International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 07 July 2023, Page no. 3586-3589

Index Copernicus ICV: 57.55, Impact Factor: 7.362

DOI: 10.47191/ijmcr/v11i7.16

Radio Gd-Distance Number of Some Basic Graph

K. John Bosco¹, R. Adlin Queen²

¹Assistant Professor, Department of Mathematics, St. Judes college Thoothoor, Tamil Nadu

²Research Scholar (Reg. no:23113232092004), Department of Mathematics,St. Judes college Thoothoor, Tamil Nadu Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelyeli

ARTICLE INFO	ABSTRACT
Published online:	A Radio Gd-distance labeling of a connected graph G is an injective map f from the vertex set V(G)
26 July 2023	to \mathbb{N} such that for two distinct vertices u and v of G, $dGd(u,v)+ f(u)-f(v) \geq 1+diamGd(G)$, where
	dGd(u,v) denotes the Gd-distance between u and v and $diamGd(G)$ denotes the Gd-diameter of G.
	The Radio Gd-distance number of f , (f) is the maximum label assigned to any vertex of G . The
Corresponding Name	Radio Gd-distance number of G, $rn(G)$ is the minimum value f of G. In this paper we find the radio
K. John Bosco	Gd-distance number of some basic graph.

KEYWORDS: Gd-distance, Radio Gd-distance, Radio Gd-distance number.

I. INTRODUCTION

By a graph G = (V(G), E(G)) we mean a finite undirected graph without loops or multiple edges. Let V(G) and E(G) denotes the vertex set and edge set of G. The order and size of G are denoted by p and q respectively.

The Gd-distance was introduced by V. Maheswari and M. Joice Mabel. If u and v are vertices of a connected graph G, Gd-length of a u-v path is defined as $d^{Gd}(u,v)=d(u,v)+\deg(u)+\deg(v)$. The Gd-radius, denoted by $r^{Gd}(G)=\min\{e^{Gd}(v):v\in V(G)\}$. Similarly the Gd-diameter $d^{Gd}(G)=\max\{e^{Gd}(v):v\in V(G)\}$. We observe that for any two vertices u and v of G we have $d(u,v)\leq d^{Gd}(u,v)$. The equality holds if and only if u, v are identical. If G is any connected graph, then the d^{Gd} distance is a metric on the set of vertices of G. We can check easily that for any non-trivial connected graph, $r^{Gd}(G)\leq d^{Gd}(G)\leq 2r^{Gd}(G)$. The lower bound is clear From the definition and the upper bound follows from the triangular inequality.

In this paper, we introduced the concept of radio Gd-distance labeling of a graph G. Radio Gd-distance labeling is a function f from V(G) to $\mathbb N$ satisfying the condition $d^{Gd}(u,v)+|f(u)-f(v)|\geq 1+diam^{Gd}(G)$, where $diam^{Gd}(G)$ is the Gd-distance diameter of G. A Gd-distance radio labeling number of G is the maximum label assigned to any vertex of G. It is denoted by $rn^{Gd}(G)$

Radio labeling can be regarded as an extension of distance-two labeling which is motivated by the channel assignment problem introduced by W. K. Hale [6]. G. Chartrand et al.[2] introduced the concept of radio labeling of graph. Also G. Chartrand et al.[3] gave the upper bound for the radio number of path. The exact value for the radio number of path and cycle was given by Liu and Zhu [10]. However G. Chartrand et al.[2] obtained different values for them. They found the lower and upper bound for the radio number of cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O. Togni [8]. In [4] C. Fernandez et al. found the radio number for complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. In this paper, we fined the radio Gd-distance labeling of some basic graphs.

II. MAIN RESULTS

Theorem 2.1

The radio Gd-distance number of the complete graph, $rn^{Gd}(K_n) = n \ \forall \ n$

Proof.

Let,
$$V(K_n) = \{v_1, v_2, ..., v_n\}$$
 be the vertex set Then, $d^{Gd}(v_i, v_j) = 2n - 1$ for $1 \le i, j \le n$ It is obvious that the $diam^{Gd}(K_n) = 2n - 1$.

The radio Gd-distance condition is $d^{Gd}(u,v) + |f(u) - f(v)| \ge 1 + diam^{Gd}(G) = 2n$

Now, fix
$$f(v_1) = 1$$

$$d^{Gd}(v_1, v_2) + |f(v_1) - f(v_2)|$$

$$\geq 2n - 1 + |1 - f(v_2)| \geq 2n$$

$$|1 - f(v_2)| \geq 1, \text{ which implies } f(v_2) = 2$$

$$f(v_i) = i, \ 1 \le i \le n$$
Hence, $rn^{Gd}(K_n) = n, \ \forall \ n$

Theorem 2.2

The radio Gd-distance number of a star graph, $rn^{Gd}(K_{1,n}) = n^2 - 2n + 2$, $n \ge 3$

Proof.

