \frac{1}{\sqrt{d_d(u) + d_d(v)}}\right).$$

In this paper, the domination Nirmala index, modified domination Nirmala index and their corresponding exponentials of some standard graphs, windmill graphs, book graphs are computed.

II. THE DOMINATION NIRMALA INDEX AND ITS EXPONENTIAL OF GRAPHS

1. RESULTS FOR SOME STANDARD GRAPHS

Proposition 1. If K_n is a complete graph with *n* vertices, then

$$DN(K_n) = \frac{n(n-1)}{\sqrt{2}}.$$

"Domination Nirmala Indices of Graphs"

Proof: If K_n is a complete graph, then $d_d(u) = 1$.

From definition, we have

$$DN(K_n) = \sum_{uv \in E(K_n)} \sqrt{d_d(u) + d_d(v)}$$
$$= \frac{n(n-1)}{2} \sqrt{1+1} = \frac{n(n-1)}{\sqrt{2}}.$$

Proposition 2. If S_{n+1} is a star graph with $d_d(u) = 1$, then

$$DN(S_{n+1}) = \sqrt{2}n.$$

Proposition 3. If $S_{p+1,q+1}$, is a double star graph with $d_d(u) = 2$, then

$$DN(S_{p+1,q+1}) = 2(p+q+1).$$

Proposition 4. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then

$$DN(K_{m,n}) = mn\sqrt{m+n+2}.$$

Proof: Let $G = K_{m,n}$, m, $n \ge 2$ with $d_d(u) = m+1$

V(G).

= n+1, for all $u \in$

From definition, we have

$$DN(K_{m,n}) = \sum_{uv \in E(K_{m,n})} \sqrt{d_d(u) + d_d(v)}$$
$$= mn\sqrt{(m+1) + (n+1)} = mn\sqrt{m+n+2}$$

In the following proposition, by using definition, we obtain the domination Nirmala exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$.

Proposition 5. The domination Nirmala exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$ are given by

(i)
$$DN(K_n, x) = \sum_{uv \in E(G)} x^{\sqrt{d_d(u) + d_d(v)}}$$

 $= \frac{n(n-1)}{2} x^{\sqrt{1+1}} = \frac{n(n-1)}{2} x^{\sqrt{2}}.$
(ii) $DN(S_{n+1}, x) = nx^{\sqrt{2}}.$

(iii)
$$DN(S_{p+1,q+1},x) = (p+q+1)x^2.$$

(iv)
$$DN(K_{m,n}, x) = mnx^{\sqrt{m+n+2}}$$
.

2. RESULTS FOR FRENCH WINDMILL GRAPHS

The French windmill graph F_n^m is the graph obtained by taking $m \square 3$ copies of K_n , $n \square 3$ with a vertex in common. The graph F_n^m is presented in Figure 1. The French windmill graph F_3^m is called a friendship graph.

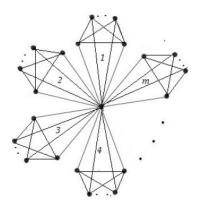


Figure 1. French windmill graph F_n^m

Let *F* be a French windmill graph F_n^m . Then

$$d_d(u) = 1$$
, if *u* is the center vertex,

 $=(n-1)^{m-1}$, otherwise.

Theorem 1. Let *F* be a French windmill graph F_n^m . Then

$${}^{m}DN(F) = m(n-1)\sqrt{1 + (n-1)^{(m-1)}} + [(mn(n-1)/2) - m(n-1)]\sqrt{2(n-1)^{(m-1)}}$$

Proof: In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

$$DN(F) = \sum_{uv \in E(G)} \sqrt{d_d(u) + d_d(v)}$$

= $\sum_{uv \in E_1(G)} \sqrt{d_d(u) + d_d(v)} + \sum_{uv \in E_2(G)} \sqrt{d_d(u) + d_d(v)}$
= $m(n-1)\sqrt{1 + (n-1)^{(m-1)}}$
+ $[(mn(n-1)/2) - m(n-1)]\sqrt{(n-1)^{(m-1)} + (n-1)^{(m-1)}}$
= $m(n-1)\sqrt{1 + (n-1)^{(m-1)}}$
+ $[(mn(n-1)/2) - m(n-1)]\sqrt{2(n-1)^{(m-1)}}$.
Corollary 1.1. Let F_3^m be a friendship graph. Then
 $DN(F_3^m) = 2m\sqrt{1 + 2^{(m-1)}} + m\sqrt{2^m}$.

