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1. INTRODUCTION 

In this paper, we study the concept of visible set which can 

be considered as the generalizations of convex sets [1,7]. The 

aim of this work is to look at which of the properties of 

convex sets are extendable to that of properties of visible sets 

and what additional properties does this set possess. We 

investigated some characteristics of the mentioned set. 

Accordingly, we have seen that some of algebraic properties 

of convex sets are not extendable to those visible sets. For 

example, the intersection of visible sets is not visible set and 

union of arbitrary convex sets with nonempty common is 

always visible set which might not be convex set. The most 

remarkable result is that every visible set can be expressed as 

the union of convex sets. In addition, we tried to develop the 

conditions that enable us to determine whether the given 

visible set can be expressed as the union of finite number of 

convex sets or not. 

 

2. PRELIMINARIES 

Definition 2.1 (visible points in sets) [6] : Two points in a 

set 𝑉are said to be visible to each other with respect to V if 

the line segment determined by them lies in the set 𝑉. 

Definition 2.2  (Visible set) [6]: A set V is said to be visible 

set if there exists a point 𝑥 in 𝑉 such that each other point in 

V is visible to it. If such an x exists then it is called visible 

center of the set V and it may not be unique.   

From the definition of visible set, we can easily verify that 

every convex set is a visible set. Therefore, convex set can be 

redefined as a visible set. Every point in convex set V is 

visible centre y of the set V. 

Example 1: If 𝑋 = 𝑅2  and 𝑉 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 1 and 𝑦 =

0 𝑜𝑟 0 ≤ 𝑦 ≤ 1 𝑎𝑛𝑑 𝑥 = 0}, 

 then V is a visible set with visible center 𝑥𝑜 = (0,0). 

 

 
 

The sets in (a) and (b) represents a visible set while (c) does 

not. Note that (a), (b) and (c) are convex sets. 

Example 3:  Let X  be a normed linear space and let  𝑉1 =

 {𝑥 ∈ 𝑋: ‖𝑥‖ ≤ 1} , 

𝑉2 =  {𝑦 ∈ 𝑋: ‖𝑦 − 𝑦0‖ ≤ 1, 𝑦0 not  in 𝑉1}.  If 𝑉1 ⋂ 𝑉2 ≠ ∅, 

then 𝑉 = 𝑉1 ⋃ 𝑉2  is a visible set. 

Proof: Let𝑉1 ⋂ 𝑉2 ≠ ∅, 𝑥𝑜 ∈ 𝑉1 ⋂ 𝑉2  ,   𝛼 ∈ [0,1] and let 𝑦 ∈

𝑉 be arbitrary element in V.  We need to show that  𝛼𝑥𝑜 +

(1 − 𝛼)𝑦 ∈ 𝑉.  But 𝑦 ∈ 𝑉 implies either 𝑦 ∈ 𝑉1 or 𝑦 ∈ 𝑉2  or  

𝑦 ∈ 𝑉1 ⋂ 𝑉2. 

 If  𝑦 ∈ 𝑉1 then ‖𝑦‖ ≤ 1 and   

                             ‖𝛼𝑥𝑜 + (1 − 𝛼)𝑦‖ ≤ 𝛼‖𝑥𝑜‖ + (1 −

𝛼)‖𝑦‖ ≤ 𝛼 + (1 − 𝛼) = 1. 

 Thus  𝛼𝑥𝑜 + (1 − 𝛼)𝑦 ∈ 𝑉1 and hence in V. 

If  𝑦 ∈ 𝑉2  then  ‖𝑦𝑜 − (𝛼𝑥𝑜 + (1 − 𝛼)𝑦)‖ = ‖𝑦𝑜 − (𝛼𝑥𝑜 +

(1 − 𝛼)𝑦) + 𝛼𝑦𝑜 − 𝛼𝑦𝑜‖ 
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                                                                      ≤ (1 − 𝛼)‖𝑦𝑜 −

𝑦‖ + 𝛼‖𝑦𝑜 − 𝑥𝑜‖ = 1 . 

Thus   𝛼𝑥𝑜 + (1 − 𝛼)𝑦 ∈ 𝑉2 and hence  𝛼𝑥𝑜 + (1 − 𝛼)𝑦  lies 

in 𝑉.   

Similarly, we can verify the other case. 

Example (2(a)) shows that if two convex sets have nonempty 

intersection, then their union is visible set. 

 

3. SOME PROPERTIES OF VISIBLE SETS AND ITS 

CHARACTERIZATION 

Definition 3.1: Let 𝑋 be a linear space over a field F and let 

𝑉 be a visible set in 𝑋. For 𝑦 ∈ 𝑋 , 𝛼 ∈ 𝐹 𝑎𝑛𝑑 ∅ ≠ 𝐴 ⊆ 𝑋 ,  

we define  

(i) 𝑉 + 𝑦 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝑉} 

(ii) 𝛼𝑉 = {𝛼𝑥 ∶ 𝑥 ∈ 𝑉} 

(iii)  𝑉 + 𝐴 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝑉, 𝑦 ∈ 𝐴}.  

 

Theorem 3.2:  Let 𝑋 be a linear space over a field F and let 

V and M are visible sets in 𝑋.  If  𝑦 ∈ 𝑋 ,   𝛼 ∈ 𝐹 then (i)  𝑉 +

𝑦   (ii) 𝛼𝑉   (iii) 𝑉 + 𝑀 are visible sets. 

