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1. INTRODUCTION

In this paper, we study the concept of visible set which can
be considered as the generalizations of convex sets [1,7]. The
aim of this work is to look at which of the properties of
convex sets are extendable to that of properties of visible sets
and what additional properties does this set possess. We
investigated some characteristics of the mentioned set.
Accordingly, we have seen that some of algebraic properties
of convex sets are not extendable to those visible sets. For
example, the intersection of visible sets is not visible set and
union of arbitrary convex sets with nonempty common is
always visible set which might not be convex set. The most
remarkable result is that every visible set can be expressed as
the union of convex sets. In addition, we tried to develop the
conditions that enable us to determine whether the given
visible set can be expressed as the union of finite number of
convex sets or not.

Example 2:. a) b)

The sets in (a) and (b) represents a visible set while (c) does
not. Note that (a), (b) and (c) are convex sets.

Example 3: Let X be a normed linear space and let V; =
{xeX:xll <1},

V,={yeX:|ly—vll <1y,notinV;}. IfV,NV, # @,
then V =V, UV, isavisible set.

Proof: LetV, NV, # @, x, €V, NV, , a€[0,1]andlety €
V be arbitrary element in V. We need to show that ax, +

2. PRELIMINARIES

Definition 2.1 (visible points in sets) [6] : Two points in a
set VVare said to be visible to each other with respect to V if
the line segment determined by them lies in the set .
Definition 2.2 (Visible set) [6]: A set V is said to be visible
set if there exists a point x in V such that each other point in
V is visible to it. If such an x exists then it is called visible
center of the set V and it may not be unique.

From the definition of visible set, we can easily verify that
every convex set is a visible set. Therefore, convex set can be
redefined as a visible set. Every point in convex set V is
visible centre y of the set V.

Example 1: If X =R? and V = {(x,y):0<x < landy =
0Oor0<y<1landx =0}

then V is a visible set with visible center x, = (0,0).

(1—-a)y€eV. Buty e Vimplieseithery eV, ory € V, or
yEV, NV,
If y eV, then|ly|l <1and

llax, + (1 — )yl < allxll + (1 -
Dlylsa+(1-a)=1.
Thus ax, + (1 — a)y € V; and hence in V.
If y eV, then |ly, — (ax, + (1 — )yl = lly, — (ax, +
1 -a)y) + ay, — ay,ll
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<sA-ally, —
yll+ally, —xll =1.
Thus ax, + (1 — a)y € V, and hence ax, + (1 — a)y lies
inV.
Similarly, we can verify the other case.
Example (2(a)) shows that if two convex sets have nonempty
intersection, then their union is visible set.

3. SOME PROPERTIES OF VISIBLE SETS AND ITS
CHARACTERIZATION

Definition 3.1: Let X be a linear space over a field F and let
Vbeavisiblesetin X.ForyeX, ae Fandd+AC<C X,
we define

(i) V+y={x+y:x€eV}

(i) aV={ax:x€V}

(i) V+A={x+y:x€V,y €A}

Theorem 3.2: Let X be a linear space over a field F and let
Vand M arevisiblesetsinX. If ye X, a € Fthen(i) V +
y (i) aV (iii) V + M are visible sets.

Proof: (i) Since V is visible set, there is at least one point x,
in V such that, ax, + (1 —a)z €V forall z in V and for
alle [0,1].

Claim: x, + y isavisible center for V + y.

IfzeV +y,then z=k+y for somek € V. So, for a €
[0,1], we have

ax+y)+A-az=alx+y)+ A -a)k+y) =
ax, + (1 —a)k+y eV +y. Since z is arbitrary, x, + y is
a visible center forV +y. Thus V +y is a visible set.
Similarly ax, is a visible center for aV so that (ii) holds true.
(iii). Let x, andy, be visible centers for V and M
respectively.

Claim : x, + y, is a visible center for V + M.
LetzeV+ M then z=x+y forsomex e Vand y € M.
For a € [0,1], we have
alxo+y)+A—a)x+y)=axy+ (1 —a)x +ay, +
(1-a)y €V + M. Since z is arbitrary, x, + y, is visible
center for M + V, showing V + M is a visible set.

Theorem 3.3 : Let X be a linear space and let @ # V C X.
Then V is visible set if and only if V is union of convex sets
with nonempty intersection.

Proof : Without loss of generality we assume the index set
countable.

Suppose {V;:i €l,Ianindexset} is the collection of
convex sets such that N;e; V; #= @. Let V = U;V; . We need
to show V is visible set. Let @ € [0,1], z € V be arbitrary.
Then by definition of V, there exists j € I such that z € V.
Since N V; # @ there exists x, €eV; Vi el and ax, +
1-a)z€eV.