In the following theorem, by using definition, we obtain the domination Nirmala exponential of $F_n^{\ m}$ and $F_3^{\ m}$.

Theorem 2. The domination Nirmala exponential of F_n^m

and F_3^m are given by

(i)
$$DN(F_n^m, x) = m(n-1)x^{\sqrt{1+(n-1)^{(m-1)}}} + [(mn(n-1)/2) - m(n-1)]x^{\sqrt{2(n-1)^{(m-1)}}}$$

(ii) $DN(F_3^m, x) = 2mx^{\sqrt{1+2^{(m-1)}}} + mx^{\sqrt{2^m}}.$

3. RESULTS FOR GoK_p

Theorem 3. Let $H=GoK_{p}$, where G is a connected graph with *n* vertices and *m* edges; and K_p is a complete graph. Then

$$DN(H) = \frac{1}{\sqrt{2}}(2m + np^2 + np)\sqrt{(p+1)^{n-1}}.$$

Proof: If $H = GoK_p$, then $d_d(u) = (p+1)^{n-1}$. In *F*, there are

 $\frac{p(p-1)}{2}$. edges. Thus *H* has $\frac{1}{2}(2m+np^2+np)$ edges. Thus

$$DN(H) = \sum_{uv \in E(H)} \sqrt{d_d(u) + d_d(v)}$$

= $\frac{1}{2} (2m + np^2 + np) \sqrt{(p+1)^{n-1} + (p+1)^{n-1}}$
= $\frac{1}{\sqrt{2}} (2m + np^2 + np) \sqrt{(p+1)^{n-1}}.$

In the following theorem, by using definition, we obtain the domination Nirmala exponential of GoK_p .

Theorem 4. The domination Nirmala exponential of GoK_p is given by

$$DN(GoK_p, x) = \frac{1}{2}(2m + np^2 + np)x^{\sqrt{2(p+1)^{n-1}}}.$$

4. RESULTS FOR B_n

The book graph B_n $n \ge 3$, is a cartesian product of star S_{n+1} and path P_2 .

For B_n , $n \ge 3$, we have $d_d(u) = 3$, if u is the center vertex, = $2^{n-1} + 1$, otherwise.

Theorem 5. If B_n , $n \ge 3$, is a book graph, then

$$DN(B_n) = \sqrt{6} + 2n\sqrt{4 + 2^{n-1}} + n\sqrt{2(2^{n-1} + 1)}.$$

Proof: In B_n , there are three types of edges as follow:

$$E_{1} = \{uv \Box E(B_{n}) \mid d_{d}(u) = d_{d}(v) = 3\}, \qquad |E_{1}| = 1 \quad E_{2} = \{uv \Box E(B_{n}) \mid d_{d}(u) = 3, d_{d}(v) = 2^{n-1} + 1\}, |E_{2}| = 2r.$$
$$E_{3} = \{uv \Box E(B_{n}) \mid d_{d}(u) = d_{d}(v) = 2^{n-1} + 1\}, \quad |E_{3}| = r.$$

By definition, we have

$$DN(B_n) = \sum_{uv \in E(H)} \sqrt{d_d(u) + d_d(v)}$$

= $1\sqrt{3+3} + 2n\sqrt{3+(2^{n-1}+1)}$
 $+ n\sqrt{(2^{n-1}+1) + (2^{n-1}+1)}$
= $\sqrt{6} + 2n\sqrt{4+2^{n-1}} + n\sqrt{2(2^{n-1}+1)}.$

In the following theorem, by using definition, we obtain the domination Nirmala exponential of B_n .

Theorem 6. The domination Nirmala exponential of GoK_p is given by

$$DN(B_n, x) = x^{\sqrt{6}} + 2nx^{\sqrt{4+2^{n-1}}} + nx^{\sqrt{2(2^{n-1}+1)}}.$$

II. THE MODIFIED DOMINATION NIRMALA INDEX AND ITS EXPONENTIAL OF GRAPHS

5. RESULTS FOR SOME STANDARD GRAPHS

Proposition 6. If K_n is a complete graph with *n* vertices, then

$$^{m}DN(K_{n})=\frac{n(n-1)}{2\sqrt{2}}.$$

Proof: If K_n is a complete graph, then $d_d(u) = 1$.