 

Proof: (i) Since V is visible set, there is at least one point 𝑥𝑜 

in V such that, 𝛼𝑥𝑜 + (1 − 𝛼)𝑧 ∈ 𝑉  for all  𝑧  in  𝑉 and for 

all ∈ [0,1] . 

Claim:  𝑥𝑜 + 𝑦  is a visible center for  𝑉 + 𝑦. 

If 𝑧 ∈ 𝑉 + 𝑦, then  𝑧 = 𝑘 + 𝑦  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑉. So, for 𝛼 ∈

[0,1],  we have 

𝛼(𝑥𝑜 + 𝑦) + (1 − 𝛼)𝑧 = 𝛼(𝑥𝑜 + 𝑦) + (1 − 𝛼)(𝑘 + 𝑦) =

𝛼𝑥𝑜 + (1 − 𝛼)𝑘 + 𝑦 ∈ 𝑉 + 𝑦. Since z is arbitrary, 𝑥𝑜 + 𝑦 is 

a visible center for 𝑉 + 𝑦. Thus 𝑉 + 𝑦 is a visible set. 

Similarly 𝛼𝑥𝑜 is a visible center for  𝛼𝑉 so that (ii) holds true. 

(iii). Let 𝑥𝑜 𝑎𝑛𝑑 𝑦𝑜 be visible centers for V and M 

respectively. 

Claim : 𝑥𝑜 + 𝑦𝑜 is a visible center for  𝑉 + 𝑀. 

Let 𝑧 ∈ 𝑉 + 𝑀  then  𝑧 = 𝑥 + 𝑦  for some 𝑥 ∈ 𝑉 𝑎𝑛𝑑  𝑦 ∈ 𝑀.  

For  𝛼 ∈ [0,1], we have  

𝛼(𝑥𝑜 + 𝑦𝑜) + (1 − 𝛼)(𝑥 + 𝑦  ) = 𝛼𝑥0 + (1 − 𝛼)𝑥 + 𝛼𝑦0 +

(1 − 𝛼)𝑦 ∈ 𝑉 + 𝑀 . Since z is arbitrary, 𝑥𝑜 + 𝑦𝑜 is visible 

center for 𝑀 + 𝑉, showing V + M  is a visible set. 

Theorem 3.3 :  Let 𝑋 be a linear space and let ∅ ≠ 𝑉 ⊆ 𝑋. 

Then V is visible set if and only if V is union of convex sets 

with nonempty intersection. 

Proof : Without loss of generality we assume the index set 

countable. 

Suppose { 𝑉𝑖: 𝑖 ∈ 𝐼, 𝐼 an index set } is the collection of 

convex sets such that ⋂ 𝑉𝑖𝑖∈𝐼 ≠ ∅.  Let  𝑉 = ⋃ 𝑉𝑖𝑖  . We need 

to show V is visible set.  𝐿𝑒𝑡 𝛼 ∈ [0,1] ,  𝑧 ∈ 𝑉  be arbitrary. 

Then by definition of V, there exists 𝑗 ∈ 𝐼  such that 𝑧 ∈ 𝑉𝑗 . 

Since ⋂ 𝑉𝑖𝑖∈𝐼 ≠ ∅  there exists  𝑥𝑜 ∈ 𝑉𝑖  ∀ 𝑖 ∈ 𝐼 and  𝛼𝑥0 +

(1 − 𝛼)𝑧 ∈ 𝑉𝑗 .  

Therefore  𝛼𝑥0 + (1 − 𝛼)𝑧 ∈ 𝑉. Since z is arbitrary we have  

𝑥𝑜 is a visible center for V, consequently V is a visible set.  

Conversely, let V be a visible set. Here now construct the 

collection of convex sets such that 𝑉 = ⋃ 𝑉𝑖𝑖∈𝐼   and ⋂ 𝑉𝑖𝑖∈𝐼 ≠

∅. 

Notation: x y, we mean x and y are visible to each other 

with respect to a given set. 

Now we have different cases to consider. 

Case I:   (Every member of V is a visible center for V). In 

this case by definition V is convex set and we have done. 

Case II: Suppose V has a unique visible center, say, 𝑥0 : If  

𝑉 = { 𝑥0}, V is convex set and hence the Theorem. If V ≠

{ x0},  then for   𝑦1 ∈ 𝑉 , 𝑦1 ≠ 𝑥0,  define 𝑉1 ={ 𝑦 ∈ 𝑉: 𝑦~𝑦1 

with 𝑥~𝑦1 and  𝑦~𝑦1 ⟹ 𝑦~𝑥}. 𝑉1 ≠ ∅ , because   𝑦1 , 𝑥𝑜 ∈

𝑉1 and  𝑥𝑜~𝑦1. Given  𝑥 , 𝑎𝑛𝑑  𝑦 ∈ 𝑉1, we have 

𝑥~𝑦1  𝑎𝑛𝑑 𝑦~𝑦1 ⟹ 𝑥~𝑦 for all 𝑥, 𝑦 ∈ 𝑉1 (by definition of 

V1) .Thus every member of 𝑉1 is a visible center forV1. 

Therefore 𝑉1 is convex set. 

