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1. INTRODUCTION 

Fractional calculus which originated at the time of 

development of the classical calculus is the theory of 

differentiation and integration of arbitrary order. In the last 

few decades, fractional models have a great attention in 

various disciplines, such as Medicine, Economics, Dynamical 

problems, Mathematical physics, Traffic model, Fluid flow, 

Bio Sciences, Bio Engineering, Electro chemistry, 

Electromagnetism, Viscoelasticy and so on.  

Moreover, most fractional models have no exact solutions. 

Owing this fact, many researchers have engaged in 

developing the numerical techniques for fractional models. 

Among these numerical techniques are variational iteration 

method,  Adomian decomposition method, Finite element 

method, Finite difference method, Homotopy analysis 

method, Homotopy perturbation method, Spectral tau method 

and Spline collocation method. Some polynomials namely, 

Shifted Chebyshev polynomials[1], Laguerre 

polynomials[4], Bernstein Polynomials[5], fractional-order 

Lagrange polynomials[16], Bernoulli polynomials[17] and 

Chelyshkov polynomials [18] are also employed to solve 

fractional models numerically. 

Recently, orthogonal wavelets have become more popular 

numerical techniques for solving differential and integral 

equations due to their excellent properties. Many researchers  

 

 

have employed the operational matrices of fractional 

integrations of Chebyshev wavelets[3], Haar wavelets[9], 

Müntz-Legendre wavelets[13], Bernoulli wavelets[12], 

Legendre wavelets[14,15,20], Taylor wavelets[19], Second 

kind Chebyshev wavelets[21] and Euler wavelets[22] to find 

the approximate solutions of arbitrary order differential and 

integral equations.  

The primary goal of this study is to develop 

numerical solutions of mixing problems, cooling problems 

and problems involving sugar inversion using the Legendre 

wavelet operational matrix. 

This article is classified as follows. Section 2 

provides a quick overview of fundamental concepts 

definitions and characteristics of fractional calculus. Section 

3 provides a brief description of function approximation using 

Legendre wavelets and the operational matrix for fractional 

integration of Legendre wavelets. Section 4 explains the 

simplicity and applicability of the suggested technique with 

reference to a few fractional models. In section 5, the 

conclusion is reached. 

 

2. PRELIMINARIES 

Here, we cover fractional order integral and differential 

operators along with some fundamental fractional calculus 

concepts. 
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Definitions 2.1. [2,8,10,11] The Riemann derivative of fractional order 𝜇 ≥ 0, of the function ℎ(𝑡) ∈ 𝐿1([0,∞)), is given by 

𝐽𝜇ℎ(𝑡) =

{
 

 
1

𝛤(𝜇)
∫ (𝑡 − 𝜐)μ−1ℎ(𝜐)
𝑡

0

𝑑𝜐,    𝜇 > 0.

ℎ(𝑡),                      𝜇 = 0.

 

 

Let ℎ(𝑡), 𝑔(𝑡) ∈ 𝐿1([0,∞)),  𝛾, 𝜆, 𝑣 > −1, 𝜇 ≥ 0 ∈ ℝ. 

Then, the following properties are attained. 

i. 𝐽𝜇(𝛾ℎ(𝑡) + 𝜆𝑔(𝑡)) = 𝛾𝐽𝜇ℎ(𝑡) + 𝜆𝐽𝜇𝑔(𝑡). 

ii. 𝐽𝜇𝑡𝑣 =
𝛤(𝑣+1)

𝛤(𝜇+𝑣+1)
𝑡𝜇+𝑣. 

 

Definitions 2.2. [2,8,10,11] The caputo derivative of fractional order 𝜇 ≥ 0, of the function ℎ(𝑡) ∈ 𝐿1([0,∞)), is given by 

𝐷𝜇ℎ(𝑡) = 𝐽𝑚−𝜇(𝐷𝑚ℎ(𝑡)) =

{
 
 

 
 

1

𝛤(𝑚 − 𝜇)
∫

ℎ(𝑚)(𝜐)

(𝑡 − 𝜐)𝜇−𝑚+1

𝑡

0

𝑑𝜐,    𝑚 − 1 < 𝜇 < 𝑚,  𝑚 ∈ ℕ.

𝑑𝑚

𝑑𝑡𝑚
ℎ(𝑡),                      𝜇 = 𝑚 ∈ ℕ.