From definition, we have

$${}^{m}DN(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_d(u) + d_d(v)}}$$
$$= \frac{n(n-1)}{2} \frac{1}{\sqrt{1+1}} = \frac{n(n-1)}{2\sqrt{2}}.$$

Proposition 7. If S_{n+1} is a star graph with $d_d(u) = 1$, then

$$^{m}DN(S_{n+1})=\frac{n}{\sqrt{2}}.$$

Proposition 8. If $S_{p+1,q+1}$ is a double star graph with $d_d(u) = 2$, then

$$^{m}DN(S_{p+1,q+1}) = \frac{p+q+1}{2}.$$

Proposition 9. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then

$$^{m}DN(K_{m,n}) = \frac{mn}{\sqrt{m+n+2}}$$

In the following proposition, by using definition, we obtain the modified domination Nirmala exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$.

Proposition 10. The modified domination Nirmala exponential of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$ are given by

(i)
$${}^{m}DN(K_{n},x) = \sum_{uv \in E(G)} x^{\frac{1}{\sqrt{d_{d}(u)+d_{d}(v)}}}$$

 $= \frac{n(n-1)}{2} x^{\frac{1}{\sqrt{1+1}}} = \frac{n(n-1)}{2} x^{\frac{1}{\sqrt{2}}}.$
(ii) ${}^{m}DN(S_{n+1},x) = nx^{\frac{1}{\sqrt{2}}}.$
(iii) ${}^{m}DN(S_{p+1,q+1},x) = (p+q+1)x^{\frac{1}{2}}.$

(iv) ${}^{m}DN(K_{m,n},x) = mnx\overline{\sqrt{m+n+2}}$.

6. RESULTS FOR FRENCH WINDMILL GRAPHS

Theorem 7. Let *F* be a French windmill graph F_n^m . Then

$${}^{m}DN(F) = \frac{m(n-1)}{\sqrt{1 + (n-1)^{(m-1)}}} + \frac{[(mn(n-1)/2) - m(n-1)]}{\sqrt{2(n-1)^{(m-1)}}}$$

Proof: In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

$${}^{m}DN(F) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$
$$= \sum_{uv \in E_{1}(G)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}} + \sum_{uv \in E_{2}(G)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$

$$= \frac{m(n-1)}{\sqrt{1+(n-1)^{(m-1)}}} + \frac{[(mn(n-1)/2) - m(n-1)]}{\sqrt{(n-1)^{(m-1)}+(n-1)^{(m-1)}}}$$
$$= \frac{m(n-1)}{\sqrt{1+(n-1)^{(m-1)}}} + \frac{[(mn(n-1)/2) - m(n-1)]}{\sqrt{2(n-1)^{(m-1)}}}$$

Corollary 7.1. Let F_3^m be a friendship graph. Then

$$^{m}DSN(F_{3}^{m}) = \frac{2m}{\sqrt{1+2^{(m-1)}}} + \frac{m}{\sqrt{2^{m}}}.$$

In the following theorem, by using definition, we obtain the modified domination Nirmala exponential of F_n^m and F_3^m .

Theorem 8. The modified domination Nirmala exponential of F_n^m and F_3^m are given by

(i)
$${}^{m}DN(F_{n}^{m},x) = m(n-1)x^{\frac{1}{\sqrt{1+(n-1)^{(m-1)}}}} + [(mn(n-1)/2) - m(n-1)]x^{\frac{1}{\sqrt{2(n-1)^{(m-1)}}}}.$$

(ii) ${}^{m}DN(F_{3}^{m},x) = 2mx^{\frac{1}{\sqrt{1+2^{(m-1)}}}} + mx^{\frac{1}{\sqrt{2^{m}}}}.$

7. RESULTS FOR GoK_p

Theorem 9. Let $H=GoK_{p}$, where G is a connected graph with *n* vertices and *m* edges; and K_p is a complete graph. Then

$$^{m}DN(H) = \frac{2m + np^{2} + np}{2\sqrt{2(p+1)^{n-1}}}.$$

Proof: If $H = GoK_p$, then $d_d(u) = (p+1)^{n-1}$. In *F*, there are $\frac{p(p-1)}{2}$. edges. Thus *H* has $\frac{1}{2}(2m+np^2+np)$ edges.