Let $V(K_{1,n}) = \{v_0, v_1, v_2, ..., v_n\}$ be the vertex set, where v_0 be the central vertex and

$$\mathrm{E}(K_{1,n})=\{v_0v_i\,;1\leq i\leq n\}$$
 be the edge set

Then,
$$d^{Gd}(v_0, v_i) = n + 2; 1 \le i \le n, d^{Gd}(v_i, v_j) = 4; 1 \le i, j \le n; i \ne j$$

So,
$$diam^{Gd}(K_{1,n}) = n + 2$$

Without loss of generality,

$$f(v_1) < f(v_0) < f(v_2) < \dots < f(v_n)$$

We shall check the radio Gd-distance condition

$$d^{Gd}(u,v) + |f(u) - f(v)| \ge 1 + diam^{Gd}(G) = n + 3$$

Fix $f(v_1) = 1$, for (v_1, v_0)

$$d^{Gd}(v_1, v_0) + |f(v_1) - f(v_0)| \ge n + 2 + |1 - f(v_0)|$$

 $\ge n + 3$

$$|1 - f(v_0)| \ge 1$$
, which implies $f(v_0) = 2$

For
$$(v_1, v_2)$$

$$d^{Gd}(v_1, v_2) + |f(v_1) - f(v_2)| \ge 4 + |1 - f(v_2)|$$

$$\ge n + 3$$

$$|1 - f(v_2)| \ge n - 1$$
, which implies $f(v_2) = n$

For
$$(v_2, v_3)$$

$$d^{Gd}(v_2, v_3) + |f(v_2) - f(v_3)| \ge 4 + |n - f(v_3)|$$

$$\ge n + 3$$

$$|n - f(v_3)| \ge n - 1$$
, which implies $f(v_3) = 2n - 1$

$$f(v_i) = n(i-1) - i + 2, \ 1 \le i \le n$$

Hence,
$$rn^{Gd}(K_{1,n}) = n^2 - 2n + 2, n \ge 3$$

Theorem 2.3

The radio Gd-distance number of a path $rn^{Gd}(P_n) \le n^2 - 5n + 8$, $n \ge 4$

Proof.

Let
$$V(P_n) = \{v_1, v_2, \dots, v_n\}$$
 be the vertex set and $E(P_n) = \{v_i v_{i+1}; 1 \le i \le n-1\}$ be the edge set Then, $d^{Gd}(v_1, v_n) = d^{Gd}(v_2, v_n) = n+1$,

$$d^{Gd}(v_{1,}, v_{2}) = d^{Gd}(v_{n-1,}, v_{n}) = 4,$$

$$d^{Gd}(v_{i,} v_{i+1}) = 5; \ 2 \le i \le n-2$$

It is clear that $diam^{Gd}(P_n) = n + 1$

Without loss of generality

$$f(v_1) < f(v_n) < f(v_2) < \dots < f(v_{n-1})$$

We shall check the radio Gd-distane condition

$$d^{Gd}(u,v)+|f(u)-f(v)|\geq 1+diam^{Gd}(G)=n+2$$

Fix
$$f(v_1) = 1$$
 for (v_1, v_n)

$$d^{Gd}(v_1, v_n) + |f(v_1) - f(v_n)| \ge n + 1 + |1 - f(v_n)|$$

$$\ge n + 2$$

$$|1 - f(v_n)| \ge 1$$
, which implies $f(v_n) = 2$

For
$$(v_1, v_2)$$

$$d^{Gd}(v_1, v_2) + |f(v_1) - f(v_2)| \ge 4 + |1 - f(v_2)|$$

$$> n + 2$$

$$|1 - f(v_2)| \ge n - 2$$
, which implies $f(v_2) = n - 1$

For
$$(v_2, v_3)$$

$$d^{Gd}(v_2, v_3) + |f(v_2) - f(v_3)| \ge 5 + |n - 1 - f(v_3)|$$

$$> n + 2$$

$$|n-1-f(v_3)| \ge n-3$$
, which implies $f(v_3) = 2n-4$

$$f(v_i) = n(i-1) - 3i + 5, \ 2 \le i \le n-1$$

Hence,
$$rn^{Gd}(P_n) \le n^2 - 5n + 8, \ n \ge 4$$

Note.
$$rn^{Gd}(P_n) = 3 \text{ if } n=3$$

Theorem 4

The radio Gd-distance number of a subdivision of a star, $rn^{Gd}S(K_{1,n}) = 2n^2 - 5n + 3, n \ge 3$