Therefore ax, + (1 — a)z € V. Since z is arbitrary we have
x, is a visible center for V, consequently V is a visible set.

Conversely, let V be a visible set. Here now construct the
collection of convex sets such that V = U;¢; V; and N V; #
0.

Notation: x ™y, we mean x and y are visible to each other
with respect to a given set.

Now we have different cases to consider.

Case I: (Every member of V is a visible center for V). In
this case by definition V is convex set and we have done.
Case 11: Suppose V has a unique visible center, say, x, : If
V ={x,}, V is convex set and hence the Theorem. IfV #
{x0}, thenfor y, €V ,y, # x,, defineV;, ={y € V:y~y,
with x~y; and y~y, = y~x}.V; # @ , because vy, ,x, €
Vi and x,~y,. Given x,and y€V,, we have
x~y, and y~y, = x~y for all x,y €V, (by definition of
V1) .Thus every member of V; is a visible center forV.:.
Therefore V; is convex set.

If V=V,;, we have done; otherwise choose y, € VlC
(complement is taken relative to V) and define v, =
{y € V:y~y, with x~y, and y~y, = x~y}. Similar to
the case I, V, is convex and V, # @

IfV =V, UV,, we have done; otherwise we continue by the
same manner as

Vi ={y € Viy~y, with x~y, and y~y, = x~y},

i € (U Vi)cl k= 2.

Put B = U;¢ Vi , where 1 is the index set composed of the
preceding procedure. We want to show that V = B. The
definition of V;'s ,i € Ishows that B € VV.So , we need to
show that V € B.

If z¢ B, then z is not member of V;, i €1 . Since x, €
V; for alli € I, we have z is not visible for x, . Thatisz ¢
V .Thus, V < B. therefore, V = B.

Case I11: Suppose V contains more than one visible centers:
Let A = {x € V: x is avisible center of V }. Similar to case
I1, we can construct collection of convex sets containing set
Asuch that V = U;¢; V; and N;e; V; = A. Hence the theorem
is proved.

It worth to note that, each V, contains at least y, and x,.
Consequently V,, contains infinitely many vectors, provide
that V, # x, .

Note 3.4 : Closure of any convex set is convex.

Corollary 3.5 : If V is visible set, then its closure is visible
set.

Proof : By Theorem 3.3, there exists convex sets V; such
that V =U;V; . Since cl(V;)is convex for eachi,
Niercl(Vy) # @ , and cl(V) = Ucl(V); , closure of V is
visible set.

It is well-known fact that the intersection of convex sets is a
convex set. But the neither union nor intersection of visible
sets is visible set in general.

Remark 3.6: In general, (i) Intersection of visible sets may
not be visible set.

(i) Union of visible sets is not visible set.

3551

B. Surender Reddy, IJIMCR Volume 11 Issue 07 July 2023



“A Note on Visible Sets”

According to Theorem 3.3, Every Visible set can be
expressed as union of convex sets with nonempty
intersection.

Now the question is “is it possible to express a given visible
set as a union of finite number of convex sets ? ” As the
following result reveals, the answer to the above question
depends strongly on the behavior of the boundary set of a
given visible set.

Definition 3.7: Let X be a linear space and let @ # V c X
bounded closed visible set. The boundary of V, denoted by
dV is defined as aV :={xeV : every neighborhood U, of
x containsapoint y € V,and z € V}.

Definition 3.8: (Interior of a visible set): Let X a linear space
and @ # V c X be visible set. Interior of V, denoted by
int(V) is defined as intV := {x € V: there exists a
neighborhood U, < V of x suchthat U, naV = @}.

If V is open and bounded, then the boundary of V coincides
with the boundary of closure of V. Hence we can define the
boundary of an open visible set with respect to its closure.
We call a collection {4; : i € I} partition of boundary set if
dV =UA;,and A; N A4;,i # j have at most finite common
points.

Theorem 3.9 : Let X be a linear space and let @ # V c X
be a bounded visible set. Then V is expressed as the union of
finite number of convex sets if and only if there exists a finite
collection {4; : i € I} (partition of boundary set) such that for
x,yEA;, ax+ (1—a)yeV,ae[0,1].

Proof: IfV =UL,V;, then define A; =09V, = Vx,y €
Aj,ax+ (1 —a)y eV,= ax+ (1 —a)y € V. Since, there
are finite Vi’s, we have finite Ai’s with 9V = UL, 4;.
Conversely, suppose 9V = Uj-;4; andVx,y € 4;,ax +
(1 —a)y € A;, we need to construct a collection of convex
sets (Vi:i=12,..,n} such that V =U",V,.
Let V; ={x € V:x is visible to some vector in A; such that
if x and y are visible to some vector in A;=x is visible to
v}
Since, A; cV;, V; =@ and V; is convex set, moreover,
Vi =0 (since 4; cV; and V; contains every visible
center of V).