Thus

$${}^{m}DN(H) = \sum_{uv \in E(H)} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$

= $\frac{(2m + np^{2} + np)}{2} \frac{1}{\sqrt{(p+1)^{n-1} + (p+1)^{n-1}}}$
= $\frac{2m + np^{2} + np}{2\sqrt{2(p+1)^{n-1}}}.$

In the following theorem, by using definition, we obtain the domination Nirmala exponential of GoK_p .

Theorem 10. The domination Nirmala exponential of GoK_p is given by

$$^{m}DN(GoK_{p},x) = \frac{1}{2}(2m+np^{2}+np)x^{\sqrt{2(p+1)^{n-1}}}$$

8. RESULTS FOR B_n

The book graph $B_{n, n \ge 3}$, is a cartesian product of star S_{n+1} and path P_{2} .

For B_n , $n \ge 3$, we have $d_d(u) = 3$, if u is center vertex,

$$= 2^{n-1} + 1$$
, otherwise.

Theorem 11. If $B_{n,n} \ge 3$, is a book graph, then

$$DN(B_n) = \sqrt{6} + 2n\sqrt{4 + 2^{n-1}} + n\sqrt{2(2^{n-1} + 1)}.$$

Proof: In B_n , there are three types of edges as follow:

$$E_{1} = \{uv \Box E(B_{n}) \mid d_{d}(u) = d_{d}(v) = 3\}, \qquad |E_{1}| = 1.$$

$$E_{2} = \{uv \Box E(B_{n}) \mid d_{d}(u) = 3, \ d_{d}(v) = 2^{n-1} + 1\}, \ |E_{2}| = 2r.$$

$$E_{3} = \{uv \Box E(B_{n}) \mid d_{d}(u) = d_{d}(v) = 2^{n-1} + 1\}, \quad |E_{3}| = r.$$

By definition, we have

$${}^{m}DN(B_{n}) = \sum_{uv \in E(B_{n})} \frac{1}{\sqrt{d_{d}(u) + d_{d}(v)}}$$
$$= \frac{1}{\sqrt{3+3}} + \frac{2n}{\sqrt{3+(2^{n-1}+1)}} + \frac{n}{\sqrt{(2^{n-1}+1)+(2^{n-1}+1)}}$$
$$= \frac{1}{\sqrt{6}} + \frac{2n}{\sqrt{4+2^{n-1}}} + \frac{n}{\sqrt{2(2^{n-1}+1)}}.$$

In the following theorem, by using definition, we obtain the modified domination Nirmala exponential of B_n .

Theorem 12. The domination Nirmala exponential of GoK_p is given by

$$^{m}DN(B_{n},x) = x^{\frac{1}{\sqrt{6}}} + 2nx^{\frac{1}{\sqrt{4+2^{n-1}}}} + nx^{\frac{1}{\sqrt{2(2^{n-1}+1)}}}.$$

Problems:

(i) Determine the properties of *DN*.

- (ii) Establish the lower and upper bounds for *DN*.
- (iii) Determine the properties of *pDN*.
- (iv) Establish the lower and upper bounds for *pDN*.

III. CONCLUSION

In this paper, the domination Nirmala index, modified domination Nirmala index and their corresponding exponentials of some standard graphs, windmill graphs, book graphs are computed.

REFERENCES

- 1. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- 2. V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India (2010).
- V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds) IGI Global, USA (2019) 66-91.
- V.R.Kulli, Computing Banhatti indices of networks, International Journal of Advances in Mathematics, 2018(1) 2018) 31-40.
- 5. V.R.Kulli, Dakshayani indices, Annals of Pure and Applied Mathematics, 18(2) (2018) 139-146.
- V.R.Kulli, Neighborhood indices of nanostructures, International Journal of Current Research in Life Sciences, 8(1) (2019) 2998-3006.
- A.M.Hanan Ahmed, A.Alwardi and M.Ruby Salestina, On domination topological indices of graphs, International Journal of Analysis and Applications, 19(1) (2021) 47-64.
- V.R.Kulli, Nirmala index, International Journal of Mathematics Trends and Technology,67(3) (2021) 8-12.