 

Let 𝑔(𝑡), ℎ(𝑡) ∈ 𝐿1([0,∞)),  𝛾, 𝜆 ∈ ℝ, 𝜈 >,  𝜇 ≥ 0. 

Then, the following properties are attained. 

i. 𝐷𝜇𝑘 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

ii. 𝐷𝜇(𝛾ℎ(𝑡) + 𝜆𝑔(𝑡)) = 𝛾(𝐷𝜇ℎ(𝑡)) + 𝜆(𝐷𝜇𝑔(𝑡)). 

iii. 𝐷𝜇 ((𝐽𝜇ℎ(𝑡)) = ℎ(𝑡)). 

iv. 𝐷𝜇 ((𝐽𝜇ℎ(𝑡)) = ℎ(𝑡)) − ∑ ℎ(ℓ)(0+)𝑚−1
ℓ=0

𝑡ℓ

ℓ!
,        𝜇 ∈ (𝑚 − 1,𝑚], 

where t > 0, 𝑚 ∈ ℕ and ℎ(ℓ)(0+) : = lim𝑡→0+𝐷
(ℓ)ℎ(𝑡), ℓ = 0 𝑡𝑜 𝑚 − 1. 

 

3. LEGENDRE WAVELETS APPROXIMATIONS OF FUNCTIONS 

 The Legendre wavelet and its fractional integral operational matrix are now covered. 

3.1 wavelets 

A family of functions made up of dilations and translations of a mother wavelet function 𝜓(𝑡) over ℝ is known as wavelets. The 

following family of continuous wavelets are obtained by continually varying the translation parameter 𝑐 and dilation parameter𝑏. 

𝜓𝑏𝑐(𝑡) =∣ 𝑏 ∣

−
1
2

𝜓 (
𝑡 − 𝑐

𝑏
) , 𝑏 ≠ 0, 𝑐 ∈ ℝ. 

Taking 𝑏 = 𝑏0
−𝑢, 𝑐 = 𝑣𝑐0𝑏0

−𝑢, 𝑏0 > 1, 𝑐0 > 0 , 𝑢, 𝑣 ∈ ℕ, the following family of discrete wavelets are arrived. 

𝜓𝑢𝑣(𝑡) =∣ 𝑏0 ∣

−
𝑢
2

𝜓(𝑏0
𝑢𝑡 − 𝑣𝑐0), 

Where {𝜓𝑢𝑣(𝑡)} forms a basis for 𝐿2(ℝ). Particularly, when 𝑏0 = 2 and 𝑐0 = 1, {𝜓𝑢𝑣(𝑡)} forms an orthonormal basis for 𝐿2(ℝ).  

The Legendre wavelets over the interval[0, 𝑇), 𝑇 ∈ ℝ+ are defined as 

          𝜓𝑝𝑞(𝑡) =

{
 
 

 
 
2
k
2 (𝑞 +

1

2
)

1
2
2
𝑘
2𝐿𝑞(2

𝑘𝑡 − 𝑛̂),   𝑡 ∈ [
(𝑛̂ − 1)𝑇

2𝑘
,
(𝑛̂ + 1)𝑇

2𝑘
) .

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                          (1) 

where  𝑝 = 1 𝑡𝑜 2𝑘−1, 𝑞 = 0 𝑡𝑜 𝑀 − 1, 𝑀, 𝑘 ∈ ℕ and  𝑛̂ = 2𝑝 − 1. The coefficient (𝑞 +
1

2
)

1

2
 in (1) is utilized for the condition of 

orthonormality. Additionally, 𝐿𝑞(𝑡) are mutually perpendicular Legendre polynomials of order 𝑞 with respect to the weight function 

𝑤(𝑡) = 1 over [−1,1] and fulfil the following recurrence formulae. 

For 𝑞 = 0,1,2,3, … . , 𝐿𝑞+1(𝑡) = (
2𝑞+1

𝑞+1
) 𝑡𝐿𝑞(𝑡) − (

𝑞

𝑞+1
) 𝐿𝑞−1(𝑡), where 𝐿0(𝑡) = 1, 𝐿1(𝑡) = 𝑡. 