If 𝑉 = 𝑉1, we have done; otherwise choose 𝑦2 ∈ 𝑉1
∁ 

(complement is taken relative to V) and define 𝑉𝑘 =

{𝑦 ∈ 𝑉: 𝑦~𝑦𝑘  with 𝑥~𝑦𝑘 and 𝑦~𝑦𝑘  ⟹  𝑥~𝑦 }. Similar to 

the case I, 𝑉2 is convex and 𝑉2 ≠ ∅ 

If 𝑉 = 𝑉1 ∪ 𝑉2, we have done; otherwise we continue by the 

same manner as 

 𝑉𝑘 = {𝑦 ∈ 𝑉: 𝑦~𝑦𝑘  𝑤𝑖𝑡ℎ 𝑥~𝑦𝑘 𝑎𝑛𝑑 𝑦~𝑦𝑘  ⟹  𝑥~𝑦 }, 

 𝑦𝑘 ∈ (⋃ 𝑉𝑖
𝑘−1
𝑖=1 )

∁
,  𝑘 ≥ 2. 

Put  𝐵 = ⋃ 𝑉𝑖𝑖∈𝐼  , where I is the index set composed of the 

preceding procedure. We want to show that  𝑉 = 𝐵.  The 

definition of 𝑉𝑖  ′𝑠 , 𝑖 ∈ 𝐼shows that 𝐵 ⊆ 𝑉.So , we need to 

show that 𝑉 ⊆ 𝐵. 

If  𝑧 ∉  𝐵 , then 𝑧 is not member of  𝑉𝑖 ,  𝑖 ∈ 𝐼 . Since  𝑥𝑜 ∈

𝑉𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼, we have  𝑧 is not visible for  𝑥𝑜 . That is 𝑧 ∉

𝑉 .Thus, 𝑉 ⊆ 𝐵. therefore,   𝑉 = 𝐵. 

 

Case III: Suppose V contains more than one visible centers: 

Let 𝐴 = {𝑥 ∈ 𝑉:  𝑥 is a visible center of 𝑉 }. Similar to case 

II, we can construct collection of convex sets containing set 

A such that 𝑉 = ⋃ 𝑉𝑖𝑖∈𝐼  and ⋂ 𝑉𝑖𝑖∈𝐼 = 𝐴. Hence the theorem 

is proved. 

It worth to note that, each 𝑉𝑘 contains at least 𝑦𝑘 and 𝑥𝑜. 

Consequently 𝑉𝑘  contains infinitely many vectors, provide 

that 𝑉𝑘 ≠ 𝑥0 . 

Note 3.4 : Closure of any convex set is convex. 

Corollary 3.5 : If V is visible set, then its closure is visible 

set.  

Proof : By Theorem 3.3, there  exists convex sets  Vi  such 

that  𝑉 = ⋃ 𝑉𝑖𝑖∈𝐼    . Since 𝑐𝑙(𝑉𝑖)is convex for each 𝑖,  

⋂ 𝑐𝑙(𝑉𝑖𝑖∈𝐼 ) ≠ ∅ , and  𝑐𝑙(𝑉) = ⋃ 𝑐𝑙(𝑉)𝑖 ,  closure of V is 

visible set. 

It is well-known fact that the intersection of convex sets is a 

convex set.  But the neither union nor intersection of visible 

sets is visible set in general. 

Remark 3.6:  In general,  (i) Intersection of visible sets may 

not be visible set. 

(ii) Union of visible sets is not visible set. 
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According to Theorem 3.3, Every Visible set can be 

expressed as union of convex sets with nonempty 

intersection.  

Now the question is “is it possible to express a given visible 

set as a union of finite number of convex sets ? ” As the 

following result reveals, the answer to the above question 

depends strongly on the behavior of the boundary set of a 

given visible set.  

Definition 3.7: Let X be a linear space and let  ∅ ≠  𝑉 ⊂ 𝑋 

bounded closed visible set. The boundary of V, denoted by  

𝜕𝑉   is defined as   𝜕𝑉 ≔{x∈V : every neighborhood 𝑈𝑥  of 

𝑥 contains a point   𝑦 ∉ 𝑉, 𝑎𝑛𝑑 𝑧 ∈ 𝑉}. 

Definition 3.8: (Interior of a visible set): Let X a linear space 

and ∅ ≠  𝑉 ⊂ 𝑋 be visible set. Interior of V, denoted by 

int(V)   is defined   as   𝑖𝑛𝑡𝑉 ≔ {𝑥 ∈ 𝑉: there exists a 

neighborhood 𝑈𝑥   ⊂ 𝑉 of  𝑥  such that  𝑈𝑥 ∩ 𝜕𝑉 = ∅}. 

If  V is open and bounded, then the boundary   of V coincides 

with the boundary of closure of V. Hence we can define the 

boundary of an open visible set with respect to its closure. 

We call a collection {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} partition of boundary set if  

𝜕𝑉 = ⋃ 𝐴𝑖 , and 𝐴𝑖 ∩ 𝐴𝑗 , 𝑖 ≠ 𝑗  have at most finite common 

points.  

Theorem 3.9 :  Let X be a linear space and let  ∅ ≠  𝑉 ⊂ 𝑋  

be a bounded visible set. Then V is expressed as the union of 

finite number of convex sets if and only if there exists a finite 

collection {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} (partition of boundary set) such that for 

𝑥, 𝑦 ∈ 𝐴𝑖,  𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑉 , 𝛼 ∈ [0,1]. 

Proof: If 𝑉 = ⋃ 𝑉𝑖
𝑛
𝑖=1 , then define 𝐴𝑖 = 𝜕𝑉𝑖 ⟹  ∀𝑥, 𝑦 ∈

𝐴𝑖  , 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑉𝑖 ⟹ 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑉. Since, there 

are finite Vi’s, we have finite Ai’s with   𝜕𝑉 = ⋃ 𝐴𝑖
𝑛
𝑖=1 .  