- V.R.Kulli, V.Lokesha and Nirupadi K, Computation of inverse Nirmala indices of certain nanostructures, International Journal of Mathematical Combinatorics, 2 (2021) 32-39.
- 10. V.R.Kulli and I.Gutman, On some mathematical properties of Nirmala index, Annals of Pure and Applied Mathematics, 23(2) (2021) 93-99.
- I.Gutman and V.R.Kulli, Nirmala energy, Open Journal of Discrete Applied Mathematics, 4(2) (2021) 11-16.
- 12. Mohit R. Nandargi and V.R.Kulli, The (a, b)-Nirmala index, International Journal of Engineering Sciences and Research Technology, 11(2) (2022) 37-42.
- 13. V.R.Kulli, Neighborhood Nirmala index and its exponential of nanocones and dendrimers, International Journal of Engineering Sciences and Research Technology, 10(5) (2021) 47-56.
- V.R.Kulli, On multiplicative inverse Nirmala indices, Annals of Pure and Applied Mathematics, 23(2) (2021) 57-61.
- V.R.Kulli, Different versions of Nirmala index of certain chemical stuctures, International Journal of Mathematics Trends and Technology, 67(7) (2021) 56-63.
- V.R.Kulli, New irregularity Nirmala indices of some chemical structures, International Journal of Engineering Sciences and Research Technology, 10(8) (2021) 33-42.
- I.Gutman, V.R.Kulli and I.Redzepovic, Nirmala index of Kragujevac trees, International Journal of Mathematics Trends and Technology, 67(6) (2021) 44-49.
- V.R.Kulli, B.Chaluvaraju and T.V.Asha, Computation of Nirmala indices of some chemical networks, Journal of Ultra Scientists of Physical Sciences-A, 33(4) (2021) 30-41.
- V.R.Kulli, Banhatti Nirmala index of certain chemical networks, International Journal of Mathematics Trends and Technology, 68(4) (2022) 12-17.
- 20. V.R.Kulli, Status Nirmala index and its exponential of a graph, Annals of Pure and Applied Mathematics, 25(2) (2021) 85-90.
- V.R.Kulli, HDR Nirmala index, International Journal of Mathematics and Computer Research, 10(7) (2022) 2796-2800.
- 22. V.R.Kulli, Computation of E-Bnhatti Nirmala indices of tetrameric 1,3-Adamantane, Annals of Pure and Applied Mathematics, 26(2) (2022) 119-124.
- 23. V.R.Kulli, Reverse Nirmala index, International Journal of Engineering Sciences and Research Technology, 10(8) (2022) 12-19.

- 24. V.R.Kulli, Revan Nirmala index, Annals of Pure and Applied Mathematics, 26(1) (2022) 7-13.
- V.R.Kulli, Multiplicative Nirmala and Banhatti-Nirmala indices of certain nanostar dendrimers, International Journal of Mathematical Archive, 13(10) (2022) 8-15.
- V.R.Kulli, Temperature Sombor and Temperature Nirmala indices, International Journal of Mathematics and Computer Research, 10(9) (2022) 2910-2915.
- 27. V.R.Kulli, Edge versions of Sombor and Nirmala indices of some nanotubes and nanotori, International Journal of Mathematics and Computer Research, 11(3) (2023) 3305-3310.
- V.R.Kulli, Gourava Nirmala indices of certain nanostructures, International Journal of Mathematical Archive, 14(2) (2023) 1-9.
- 29. A.H.Karim, N.E.Arif and A.M.Ramadan, The M-Polynomial and Nirmalaindex of certain composite graphs, Tikrit Journal of Pure Science, 27(3) (2022) 92-101.
- N.K.Raut and G.K.Sanap, On Nirmala indices of carbon nanocone C4[2], IOSR Journal of Mathematics, 18(4) (2022) 10-15.
- N.F.Yalcin, Bounds on Nirmala energy of graphs, Acta Univ. Sapientiae Informatica, 14(2) (2022) 302-315.