Claim: V = Ui V;:Clearly, U=, V; c V. So, we need to
show that Uj=, V; 2 V. Now suppose x € UL, V;, = x ¢
A; = x isnotvisible in any vector

A ,Vi,i=12,..,n=>x¢V (each member of V is
visible to a vector in boundary set).Thus, U™, V; 2 V, and
hence the theorem is proved.
The preceding two theorems show that, every visible set is
the union of convex sets. Moreover, if the boundary set of a
visible set satisfies some conditions, then it can be expressed
as the union of finite number of convex sets.

Example 3.10: Let X = R?
a. V,={(x,y) €X:2y <5x,3y=4x,(x —2)*+ (y —

3)2<4 U

{yexzy<sx3syzax0<y<Z 0<x<2

and V, ={(x,y) €EX:4x <3y,3x=>y,y=0}. If V =
V1+V, . Since Vi, i=1,2 is convex and V; NV, = {(0,0)}, V
isvisibleset. If A; =0aV,,i =1,2,thenforall, x,y € A=
ax+ (1 —-a)yeV, (~V's are convex) = ax + (1—
a)y € V. Hence Ai's satisfied the conditions of Theorem 3.9
and boundary set has shape as
b. V;={(x,y) € X:2y <5x,3y > 4x,(x —6)* + (y —
8)2>4 ,x <6} and

Vo={(x,y) €EX:4x <3y,3x = y,y=0}. If V =Vi+V,
Since Vyi’s, i=1, 2 are visible sets andV; NV, = {(0,0)}, V is
visible set. Consider a portion of boundary set

Vv, A, ={(x,y) € X:2y < 5x,3y = 4x, (x —
6)2+ (y —8)2 =4 ,x <6}, then
x=(6,6), y=1(6,10) € A, implies that

§x+§y =(68) &V, z§x+

~y=(6,.8)¢V.
Hence Ai’s do not satisfy the conditions of Theorem 3.9. Here
V can’t be expressed as union of finite number of convex sets.
Indeed, V = VoU(Uyeq, {ax: a € [0,1]}).
Theorem 3.11 : LetX be a linear space,Vbe nonempty visible
subset of X, and y, € V be a visible center. Giveny € V/,
there are vectors y,,y, ,¥3,..,¥, and Bo,B1 ,B2,--,Bn €
[0,1] suchthaty = }7_,B;y; and 1 =37_,pB;
Proof : Given y € V and y, € V avisible center for V, there
is a vector z € V such that y = By, + (1 — 8)z. Since V is
a visible set there is a collection of convex set {V;: i €I}
such that V. = U, V; and N V; # @. Therefore there
exists,i € I such that z € V;. Consequently, there exist
vectors y;,v, ,¥3,., Y, inV; and a; ,a,,..,a, €[0,1]
such thatz = }7_; a; y; . Xj=1 @; = 1 (because V; is a convex
set)
But  y=By%+0-B)z=By,+(1—-p)Yj-1ajy; =
By, + Xi-1(1 = Ba;y; = Y70 B y;

where Bo=pB Bi=A-Pa; , j=1
Clearly, g; € [0,1] and Z?:o p; = 1.
Hence the result holds true.

Definition 3.12: A nonempty subset V of linear space X is
said to be
a. Balanced set ifxeV, and a €F with|a|<1,
then ax €V.
b. Absorbing set if for every x € X there exists r > 0
such that x € rV.

Theorem 3.13 : Let X be a linear space and let V be
nonempty visible and balanced subset of X. Then

a) Ifx, eV isavisible center for V, then (-x) isalso

visible center for V.

b) 0isa visible center for V.
Proof : a) Since V is balanced set, we have —V =1V . Let
X, € V be avisible center for V. Since ax, is a visible center
for aV ,vVa € F, we have —xo is a visible center for V.
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b) Since V is nonempty balanced set, 0 € V (taking a = 0).
Consequently for all « € [0,1] and for arbitrary x inV a0 +
1—a)xeV.

Theorem 3.14 : Let Xbe a linear space and let V', V1,V be
nonempty visible and balanced sets in X.Then

a) Foranya € F, aV avisible and balanced set.

b) V14V, is visible and balanced set.

c) 0 isavisible center for V14V,

Proof : We apply Theorem 1 and definition of balanced set.
Theorem 3.15 : Let X be a linear space and let V1,V be
nonempty visible and balanced sets in X. If r;,7, > 0, then

Vi +rV.c (T1+T2) (V1+V2:] .