Conversely, suppose 𝜕𝑉 = ⋃ 𝐴𝑖
𝑛
𝑖=1  and ∀𝑥, 𝑦 ∈ 𝐴𝑖 , 𝛼𝑥 +

(1 − 𝛼)𝑦 ∈ 𝐴𝑖, we need to construct a collection of convex 

sets  {𝑉𝑖: 𝑖 = 1,2, . . , 𝑛} such that 𝑉 = ⋃ 𝑉𝑖
𝑛
𝑖=1 . 

Let 𝑉𝑖 ={𝑥 ∈ 𝑉:𝑥 is visible to   some vector in   𝐴𝑖  such that   

if 𝑥 and 𝑦  are visible to some vector in  𝐴𝑖⟹𝑥 is visible to 

𝑦} 

Since,  𝐴𝑖 ⊂ 𝑉𝑖 ,  𝑉𝑖 ≠ ∅ and 𝑉𝑖 is convex set, moreover, 

⋂ 𝑉𝑖
𝑛
𝑖=1 ≠ ∅ (since 𝐴𝑖 ⊂Vi and Vi contains every visible 

center of V).  

Claim:  𝑽 = ⋃ 𝑽𝒊
𝒏
𝒊=𝟏 :Clearly, ⋃ 𝑉𝑖

𝑛
𝑖=1 ⊂ 𝑉. So, we need to 

show that ⋃ 𝑉𝑖
𝑛
𝑖=1 ⊃ 𝑉. Now suppose  𝑥 ∉ ⋃ 𝑉𝑖

𝑛
𝑖=1 ⟹ 𝑥 ∉

𝐴𝑖 ⟹ 𝑥  is not visible in any vector 

  𝐴𝑖  , ∀ 𝑖, 𝑖 = 1,2, … , 𝑛 ⟹ 𝑥 ∉ 𝑉   (each member of V is 

visible to a vector in boundary set).Thus, ⋃ 𝑉𝑖
𝑛
𝑖=1 ⊃ 𝑉, and 

hence the theorem is proved. 

The preceding two theorems show that, every visible set is 

the union of convex sets. Moreover, if the boundary set of a 

visible set satisfies some conditions, then it can be expressed 

as the union of finite number of convex sets.   

Example 3.10: Let 𝑋 = 𝑅2  

a. 𝑉1 = {(𝑥, 𝑦) ∈ 𝑋: 2𝑦 ≤ 5𝑥, 3𝑦 ≥ 4𝑥, (𝑥 − 2)2 + (𝑦 −

3)2 ≤ 4  }  

   {(𝑥, 𝑦) ∈ 𝑋: 2𝑦 ≤ 5𝑥, 3𝑦 ≥ 4𝑥, 0 ≤ 𝑦 ≤
45

29
  ,0 ≤ 𝑥 ≤ 2} 

and 𝑉2 = {(𝑥, 𝑦) ∈ 𝑋: 4𝑥 ≤ 3𝑦, 3𝑥 ≥ 𝑦, 𝑦 ≥ 0}.  If  𝑉 =

𝑉1+𝑉2 . Since Vi , i=1,2 is convex and 𝑉1 ∩ 𝑉2 = {(0,0)}, V 

is visible set .  If   𝐴𝑖 = 𝜕𝑉𝑖 , 𝑖 = 1,2, then for all, 𝑥, 𝑦 ∈ 𝐴I⟹

𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑉𝑖 ( ∵ 𝑉𝑖
′𝑠 are convex) ⟹ 𝛼𝑥 + (1 −

𝛼)𝑦 ∈ 𝑉. Hence 𝐴i’𝑠 satisfied the conditions of Theorem 3.9 

and boundary set has shape as  

b. 𝑉1 = {(𝑥, 𝑦) ∈ 𝑋: 2𝑦 ≤ 5𝑥, 3𝑦 ≥ 4𝑥, (𝑥 − 6)2 + (𝑦 −

8)2 ≥ 4  , 𝑥 ≤ 6}  and  

𝑉2 = {(𝑥, 𝑦) ∈ 𝑋: 4𝑥 ≤ 3𝑦, 3𝑥 ≥ 𝑦, 𝑦 ≥ 0}.  If  𝑉 = 𝑉1+𝑉2 

Since Vi’s, i=1, 2 are visible sets and𝑉1 ∩ 𝑉2 = {(0,0)}, V is 

visible set. Consider a portion of boundary set 

           𝜕𝑉, 𝐴1 = {(𝑥, 𝑦) ∈ 𝑋: 2𝑦 ≤ 5𝑥, 3𝑦 ≥ 4𝑥, (𝑥 −

6)2 + (𝑦 − 8)2 = 4  , 𝑥 ≤ 6} ,  then 

𝑥 = (6,6) ,  𝑦 = (6,10) ∈ 𝐴I    implies that                       

                                            
1

2
𝑥 +

1

2
𝑦 = (6,8) ∉ 𝑉1 ⟹

1

2
𝑥 +

1

2
𝑦 = (6, ,8) ∉ 𝑉.   

Hence 𝐴i’𝑠 do not satisfy the conditions of Theorem 3.9. Here 

V can’t be expressed as union of finite number of convex sets. 

Indeed, 𝑉 = 𝑉2⋃(⋃ {𝛼𝑥: 𝛼 ∈ [0,1]}𝑥∈𝐴1
). 