 

3.2 Approximation of square integrable functions 

Legendre wavelets can be applied to represent every function ℎ(𝑡) from 𝐿2([0, 𝑇)) as follows 

                           ℎ(𝑡) = ∑∑𝑐𝑝𝑞

∞

𝑞=0

∞

𝑝=1

𝜓𝑝𝑞(𝑡),                                                                                       (2) 
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where the following  inner product resolves the coefficients 𝑐𝑝𝑞. 

⟨ℎ(𝑡), 𝜓𝑝𝑞(𝑡)⟩ = ∫ ℎ
𝑇

0

(𝑡)𝜓𝑝𝑞(𝑡)𝑑𝑡. 

If series in (2) is truncated, ℎ(𝑡) can be roughly calculated as 

                       ℎ(𝑡) ≈ ∑ ∑ 𝑐𝑝𝑞

𝑀−1

𝑞=0

2𝑘−1

𝑝=1

𝜓𝑝𝑞(𝑡).                                                                                          (3) 

To make things easier,(3) be expressed as 

                                               ℎ(𝑡) ≈ ∑𝑐𝑖

𝑁

𝑖=1

𝜓𝑖(𝑡) = 𝐶𝜒(𝑡),                                                                (4) 

where𝑁 = 2𝑘−1𝑀, 𝜓𝑖(𝑡) = 𝜓𝑝𝑞(𝑡), 𝜒(𝑡) = [𝜓1(𝑡), 𝜓2(𝑡), . . . , 𝜓𝑁(𝑡)]
′ , 𝑐𝑖 = 𝑐𝑝𝑞, 𝐶 = [𝑐1, 𝑐2, . . , 𝑐𝑁]1×𝑁, is the coefficient vector 

and the index 𝑖 is determined by the relation 𝑖 = (𝑝 − 1)𝑀 + 𝑞 + 1. By discretising (4)at the collocation points 𝑡𝑖 =
2𝑖−1

2𝑁
, 𝑖 =

1 𝑡𝑜 𝑁, we attain 

                                                                   𝐻 ≈ 𝐶𝛷𝑁×𝑁 ,                                                                         (5) 

where 𝐻 = [ℎ(𝑡1), ℎ(𝑡2), . . . , ℎ(𝑡𝑁)]1×𝑁  and 𝛷𝑁×𝑁 = [𝜒(𝑡1), χ(𝑡2), . . . , 𝜒(𝑡𝑁)] is a Legendre wavelet coefficient matrix of order 𝑁. 

Especifically, for 𝑘 = 2, 𝑀 = 3 and 𝑇 = 1 the Legendre wavelet coefficient matrix becomes 

𝛷6×6 =

(

  
 

1.4142 1.4142 1.4142 0 0 0
−1.6330 0 1.6330 0 0 0
0.5270 −1.5811 0.5270 0 0 0
0 0 0 1.4142 1.4142 1.4142
0 0 0 −1.6330 0 1.6330
0 0 0 0.5270 −1.5811 0.5270)

  
 

 

 

3.3 Legendre wavelets operational matrix of fractional integration  

According to [6], the ‘N’ Block pulse functions (BPFs) on [0, 𝑇) are given by 

𝑏ℓ(𝑡) = {
1,     

(ℓ − 1)𝑇

𝑁
≤ t <

ℓ𝑇

𝑁
,

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where  ℓ = 1 𝑡𝑜 𝑁, 𝑁 ∈ ℕ. 

For 𝑡 ∈ [0, 𝑇), 

𝑏ℓ(𝑡)𝑏𝑚(𝑡) = {
𝑏ℓ(𝑡),     ℓ = 𝑚.
0,          ℓ ≠ 𝑚.

 

and 

∫ 𝑏ℓ

𝑇

0

(𝑡)𝑏𝑚(𝑡)𝑑𝑡 = {

𝑇

𝑁
,      ℓ = 𝑚.

0,       ℓ ≠ 𝑚.
 

Every function  ℎ(𝑡) ∈ L2([0,T)) can be written in terms of BPFs as 

ℎ(𝑡) ≈∑ℎℓ

𝑁

ℓ=1

𝑏ℓ(𝑡) = ℎ
′𝐵𝑁(𝑡), 

where 𝐵𝑁(𝑡) = [𝑏1(𝑡), 𝑏2(𝑡), . . . , 𝑏𝑁(𝑡)]
′, ℎ = [ℎ1, ℎ2, . . . , ℎ𝑁]

′and ℎℓ =
𝑁

𝑇
∫ ℎ
ℓ𝑇

𝑁
(ℓ−1)𝑇

𝑁

(𝑡)𝑏ℓ(𝑡)𝑑𝑡. 