Proof

Let , $V(S(K_{1,n}))=\{v_0,v_1,v_2,\ldots,v_n,u_1,u_2,\ldots,u_n\}$ be the vertex set, where v_0 is the central vertex and $E(S(K_{1,n}))=\{v_0u_i,v_iu_i;\ 1\leq i\leq n\}$ be the edge set

Then,
$$d^{Gd}(v_{0}, v_{i}) = d^{Gd}(v_{0}, u_{i}) = n + 3; 1 \le i \le n,$$

 $d^{Gd}(v_{I}, v_{i+1}) = d^{Gd}(u_{i}, u_{i+1}) = 6; 1 \le i \le n$
 $d^{Gd}(v_{I}, u_{i}) = 4; 1 \le i \le n$

It is clear that $diam^{Gd}(S(K_{1n})) = n + 3$

Without loss of generality
$$f(u_1) < f(v_0) < f(u_2) < \cdots < f(u_n) < f(v_1) < \cdots < f(v_n)$$

We shall check the radio Gd-distance condition

$$d^{Gd}(u,v) + |f(u) - f(v)| \ge 1 + diam^{Gd}(G) = n + 4$$

Fix
$$f(u_1) = 1$$
, for (u_1, v_0) $1 \le i \le n$

$$d^{Gd}(u_1, v_0) + |f(u_1) - f(v_0)| \ge n + 3 + |1 - f(v_0)|$$

$$\ge n + 4$$

$$|1 - f(v_0)| \ge 1$$
 which implies $f(v_0) = 2$

For
$$(u_1, u_2)$$

$$d^{Gd}(u_1, u_2) + |f(u_1) - f(u_2)| \ge 6 + |1 - f(u_2)|$$

$$\ge n + 4$$

$$|2 - f(u_2)| \ge n - 2$$
, which implies $f(u_2) = n - 1$

For
$$(u_2, u_3)$$

$$d^{Gd}(u_2, u_3) + |f(u_2) - f(u_3)| \ge 6 + |n - 1 - f(u_3)|$$

 $\ge n + 4$

$$|n-1-f(u_3)| \ge n-2$$
, which implies $f(u_3) = 2n-3$

$$f(u_i) = n(i-1) - 2i + 3, \ 1 \le i \le n$$

Therefore,
$$f(u_n) = n^2 - 3n + 3$$

For (u_n, v_i) , $1 \le i \le n$
 $d^{Gd}(u_n, v_1) + |f(u_n) - f(v_1)|$

 $\geq 6 + |n^2 - 3n + 3 - f(v_1)| \geq n + 4$

$$|n^2 - 3n + 3 - f(v_1)| \ge n - 2$$
 which implies $f(v_1) = n^2 - 2n + 1$

For
$$(v_1, v_2)$$

$$d^{Gd}(v_1, v_2) + |f(v_1) - f(v_2)|$$

$$\geq 6 + |n^2 - 2n + 1 - f(v_2)| \geq n + 4$$

$$|n^2 - 2n + 1 - f(v_2)| \geq n - 2, \text{ which implies}$$

$$f(v_2) = n^2 - n - 1$$

$$f(v_i) = n^2 + n(i-3) - 2i + 3, \ 1 \le i \le n$$

Hence,
$$rn^{Gd}S(K_{1,n}) = 2n^2 - 5n + 3, n \ge 4$$

Note.
$$rn^{Gd}S(K_{1n}) = 2n + 1$$
 if $n = 2, 3$

Theorem 5

The radio Gd-distance number of bistar graph, $rn^{Gd}(B_{n.n})=4n^2-3n+4,\ n\geq 2$

Proof.

Let,
$$V(B_{n,n}) = \{v_1, v_2, \dots, v_n, x_1, x_2, u_1, u_2, \dots, u_n\}$$
 be the vertex set

and $\mathrm{E}(B_{n,n})=\left\{x_1u_i\,,x_2v_{i,}x_1x_{2,};1\leq i\leq n\right\}$ be the edge set

Then,
$$d^{Gd}(x_1,u_i) = d^{Gd}(x_2,v_i) = n+3; \ 1 \le i \le n,$$

 $d^{Gd}(x_1,x_2) = 2n+3, \ d^{Gd}(u_i,v_j) = 5; \ 1 \le i,j \le n,$
 $i \ne j, d^{Gd}(u_i,u_j) = d^{Gd}(v_i,v_j) = 4; \ 1 \le i,j \le n,$
 $i \ne j, d^{Gd}(x_1,v_i) = d^{Gd}(x_2,u_i) = n+4; \ 1 \le i \le n$