Theorem 3.11 : Let𝑋 be a linear space,𝑉be nonempty visible 

subset of X, and 𝑦𝑜 ∈ 𝑉  be a visible center. Given 𝑦 ∈ 𝑉, 

there are vectors 𝑦1 , 𝑦2   , 𝑦3 , . . , 𝑦𝑛  and  𝛽0 , 𝛽1   , 𝛽2 , . . , 𝛽𝑛 ∈

[0,1]   such that 𝑦 = ∑ 𝛽𝑗
𝑛
𝑗=0 𝑦𝑗  and  1 = ∑ 𝛽𝑗

𝑛
𝑗=0  

Proof : Given  𝑦 ∈ 𝑉 and 𝑦𝑜 ∈ 𝑉  a visible center for V, there 

is a vector 𝑧 ∈ 𝑉 such that  𝑦 = 𝛽𝑦0 + (1 − 𝛽)𝑧. Since V is 

a visible set there is a collection of convex set {𝑉𝑖:  𝑖 ∈ 𝐼 } 

such that 𝑉 = ⋃ 𝑉𝑖𝑖∈𝐼    and ⋂ 𝑉𝑖𝑖∈𝐼 ≠ ∅. Therefore there 

exists,𝑖 ∈ 𝐼 such that   𝑧 ∈ 𝑉𝑖 . Consequently, there exist 

vectors  𝑦1 , 𝑦2   , 𝑦3 , . . , 𝑦𝑛   𝑖𝑛 𝑉𝑖  and 𝛼1   , 𝛼2 , . . , 𝛼𝑛  ∈ [0,1]  

such that𝑧 = ∑ 𝛼𝑗
𝑛
𝑗=1 𝑦𝑗 ,∑ 𝛼𝑗 = 1𝑛

𝑗=1  (because 𝑉𝑖 is a convex 

set) 

But  𝑦 = 𝛽𝑦𝑜 + (1 − 𝛽)𝑧 = 𝛽𝑦𝑜 + (1 − 𝛽) ∑ 𝛼𝑗
𝑛
𝑗=1 𝑦𝑗 =

𝛽𝑦𝑜 + ∑ (1 − 𝛽)𝛼𝑗
𝑛
𝑗=1 𝑦𝑗 = ∑ 𝛽𝑗

𝑛
𝑗=0 𝑦𝑗                

                 where  𝛽0 =  𝛽, 𝛽𝑗 = (1 − 𝛽)𝛼𝑗 , 𝑗 ≥ 1. 

Clearly, 𝛽𝑗 ∈ [0,1]   and ∑ 𝛽𝑗
𝑛
𝑗=0 = 1.  

Hence the result holds true. 

Definition 3.12:  A nonempty subset 𝑉 of linear space X is 

said to be  

a. Balanced set if 𝑥 ∈ 𝑉,  and  𝛼 ∈ 𝐹  𝑤𝑖𝑡ℎ |𝛼| ≤ 1 ,

𝑡ℎ𝑒𝑛  𝛼𝑥 ∈ 𝑉. 

b. Absorbing set if for every 𝑥 ∈ 𝑋 there exists  𝑟 > 0  

such that 𝑥 ∈ 𝑟𝑉.  

Theorem 3.13 :  Let  X be a linear space and let 𝑉 be 

nonempty visible and balanced subset of 𝑋. Then 

a) If 𝑥𝑜 ∈ 𝑉  is a visible center for 𝑉,  then  (– 𝑥)  is also 

visible center for  𝑉. 

b) 0 is a visible center for  𝑉. 

Proof : a) Since V is balanced set, we have   −𝑉 = 𝑉 .  Let 

𝑥0 ∈ 𝑉 be a visible center for V.  Since 𝛼𝑥𝑜 is a visible center 

for  𝛼𝑉 , ∀𝛼 ∈ 𝐹, we have −𝑥0  is a visible center for V. 



“A Note on Visible Sets” 

3553                                                                                   B. Surender Reddy, IJMCR Volume 11 Issue 07 July 2023 

b)  Since V is nonempty balanced set, 0 ∈ 𝑉 (taking  𝛼 = 0). 

Consequently for all 𝛼 ∈ [0,1]  and for arbitrary  𝑥 in 𝑉  𝛼0 +

(1 − 𝛼)𝑥 ∈ 𝑉. 

Theorem 3.14 : Let Xbe a linear space and let 𝑉 , 𝑉1 , 𝑉2 be 

nonempty visible and balanced sets in 𝑋.Then 

a) For any 𝛼 ∈ 𝐹, 𝛼𝑉  a visible and balanced set. 

b) 𝑉1+𝑉2 is visible and balanced set. 

c) 0  is a visible center for 𝑉1+𝑉2 

Proof :  We apply Theorem 1 and definition of balanced set. 

Theorem 3.15 : Let  𝑋 be a linear space and let 𝑉1 , 𝑉2 be 

nonempty visible and balanced sets in X.  If  𝑟1, 𝑟2 > 0 , then 

𝑟1𝑉1 +𝑟2𝑉2⊆ (𝑟1+𝑟2)(𝑉1+𝑉2 . 