The relationship between the Legendre wavelets and the BPFs is given by 

                                                      𝜒(𝑡) = 𝛷𝑁×𝑁𝐵𝑁(𝑡).                                                                        (6) 

According to [6] , the integration  𝐽𝜇 with fractional order 𝜇 ≥ 0 of  𝐵𝑁(𝑡) is approximated 

                                                   𝐽𝜇(𝐵𝑁(𝑡)) ≈ 𝐹𝑁×𝑁
𝜇

𝐵𝑁(𝑡),                                                                  (7) 

where 𝐹𝑁×𝑁
𝜇

 is the Block pulse operational matrix of 𝐽𝜇(𝐵𝑁(𝑡)), 

𝐹𝑁×𝑁
𝜇

= (
𝑇

𝑁
)
𝜇 1

𝛤(𝜇 + 2)

(

 
 
 
 

1 𝜉1 𝜉2 𝜉3 … 𝜉𝑁−1
0 1 𝜉1 𝜉2 … 𝜉𝑁−2
0 0 1 𝜉1 … 𝜉𝑁−3
0 0 0 1 … 𝜉𝑁−4
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 … 𝜉1
0 0 0 0 … 1 )

 
 
 
 

 

with  𝜉𝑠 = (𝑠 − 1)𝜇+1 − 2𝑠𝜇+1 + (𝑠 + 1)𝜇+1.  
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The integration 𝐽𝜇 with fractional order 𝜇 ≥ 0  of  𝜒(𝑡) is approximated as, 

                                              𝐽𝜇  (𝜒(𝑡)) ≈ 𝑃𝑁×𝑁
𝜇

𝜒(𝑡),                                                                            (8) 

where 𝑃𝑁×𝑁
𝜇

 is referred to as the Legendre wavelets operational matrix of order N for fractional integration with order 𝜇 ≥ 0. Using 

(6) and (7), we arrive 

              𝐽𝜇(𝜒(𝑡)) = 𝐽𝜇(𝛷𝑁×𝑁𝐵𝑁(𝑡)) = 𝛷𝑁×𝑁𝐽
𝜇(𝐵𝑁(𝑡)) ≈ 𝛷𝑁×𝑁𝐹𝑁×𝑁

𝜇
𝐵𝑁(𝑡).                       (9) 

Thus, combining (8) and (9) we obtain 

𝑃𝑁×𝑁
𝜇

𝜒(𝑡) ≈ 𝐽𝜇(χ(𝑡)) ≈ 𝛷𝑁×𝑁𝐹𝑁×𝑁
𝜇

𝐵𝑁(𝑡) = 𝛷𝑁×𝑁𝐹𝑁×𝑁
𝜇 (𝛷𝑁×𝑁)

−1χ(𝑡) 

and so 

                                                   𝑃𝑁×𝑁
𝜇

≈ 𝛷𝑁×𝑁𝐹𝑁×𝑁
𝜇 (𝛷𝑁×𝑁)

−1.                                                       (10) 

Especially, for 𝑀 = 3, 𝑘 = 2, 𝑇 = 1 and 𝜇 = 0.5, the Legendre wavelet operational matrix for fractional integration becomes, 

𝑃6×6
0.5 =

(

 
 
 

0.5282 0.1819 −0.0298 0.4438 −0.0871 0.0256
−0.1452 0.2243 0.1329 0.0799 −0.0449 0.0198
−0.0598 −0.0964 0.1688 −0.0417 −0.0002 0.0029

0 0 0 0.5282 0.1819 −0.0298
0 0 0 −0.1452 0.2243 0.1329
0 0 0 −0.0598 −0.0964 0.1688 )

 
 
 

 

 

4. ILLUSTRATIVE EXAMPLES 

The applicability and the simplicity of the Legendre wavelet-based numerical algorithm are elucidated by the following fractional 

models. 