It is clear that $diam^{Gd}(B_{n,n}) = 2n + 3$

Without loss of generality
$$f(v_1) < f(u_1) < f(v_2) < f(u_2) < \dots < f(v_n) < f(u_n) < f(x_2) < f(x_1)$$

We shall check the radio Gd-distance condition $d^{Gd}(u,v) + |f(u) - f(v)| \ge 1 + diam^{Gd}(G) = 2n + 4$

Fix,
$$f(v_1) = 1$$
, For (v_{i,u_i}) , $1 \le i \le n$

$$d^{Gd}(v_{1,u_1}) + |f(v_1) - f(u_1)| \ge 5 + |1 - f(u_1)|$$

$$\ge 2n + 4$$

$$|1-f(u_1)| \ge 2n-1$$
, which implies $f(u_1) = 2n$

For
$$(u_i, v_{i+1}), 1 \le i \le n-1$$

$$d^{Gd}(u_{1,}v_{2}) + |f(u_{1}) - f(v_{2})| \ge 5 + |2n - f(v_{2})|$$

$$\ge 2n + 4$$

$$|2n - f(v_2)| \ge 2n - 1$$
 which implies $f(v_2) = 4n - 1$
For (v_2, u_2)

$$d^{Gd}(v_2, u_2) + |f(v_2) - f(u_2)| \ge 5 + |4n - 1 - f(u_2)|$$

 $\ge 2n + 4$

$$|4n-1-f(u_2)| \ge 2n-1$$
, which implies $f(u_2) = 6n-2$

$$f(u_i) = n(4i-2) - 2i + 2, \ 1 \le i \le n$$
$$f(v_i) = n(4i-4) - 2i + 3, \ 1 \le i \le n$$

Therefore,
$$f(u_n) = 4n^2 - 4n + 2$$

For
$$(u_n, x_2)$$

$$d^{Gd}(u_n, x_2) + |f(u_n) - f(x_2)|$$

$$\geq n + 3 + |4n^2 - 4n + 2 - f(x_2)|$$

$$\geq 2n + 4$$

$$|4n^2 - 4n + 2 - f(x_2)| \ge n + 1$$
, which implies $f(x_2) = 4n^2 - 3n + 3$

For
$$(x_2, x_1)$$

$$d^{Gd}(x_2, x_1) + |f(x_2) - f(x_1)|$$

$$\geq 2n + 3 + |4n^2 - 3n + 3 - f(x_1)|$$

$$\geq 2n + 4$$

$$|4n^2 - 3n + 3 - f(x_1)| \ge 2n$$
, which implies $f(x_1) = 4n^2 - 3n + 4$

Hence,
$$rn^{Gd}(B_{nn}) = 4n^2 - 3n + 4$$
, $n \ge 2$

REFERENCES

- F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
- G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatories and Its Applications, vol. 33,pp. 77-85, 2001.
- 3. G. Chartrand, D. Erwinn, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
- C. Fernandaz, A.Flores, M.Tomova, and C.Wyels, "The Radio Number of Gear graphs," arXiv:0809. 2623, September 15, (2008).
- 5. J.A. Gallian, A dynamic survey of graph labeling, Electron. J.Combin. 19(2012)"£Ds6.
- 6. W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497-1514.
- 7. F.Harary, Graph Theory, Addition Wesley, New Delhi (1969).

"Radio Gd-Distance Number of Some Basic Graph"

- 8. R. Khennoufa and O. Togni, "The Radio Antipodal and Radio Numbers of the Hypercube", accepted in 2008 publication in ArsCombinatoria.
- 9. D. Liu, X. Zhu, Multilevel distance Labeling for path and cycles, SIAM J. Discrete Math. 19(3)(2005) 610-621
- V. Maheswari and M. Joice Mabel "Gd-Distance in Graphs", International Journal of Mathematical Archive-9(2), 2018, 1-5 ISSN 2229-5046
- P. Murtinez, J. OrtiZ, M. Tomova, and C. Wyles, "Radio Numbers For Generalized Prism Graphs, Kodai Math. J., 22, 131-139(1999).

- 12. T. Nicholas, K. John Bosco, Radio D-distance Number of some graphs, IJESR, vol. 5 Issue 2, Feb. 2017
- T. Nicholas, K. John Bosco, V. Viola, On Radio Mean D-distance Number of Graph Obtained from Graph Operation IJMTT, Vol.58 Issue 2, June 2018, ISSN:2231-5373