Proof : Let 𝑦 ∈ 𝑟1𝑉1+𝑟2𝑉2, where 𝑟𝑖 > 0 , 𝑖 = 1,2. Then 𝑦 =

𝑟1𝑥1+𝑟2𝑥2 , 𝑥𝑖 ∈ 𝑉𝑖  , 𝑖 = 1,2 .  If 𝑥o, 𝑦o are visible centers  for 

V1 and V2 respectively , then  r1xo +r2yo  is  a visible center 

for r1V1 +r2V2 . Thus, 𝑧 = 𝛼 (𝑟1𝑥o+𝑟2𝑦o) + (1 − 𝛼  )𝑦 ∈

𝑟1𝑉1+𝑟2𝑉2 for any 𝛼 ∈ [0,1] (because  𝑟1𝑉1+𝑟2𝑉2 is visible 

set with visible center 𝑟1𝑥o+𝑟2𝑦o ).  But      𝑧 =

𝛼 (𝑟1𝑥o+𝑟2𝑦o) + (1 − 𝛼  )(𝑟1𝑥1 +𝑟2𝑥2  

                    = 𝑟1(𝛼𝑥o+(1 − 𝛼 )𝑥1) + 𝑟2(𝛼𝑦𝑜 + (1 − 𝛼 )𝑥2 . 

Since  𝑉i ,  𝑖 = 1,2  are balanced sets, we have                                   
𝑧

𝑟1+𝑟2
=  

𝑟1

𝑟1+𝑟2
(𝛼𝑥o+(1 − 𝛼 )𝑥1) +

𝑟2

𝑟1+𝑟2
(𝛼𝑦𝑜 + (1 −

𝛼 )𝑥2)  ∈ 𝑉1+𝑉2  . 

This implies that  𝑧 ∈ (𝑟1+𝑟2)(𝑉1+𝑉2  ,  hence the theorem 

is proved. 

Theorem 3.16 :  Let X be a linear space and ∅ ≠ 𝑉 ⊆ 𝑋.  

Suppose V is visible, balanced and absorbing set such that 

every member of V is a visible center for V.  For each x in X, 

define  ‖x‖ = inf {r > 0 ∶
x

r
∈ V} . 

If V does not contain a nonzero subspace of X, then ‖. ‖  is a 

norm on X and  

        {𝑥 ∈ 𝑋: ‖𝑥‖ < 1} ⊆ 𝑉 ⊆ {𝑥 ∈ 𝑋: ‖𝑥‖ ≤ 1}. 

Proof :  We need to show that  

  i)   ‖𝑥‖ ≥ 0    ∀ 𝑥 ∈ 𝑋   

 ii)  ‖𝑥‖ = 0 ⟺ 𝑥 = 0 

iii)  ‖𝛼𝑥‖ = |𝛼|‖𝑥‖  ∀ 𝑥 ∈ 𝑋 𝑎𝑛𝑑  ∀  𝛼𝜖𝐹 

iv)  ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖  𝑓𝑜𝑟  ∀ 𝑥 , 𝑦 ∈ 𝑋. 

                Let 𝑆𝑥 = {𝑟 > 0:
𝑥

𝑟
∈ 𝑉}.‖𝑥‖ = 𝑖𝑛𝑓𝑆𝑥, by 

definition of  ‖𝑥‖ . 

 Since  𝑆𝑥 ⊆ (0 , ∞) ⟹ ‖𝑥‖ ≥ 0 , ∀ 𝑥 ∈ 𝑋.   Proving (i).  

If  𝑥 ∈ 𝑉 ,  then – 𝑥 ∈ 𝑉   ( because  V is  balanced set).  Since 

every member of V is visible center for,  0 =
𝑥

2
+

−𝑥

2
∈ 𝑉 ⟹

0

𝑟
∈ 𝑉 , ∀ 𝑟 > 0 .  

Thus,             ‖0‖ = 𝑖𝑛𝑓𝑆0 = 𝑖𝑛𝑓(0 , ∞) = 0 

Now let 0 ≠ 𝑥 ∈ 𝑋. Then 𝑌 = {𝛼𝑥: 𝛼 ∈ 𝐹}  is nonzero 

subspace of X.  Since V contains only the zero subspace, Y is 

not contained in V. Thus there exists an 𝛼1 in F such that 

𝛼1𝑥 ∉ 𝑉. Since 0 ∈ 𝑉 ,  𝛼1𝑥 ≠ 0 ⟹ 𝛼1 ≠ 0.  Suppose That 

0 < 𝑟 <
1

|𝛼1|
  and that  𝑟 ∈ 𝑆𝑥 then 

x

r
∈ V (by definition of 𝑆𝑥) 

, and hence 𝛼1𝑥 = (𝛼1𝑟)
𝑥

𝑟
𝜖𝑉  (because  V is balanced set and 

|𝛼1𝑟| < 1). This contradicts to 𝛼1𝑥 ∉ 𝑉. This contradiction 

shows that  𝑟 ∈ 𝑆𝑥 ⟹ 𝑟 >
1

|𝛼1|
> 0 .  Hence ‖𝑥‖ = 0 ⟺ 𝑥 =

0.  (ii) is proved.  Let 𝑟 ≠ 0, and 𝑟 ∈ 𝑆𝛼𝑥 .  Then  
𝛼𝑥

𝑟
∈ 𝑉  ( by 

definition of𝑆𝑥)  ⟹
|𝛼|

𝑟
𝑥 =

|𝛼|

𝛼
(

𝛼𝑥

𝑟
) ∈ 𝑉   

   ⟹
𝑟

|𝛼|
𝜖 𝑆𝑥 ⟹ ‖𝑥‖ ≤

𝑟

|𝛼|
⟹ |𝛼|‖𝑥‖ ≤ 𝑟 , ∀𝑟 ∈

𝑆𝛼𝑥  ⟹ |𝛼|‖𝑥‖ ≤ ‖𝛼𝑥‖       (*) 

Now by changing 𝛼  to 
1

𝛼
   and x to 𝛼𝑥  in (*)  we obtain, 

                       
1

|𝛼|
‖𝛼𝑥‖ ≤ ‖

1

𝛼
(𝛼𝑥)‖ ⟹

‖𝛼𝑥‖

⌈𝛼⌉
≤ ‖𝑥‖ ⟹

‖𝛼𝑥‖ ≤ |𝛼|‖𝑥‖                    (**) 

By combining  (*)  and  (**)  we get  ‖𝛼𝑥‖ = |𝛼|‖𝑥‖ . 