Example 4.1. [7]  Mixing Problem:  200 litres of water with 40 kilograms of dissolved salt are contained in a tank.  Five litres of 

brine, each containing 2 kilograms of dissolved salt run into the tank per minute and the mixture which is  kept uniform by stirring 

flows out at the same rate. Find the amount of salt 𝑦(𝑡) in the tank at any time 𝑡. 

Solution: 

First step.(Modeling). The fractional order time rate of change 
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
 of the amount of salt 𝑦(𝑡) in the tank at any time t equals the 

difference between salt inflow and salt outflow. The salt inflow rate is 10 kilograms per minute. Since the tank always contains 

200 litres of brine, the salt out flow rate is 0.025𝑦(𝑡). 

Thus, 

                                 
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
= 10 − 0.025𝑦(𝑡),       0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑇,                          (11) 

with the initial condition 𝑦(0) = 40. When 𝜇 = 1, the exact solution of  (11) is 𝑦(𝑡) = 400 − 360𝑒−0.025𝑡. 

Suppose 

                                                
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
≈ 𝐶𝜒(𝑡).                                                                         (12) 

Then  

                                                 𝑦(𝑡) = 𝐽𝜇 (
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
) ≈ 𝐶𝑃𝜇𝜒(𝑡) + 𝑦(0).                                     (13) 

Using(12), (13) in (11), we have  

                                        𝐶𝜒(𝑡) + 0.025(𝐶𝑃𝜇𝜒(𝑡) + 40) − 10 = 0.                                            (14) 

We can attain the coefficient vector 𝐶 by solving the equation (14) at 𝑡𝑖 =
(2𝑖−1)𝑇

2𝑁
, 𝑖 = 1 to 𝑁. Using the coefficient vector 𝐶 in 

(13), we get the numerical solutions of (11) for any time t in [0, 𝑇). 

 

Table 1: The achieved absolute errors and numerical solutions of Example 4.1 using the proposed strategy for 𝑴 = 𝟒, 𝒌 = 𝟐 

and 𝑻 = 𝟏. 

𝑡 𝜇 = 0.25 𝜇 = 0.5 𝜇 = 0.75 𝜇 = 0.95 𝜇 = 1 Exact Absolute error 𝜇 = 1 

0.0625 44.6621 42.3778 41.1725 40.6521 40.5616 40.5621 4.3831e-04 

0.1875 46.4034 44.3347 42.7662 41.8652 41.6831 41.6836 4.3603e-04 

0.3125 47.2756 45.5979 44.0579 43.0272 42.8011 42.8015 4.3376e-04 

0.4375 47.9058 46.6142 45.2154 44.1613 43.9156 43.9160 4.3150e-04 

0.5625 48.4094 47.4878 46.2869 45.2752 45.0266 45.0271 4.2926e-04 

0.6875 48.8333 48.2652 47.2958 46.3731 46.1342 46.1346 4.2702e-04 

0.8125 49.2017 48.9719 48.2560 47.4574 47.2383 47.2387 4.2479e-04 

0.9375 49.5291 49.6240 49.1766 48.5299 48.3390 48.3394 4.2257e-04 
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Example 4.2.[7] Mixing Problem:  400 litres of brine containing 100 kilograms of dissolved salt are kept in a tank. Two litres of 

fresh water per minute flow into the tank and the mixture which is essentially kept uniform by stirring also flows out at the same 

rate. Determine the salt content 𝑦(𝑡) in the tank at the time𝑡. 

Solution: 

First step.(modeling).The fractional order time rate of change 
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
 of the amount of salt 𝑦(𝑡) in the tank at any time 𝑡 equals the 

difference between salt inflow and salt outflow. The salt inflow rate is 2 litres per minute. Since the tank always contains 400litres 

of brine, the salt out flow rate is 0.005𝑦(𝑡) 

Thus, 

                           
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
= 0 − 0.005𝑦(𝑡),       0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑇,                                   (15) 

with the initial condition 𝑦(0) = 100. When 𝜇 = 1, the exact solution of  (15 ) is 𝑦(𝑡) = 100𝑒−
1

200
𝑡
. 