Proof : Lety € riVi+r.Vay wherer; > 0,i = 1,2. Theny =
rixi+raxs, x; € Vi, i =1,2. If xo, yo are visible centers for
V1 and V; respectively , then rix, +ray, is a visible center
for riVi +rVe  Thus, z = a (rixe+r2yo) + (1 —a )y €
riV1+roV, for any a € [0,1] (because r1Vi+r2V; is visible
set with visible center rixo+r2y. ). But z=
a (rixotrayo) + (1 — a )(rixs +raxs)
=ri(axo+(1 —a)x) +r2(ayo+ (1 —«a )Xz]_
Since Vi , i=12 are balanced sets, we have
= L (axo+(1 — a)x1) t (ayo +(1-

r1+72 1472

a)x2) EVi+Vs, .

This implies that z € (r1+72)(V1+V2) , hence the theorem
is proved.

Theorem 3.16 : Let X be a linear space and @ =V < X.
Suppose V is visible, balanced and absorbing set such that
every member of V is a visible center for V. For each x in X,
define [|x|| = inf{r >0:%eV}.

If V does not contain a nonzero subspace of X, then ||.|| isa

norm on X and
{xeX:|xl|<1}cVc{xeX:|x| <1}

Proof : We need to show that

i) |Ix[[=0 VvxeX

i) x| =0 x=0

iii) |lax|| = |a|llx|| Vx € X and V aeF
) llx +yll < llxll + llyll for vx,y€X.

Lets, = {r > 0:X e V}x|| = infs,, by

definition of ||x]|| .

Since S, € (0,0) = ||x|]| = 0,V x € X. Proving (i).
If x eV, then-x €V (because Vis balanced set). Since
every member of V is visible center for, 0 = §+ _z—x EV=

2EV,Vr>0.

Thus, [10]] = infSy = inf(0,) =0

Now let 0 # x € X. Then Y = {ax:a € F} is nonzero
subspace of X. Since V contains only the zero subspace, Y is
not contained in V. Thus there exists an a, in F such that
ax¢V. Since 0eV, ayx # 0= a; # 0. Suppose That

0<r<— andthat r € S, then € V (by definition of S,.)

I1|

,and hence a;x = (a;1) ’r—‘eV (because V is balanced set and
|a,7| < 1). This contradicts to a,x & V. This contradiction

shows that reSx:r>ﬁ>0. Hence ||x]| =0 & x =
1

0. (ii) is proved. Letr # 0,andr € S,, . Then == €V (by
e el || |a|
definition ofS,) = —x = ( ) ev

I leS = ||x|| Sﬁz la||lx|| <r,vre
Sex = lalllx|l < llax|l  (¥)
Now by changing a tol and x to ax in (*) we obtain,

laxll < ||2 (@0 | = 2 < jxll =
llax|l < lalllx|l **)

By combining (*) and (**) we get |lax| = |a|llx]|l .
Since||0|] =0, O0x =0,

we have |lax]|| = |a|llx|] for all ae€F forall xinX .
proved (iii).

Let x,y € X. Given, e >0,wecanfind , €S, and r, €
S, suchthat r <|lx|[+ ¢

andr, < ||lyl| + €. Sincer; €S, andr, €

V and
Levo Kot () (Y ev
(because V is visible set and every member of V is a visible
center for V)
= |lx +yll <m + 1 <llxll + llyll + 2¢
By letting ¢ — 0, we obtain that ||x + y|| < |[x|| + ||v|| for
all x,y in X. Thus ||. || isa norm on X.
Now the question is what will happen is if every point of V is
not visible center in the preceding Theorem? As the following
Theorem shows that we can find similar results even if the
condition “every member of V is a visible center is omitted
on the set +V.
Theorem 3.17 : let X be a linear space over the field F and
@ +V < X. Suppose V is visible, balanced and absorbing
set. For each x in X, define
1| =inf{r>0:§EV+V}.
If V does not contain a nonzero subspace of X, then ||. || isa
norm on X and
fxeX:xll<1}cV+Vci{xeX:|x| <1}
Proof : Similar to Theorem 7, we need to show that

S, ,wehave = €
T1

i) x| =0 VvxeX

i) x| =0=x=0

iii) lax|| = |a|llx|]| Vx € Xand V aeF
iv) llx + yIl < llxll + llyll for Vx,y € X.

LetS, = {r >0:2€V+ V}.llxll = infS, , by definition of
[lx]l -

Since S, € (0,0) = ||x|| = 0,V x € X. Thus (i) is proved.
Since V is visible and balanced, we have V +V is visible
and balanced setand 0 € V + V(by Theorem 3.14. Thus 0 €

V+V=2eV+V,¥r>0 . Thus, [|0]l = infS, =
inf(0,0)=0
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