Since‖0‖ = 0,    0𝑥 = 0 ,   

we have  ‖𝛼𝑥‖ = |𝛼|‖𝑥‖  for all  𝛼 ∈ 𝐹 for all 𝑥 𝑖𝑛 𝑋 .  

proved (iii). 

Let  𝑥, 𝑦 ∈ 𝑋. Given,  𝜀 > 0 , we can find  𝑟1 ∈ 𝑆𝑥  and  𝑟2 ∈

𝑆𝑦  such that  𝑟1 < ‖𝑥‖ + 𝜀  

and 𝑟2 < ‖𝑦‖ + 𝜀.  Since 𝑟1 ∈ 𝑆𝑥 and 𝑟2 ∈ 𝑆𝑦  , we have 
𝑥

𝑟1
∈

𝑉 and  

           
𝑦

𝑟2
∈ 𝑉 ⟹

𝑥+𝑦

𝑟1+𝑟2
=

𝑟1

𝑟1+𝑟2
(

𝑥

𝑟1
) +

𝑟2

𝑟1+𝑟2
(

𝑦

𝑟2
) ∈ 𝑉  

 (because V is visible set and every member of V is a visible 

center for V)  

⟹ ‖𝑥 + 𝑦‖ ≤ 𝑟1 + 𝑟2 < ‖𝑥‖ + ‖𝑦‖ + 2𝜀 

By letting  𝜀 → 0, we obtain that ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ for 

all 𝑥, 𝑦 in 𝑋. Thus ‖. ‖ is a norm on X. 

Now the question is what will happen is if every point of V is 

not visible center in the preceding Theorem? As the following 

Theorem shows that we can find similar results even if the 

condition “every member of V is a visible center is omitted “ 

on the set +𝑉. 

Theorem 3.17 : let X be a linear space over the field 𝐹 and 

 ∅ ≠ 𝑉 ⊆ 𝑋.  Suppose V  is visible, balanced and absorbing 

set.  For each x in X, define  

                    ‖𝑥‖ = 𝑖𝑛𝑓 {𝑟 > 0 ∶
𝑥

𝑟
∈ 𝑉 + 𝑉}. 

If  V does not contain a nonzero subspace of X, then ‖. ‖  is a 

norm on X and       

                  {𝑥 ∈ 𝑋: ‖𝑥‖ < 1} ⊆ 𝑉 + 𝑉 ⊆ {𝑥 ∈ 𝑋: ‖𝑥‖ ≤ 1}. 

Proof : Similar to Theorem 7, we need to show that 

i) ‖𝑥‖ ≥ 0    ∀ 𝑥 ∈ 𝑋      

ii)  ‖𝑥‖ = 0 ⟺ 𝑥 = 0    

iii)  ‖𝛼𝑥‖ = |𝛼|‖𝑥‖  ∀ 𝑥 ∈ 𝑋𝑎𝑛𝑑 ∀  𝛼𝜖𝐹 

iv)  ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖  𝑓𝑜𝑟  ∀ 𝑥 , 𝑦 ∈ 𝑋. 

Let 𝑆𝑥 = {𝑟 > 0:
𝑥

𝑟
∈ 𝑉 + 𝑉}.‖𝑥‖ = 𝑖𝑛𝑓𝑆𝑥 , by definition of 

‖𝑥‖ .  

Since  𝑆𝑥 ⊆ (0 , ∞) ⟹ ‖𝑥‖ ≥ 0 , ∀ 𝑥 ∈ 𝑋. Thus (i) is proved. 

Since V is visible and balanced, we have  𝑉 + 𝑉  is visible 

and balanced set and  0 ∈ 𝑉 + 𝑉(by Theorem 3.14.  Thus  0 ∈

𝑉 + 𝑉 ⟹
0

𝑟
∈ 𝑉 + 𝑉 , ∀ 𝑟 > 0 .  Thus,  ‖0‖ = 𝑖𝑛𝑓𝑆0 =

𝑖𝑛𝑓(0 , ∞) = 0 
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Now let 0 ≠ 𝑥 ∈ 𝑋.  Then 𝑀 = {𝛼𝑥: 𝛼 ∈ 𝐹}  is non zero 

subspace of X.  Since V does not contain any nonzero 

subspace of 𝑋,  𝑉 + 𝑉 does not contain any nonzero subspace 

of X.  Therefore, 𝑀 is not subset of 𝑉 + 𝑉.  So, there exists 

𝛼1 ∈ 𝐹 such that   𝛼1𝑥 ∉ 𝑉 + 𝑉. 

Since,   0 ∈ 𝑉 + 𝑉  ⟹ 𝛼1𝑥 ≠ 0 ⟹ 𝛼1 ≠ 0. 