Second step.(Numerical solution) 

Suppose 

                                                               
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
≈ 𝐶𝜒(𝑡).                                                                   (16) 

Then 

                                       𝑦(𝑡) = 𝐽𝜇 (
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
) ≈ 𝐶𝑃𝜇𝜒(𝑡) + 𝑦(0).                                               (17) 

Using(16), (17) in (15), we have 

                           𝐶𝜒(𝑡) + 0.005(𝐶𝑃𝜇𝜒(𝑡) + 𝑦(0)) = 0.                                                               (18) 

We can attain the coefficient vector 𝐶 by solving the equation (18) at 𝑡𝑖 =
(2𝑖−1)𝑇

2𝑁
, 𝑖 = 1 𝑡𝑜 𝑁. Using the coefficient vector 𝐶 in 

(17), we get the numerical solutions of (15) for any time 𝑡 in [0, 𝑇). 

 

Table 2: The achieved absolute errors and numerical solutions of Example 4.2 using the proposed strategy for 𝑴 = 𝟑, 𝒌 = 𝟐 

and 𝑻 = 𝟏. 

𝑡 𝜇 = 0.25 𝜇 = 0.5 𝜇 = 0.75 𝜇 = 0.95 𝜇 = 1 Exact Absolute error 𝜇 = 1 

0.0833 99.7188 99.8467 99.9190 99.9523 99.9584 99.9584 8.6745e-06 

0.2500 99.6127 99.7199 99.8086 99.8635 99.8751 99.8751 8.6625e-06 

0.4167 99.5592 99.6375 99.7187 99.7782 99.7919 99.7919 8.6505e-06 

0.5833 99.5204 99.5709 99.6379 99.6948 99.7088 99.7088 8.6384e-06 

0.7500 99.4893 99.5135 99.5629 99.6126 99.6257 99.6257 8.6264e-06 

0.9167 99.4631 99.4623 99.4921 99.5314 99.5427 99.5427 8.6145e-06 

 

Example 4.3. [7]  Newton’s law of cooling: Assume  that you turn off the heat in your home at night 2 hours before you go to bed; 

this time is designated as 𝑡 = 0.what temperature can you anticipate in the morning say 8 hours later (𝑡 = 0)  if the temperature at 

time 𝑡 = 0 is 66∘𝐹 and at the time 𝑡 = 2  has decreased  to 63∘𝐹? Naturally the outside temperature𝐻𝐴, which we assume to remain 

constant at 32∘F will affect this cooling process. 

Physical details: 

According to experiments the fractional order time rate of change 
𝑑𝜇𝐻

𝑑𝑡𝜇
 of the temperature 𝐻 of a body is directly related to the 

difference between the temperature 𝐻 and the surrounding medium temperature 𝐻𝐴. 

Thus, 

                               
𝑑𝜇𝐻

𝑑𝑡𝜇
= 𝜌(𝐻 − 𝐻𝐴) = 𝑘(𝐻 − 32),       0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑇,               (19) 

Where 𝜌 is the constant of proportionality, which is assumed to be −0.046187 when0 < 𝜇 ≤ 1, with the initial condition 𝐻(0) =

66. When𝜇 = 1, the exact solution of (19) is 𝐻(𝑡) = 32 + 34𝑒−0.046187𝑡. 

Suppose 

                                             
𝑑𝜇𝐻

𝑑𝑡𝜇
≈ 𝐶𝜒(𝑡).                                                                                          (20) 

Then 

                                      𝐻(𝑡) = 𝐽𝜇 (
𝑑𝜇𝐻

𝑑𝑡𝜇
) ≈ 𝐶𝑃𝜇𝜒(𝑡) + 𝐻(0).                                                    (21) 
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Using(20), (21) in (19), we have  

                          𝐶𝜒(𝑡) − 𝜌(𝐶𝑃𝜇𝜒(𝑡) + 66 − 32) = 0.                                                                  (22) 

We can attain the coefficient vector 𝐶 by solving the equation (22) at 𝑡𝑖 =
(2𝑖−1)𝑇

2𝑁
, 𝑖 = 1 𝑡𝑜 𝑁. Using the coefficient vector 𝐶 in 

(21), we get the numerical solutions of (19) for any time 𝑡 in [0, 𝑇). From (21), the expected temperature at 𝑡 = 10 is 𝐻(10) =

53.4383 for 𝑀 = 3, 𝑘 = 2 and 𝜇 = 1. 

 

Table 3: The achieved absolute errors and numerical solutions of Example 4.3 using the proposed strategy for 𝑴 = 𝟑, 𝒌 = 𝟐 

and 𝑻 = 𝟏 

𝑡 𝜇 = 0.25 𝜇 = 0.5 𝜇 = 0.75 𝜇 = 0.95 𝜇 = 1 Exact Absolute error 𝜇 = 1 

0.0833 65.1369 65.5245 65.7472 65.8508 65.8696 65.8694 2.5023e-04 

0.2500 64.8186 65.1361 65.4051 65.5741 65.6099 65.6097 2.4704e-04 

0.4167 64.6606 64.8877 65.1297 65.3103 65.3522 65.3519 2.4387e-04 

0.5833 64.5469 64.6890 64.8843 65.0541 65.0964 65.0962 2.4075e-04 

0.7500 64.4563 64.5190 64.6584 64.8037 64.8426 64.8424 2.3765e-04 

0.9167 64.3802 64.3684 64.4467 64.5580 64.5908 64.5906 2.3459e-04 

 

Example 4.4. According to experiments, the concentration 𝑦(𝑡) of unmodified sugar at any given time 𝑡 is directly related to the 

rate of inversion of cane sugar in dilute solution. Find 𝑦(𝑡) if the concentration is 
1

100
 at 𝑡 = 0 and 

1

300
 at 𝑡 = 4. 

Modeling: 

Thus, 

                                         
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
= 𝜌𝑦(𝑡),       0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑇 ,                                  (23) 

Where 𝜌 is the constant of proportionality, which is assumed to be −0.02747 when 0 < 𝜇 ≤ 1, with the initial condition 𝑇(0) =
1

100
. When𝜇 = 1, the exact solution of (23) is 𝑦(𝑡) =

1

100
𝑒−0.2747𝑡. 

Suppose 

                                                     
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
≈ 𝐶𝜒(𝑡).                                                                             (24) 

Thus 

                                             𝑦(𝑡) = 𝐽𝜇 (
𝑑𝜇𝑦(𝑡)

𝑑𝑡𝜇
) ≈ 𝐶𝑃𝜇𝜒(𝑡) + 𝑦(0).                                         (25) 

 Using (24), (25) in (23), we have  

                                𝐶𝜒(𝑡) − 𝜌 (𝐶𝑃𝜇𝜒(𝑡) +
1

100
) = 0.                                                                  (26) 

We can attain the coefficient vector 𝐶 by solving the equation (26) at 𝑡𝑖 =
(2𝑖−1)𝑇

2𝑁
, 𝑖 = 1 𝑡𝑜 𝑁. Using the coefficient vector 𝐶 in 

(25), we get the numerical solutions of (23) for any time 𝑡 in [0, 𝑇). 

 

Table 4: The achieved absolute errors and numerical solutions of Example 4.4 using the proposed strategy for 𝑴 = 𝟑, 𝒌 = 𝟐 

and 𝑻 = 𝟏. 

𝑡 𝜇 = 0.25 𝜇 = 0.5 𝜇 = 0.75 𝜇 = 0.95 𝜇 = 1 Exact Absolute error 𝜇 = 1 

0.0833 0.0087 0.0092 0.0096 0.0097 0.0098 0.0098 2.0024e-03 

0.2500 0.0082 0.0086 0.0090 0.0093 0.0093 0.0093 1.5648e-03 

0.4167 0.0080 0.0083 0.0086 0.0089 0.0089 0.0089 1.1468e-03 

0.5833 0.0079 0.0080 0.0082 0.0085 0.0085 0.0085 7.4751e-04 

0.7500 0.0078 0.0078 0.0079 0.0081 0.0081 0.0081 3.6610e-04 

0.9167 0.0077 0.0076 0.0076 0.0071 0.0078 0.0078 1.7667e-06 

 

5. CONCLUSION 

In this article, an efficient numerical algorithm based on 

Legendre wavelet operational matrix was derived and 

successfully employed to solve some fractional models. The 

Legendre wavelet operational matrix is structurally a sparse 

matrix, which reduces the computational complexity in 

solving the system of algebraic equations. Moreover, 

 the Legendre wavelet-based numerical algorithm gives 

solutions for fractional models with high precision of 

accuracy. Error tables of numerical examples reveal that the 

Legendre wavelet-based numerical algorithm is efficient for 

fractional models. 
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