Suppose That 0 < 𝑟 <
1

|𝛼1|
  and that  𝑟 ∈ 𝑆𝑥 , then  

𝑥

𝑟
∈ 𝑉 + 𝑉  

(by definition of 𝑆𝑥) ,  and hence   𝛼1𝑥 = (𝛼1𝑟)
𝑥

𝑟
𝜖𝑉 + 𝑉       

(because 𝑉 + 𝑉 is balanced set and |𝛼1𝑟| < 1).  

This contradicts to 𝛼1𝑥 ∉ 𝑉 + 𝑉. This contradiction shows 

that ∈ 𝑆𝑥 ⟹ 𝑟 >
1

|𝛼1|
> 0 . Hence ‖𝑥‖ = 0 ⟺ 𝑥 = 0.  

Hence (ii) is proved. 

Let 𝛼 ≠ 0 and  𝛼 ∈ 𝑆𝛼𝑥 .  Then  
𝛼𝑥

𝑟
∈ 𝑉 + 𝑉 ( by definition 

of𝑆𝑥).  

          ⟹
|𝛼|

𝑟
𝑥 =

|𝛼|

𝛼
(

𝛼𝑥

𝑟
) ∈ 𝑉 + 𝑉              (Since 𝑉 + 𝑉 is 

balanced and |
|𝛼|

𝛼
| = 1 )  

          ⟹
𝑟

|𝛼|
𝜖 𝑆𝑥 ⟹ ‖𝑥‖ ≤

𝑟

|𝛼|
⟹ |𝛼|‖𝑥‖ ≤ 𝑟 , ∀𝑟 ∈

𝑆𝛼𝑥 ⟹ |𝛼|‖𝑥‖ ≤ ‖𝛼𝑥‖.         (*)  

Now by changing 𝛼  to 
1

𝛼
   and x to 𝛼𝑥  in (*) , we obtain, 

      
1

|𝛼|
‖𝛼𝑥‖ ≤ ‖

1

𝛼
(𝛼𝑥)‖ ⟹

‖𝛼𝑥‖

⌈𝛼⌉
≤ ‖𝑥‖ 

                               ⟹ ‖𝛼𝑥‖ ≤ |𝛼|‖𝑥‖                                (**) 

By combining (*) and (**) we get  ‖𝛼𝑥‖ = |𝛼|‖𝑥‖ . 

Since‖0‖ = 0,    0𝑥 = 0 ,  

we have ‖𝛼𝑥‖ = |𝛼|‖𝑥‖  for all  𝛼 ∈ 𝐹 for all 𝑥 in 𝑋 .  Thus 

we proved (iii). 

Let 𝑥, 𝑦 ∈ 𝑋 be arbitrary points .Since V is absorbing set, 

there are positive numbers 𝑚1, 𝑚2 such that  
𝑥

𝑚1
 ,

𝑦 

𝑚2
∈ 𝑉.  

Moreover, 𝑉 ⊆ 𝑉 + 𝑉  (because 0 ∈ 𝑉 as V is absorbing). 

Thus 
𝑥

𝑚1
 ,

𝑦 

𝑚2
∈ 𝑉 ⟹

𝑥

𝑚1
 ,

𝑦 

𝑚2
∈ 𝑉 + 𝑉 . So given  𝜀 > 0 , we 

can find  𝑟1, 𝑟2 > 0 such that 

𝑟1 ∈ 𝑆𝑥, and 𝑟2 ∈ 𝑆𝑦 such that 
𝑥

𝑟1
 ,

𝑦 

𝑟2
∈ 𝑉 and 𝑟1 < ‖𝑥‖ +

𝜀

2
 

and 𝑟2 < ‖𝑦‖ +
𝜀

2
 . 

But 
𝑥

𝑟1
 ,

𝑦 

𝑟2
∈ 𝑉  ⟹

𝑥

𝑟1
 ,

𝑦 

𝑟2
∈ 𝑉 + 𝑉 ⟹ 𝑟1 ∈ 𝑆𝑥 ,  and 𝑟2 ∈ 𝑆𝑦   

(by definition of 𝑆𝑥 and 𝑆𝑦). 

Since 0 ∈ 𝑉 is a visible center for V (as V is balanced set), 

there exist 𝑥1,and 𝑥2 such that 

                     
𝑥

𝑟1
= 𝜆𝑜 + (1 − 𝜆)𝑥1 , and  

𝑦

𝑟2
= 𝜇𝑜 + 

(V is visible set and 0 is visible center for V)  

                      ⟹ 𝑥 = 𝑟1(1 − 𝜆)𝑥1 , and 𝑦 = 𝑟2(1 − 𝜇)𝑥2 

                     ⟹
𝑥+𝑦

𝑟1+𝑟2
=

𝑟1

𝑟1+𝑟2
((1 − 𝜆)𝑥1) +

𝑟2

𝑟1+𝑟2
(𝑟2(1 −

𝜇)𝑥2) ∈ 𝑉 + 𝑉 

 (because V is balanced set). 

  ⟹ 𝑟1 + 𝑟2 ∈ 𝑆𝑥+𝑦 ⟹ ‖𝑥 + 𝑦‖ ≤ 𝑟1 + 𝑟2 < ‖𝑥‖ + ‖𝑦‖ +

𝜀 

                    ⟹ ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖  , by letting 𝜀 → 0  (𝜀 

was arbitrary). 

 Hence the Theorem is proved. 
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