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function 𝜎(𝑛)can be solved in terms of the complete Bell polynomials. Besides, the connection  
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1.- INTRODUCTION 

In [1] were considered recurrence relations with the structure 

of a Cauchy convolution [2]: 

 

𝑛 𝑓𝑘(𝑛) = ∑ ℎ(𝑗)𝑛
𝑗=1 𝑓𝑘(𝑛 − 𝑗),          𝑘 ≥ 1,     𝑛 ≥ 0,                                         

(1) 

 

verifying the properties  𝑓𝑘(0) = 1   ∀ 𝑘  and  ℎ(0) = 0, 

where it was used the Z- transform to obtain the following 

solution: 

𝑓𝑘(𝑛) =
1

𝑛!
𝐵𝑛(0! ℎ(1), 1! ℎ(2), 2! ℎ(3), … , (𝑛 − 1)! ℎ(𝑛)),                                     

(2) 

 

in terms of the complete Bell polynomials [3-9]. 

 

   In Sec. 2 we observe that the Robbins [10] – Osler et al [11-

13] identity for the sum of divisors function 𝜎(𝑛) [2] has the 

structure (1), hence it is applicable the result (2). In Sec. 3 it 

is used the connection between𝜎(𝑚) and 𝑡4(𝑁), that is, the 

number of representations of  N  as a sum of 4 triangular 

numbers [14, 15], to deduce an interesting recurrence relation 

involving only the values of  𝜎(𝑚) with  m  odd. 

 

2.- OSLER et al – ROBBINS IDENTITY 

We know the following recurrence relation [10-13] with the 

structure (1): 

 

𝑛 𝑎𝑛 = − ∑ 𝜎(𝑗)𝑛
𝑗=1 𝑎𝑛−𝑗  ,        𝑎0 = 1,        𝜎(0) =

0,          𝑛 ≥ 1,                           (3) 

where [16]: 

𝑎𝑗 = {

0 ,             𝑗 ≠
𝑚

2
(3𝑚 + 1),

(−1)𝑚,    𝑗 =
𝑚

2
(3𝑚 + 1),

𝑚 = 0, ±1, ±2, …                                   

(4) 

that is: 

𝑎𝑗 = {
1,    𝑗 = 0, 5, 7, 22, 26, 51, 57, 92, 100, 145, 155, …

−1,   𝑗 = 1, 2, 12, 15, 35, 40, 70, 77, 117, 126, 176, …
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             

(5)  

 

hence (2) implies the closed expression:       

 

𝑎𝑛 =
1

𝑛!
𝐵𝑛(−0!  𝜎(1), −1!  𝜎(2), −2!  𝜎(3), … , −(𝑛 −

1)!  𝜎(𝑛)),           𝑛 ≥ 0,           (6) 

 

and its corresponding inversion is given by: 

 

𝜎(𝑛) =
1

(𝑛 − 1)!
∑ (−1)𝑘𝑛

𝑗=1 (𝑘 −

1)! 𝐵𝑛,𝑘(1! 𝑎1, 2!  𝑎2, … , (𝑛 − 𝑘 + 1)! 𝑎𝑛−𝑘+1),        𝑛 ≥ 0,                           

(7) 

in terms of the partial Bell polynomials. 

 

3.- RECURRENCE RELATION FOR  𝝈(𝒎) WITH  m  

ODD 

In [12] it was obtained the following recurrence relation: 

 

𝑛 𝑡𝑘(𝑛) = −𝑘 ∑ 𝑗𝑛
𝑗=1  𝑇(𝑗)𝑡𝑘(𝑛 − 𝑗),                                  (8) 
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where  𝑡𝑘(𝑛) is the number of representations of  n  as a sum 

of k triangular numbers, and: 

 

  𝑇(𝑗) = ∑
1 + 2 (−1)𝑑

𝑑𝑑𝘐𝑗 =
1

𝑗
∑ (−1)𝑑

𝑑𝘐𝑗 𝑑 .  (9) 

 

On the other hand, we have the connection [14, 15]: 

 

𝑡4(𝑛) = 𝜎(2𝑛 + 1),                                                    (10) 

 

then (10) and (8) with  𝑘 = 4 imply the relation: 

 

𝑛 𝜎(2𝑛 + 1) = − 4 ∑ 𝑗

𝑛

𝐽=1 

 𝑇(𝑗) 𝜎(2𝑛 + 1 − 2𝑗),         

  𝑛 ≥ 0,                    (11) 

 

as an alternative recurrence to (3); we note that into (11) only 

participate the values of 𝜎(𝑚)with m odd. We know that any 

positive integer can be written in the form  𝑛 = 2𝑘  𝑚, 𝑘 ≥ 0  

such that  m  is odd, therefore: 

 

𝜎(𝑛) = (2𝑘+1 − 1) 𝜎(𝑚),                                       (12) 

 

hence all values of the sum of divisors function are generated 

by the quantities 𝜎(𝑚), where m is odd, which are determined 

using (11). 

 

   Similarly, we have the result of Ewell [17, 18]: 

 

𝑡2(𝑛) =
1

4
𝑟2(4𝑛 + 1),                                                (13) 

 

where  𝑟2(𝑛) is the number of representations of n as a sum 

of two squares [19-21], thus (13) and (8) with  𝑘 = 2 imply 

the recurrence relation: 

 

𝑛 𝑟2(4𝑛 + 1) = −2 ∑ 𝑗𝑛
𝑗=1  𝑇(𝑗)𝑟2(4𝑛 + 1 −

4𝑗),             𝑛 ≥ 0,                         (14) 

 

which is a companion expression for the following formula 

obtained in [12]: 

 

𝑛 𝑟2(𝑛) = −4 ∑ (−1)𝑗𝑛
𝑗=1  𝑗 𝐷(𝑗)𝑟2(𝑛 − 𝑗),       𝐷(𝑗) =

∑
1

𝑑𝑜𝑑𝑑 𝑑𝘐𝑗  ,         𝑛 ≥ 0.                    (15) 

 

Remark 1: The recurrence relation (3) can be written in the 

form [10]: 

 

𝜎(𝑛) + ∑ (−1)𝑘
𝑘≥1 [𝜎(𝑛 − 𝜔(𝑘)) + 𝜎(𝑛 − 𝜔(−𝑘))] =

{
(−1)𝑚−1 𝑛, 𝑖𝑓  𝑛 = 𝜔(±𝑚),

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
               (16) 

 

where  𝜔(𝑘) =
𝑘

2
(3𝑘 − 1) are the pentagonal numbers. 

 

Remark2: Gandhi [12, 22, 23] deduced the following 

recurrence relation for the colour partitions𝑝𝑘(𝑛) 

                  [13, 24, 25]: 

𝑛 𝑝𝑟(𝑛) = −𝑟 ∑ 𝜎(𝑟)𝑛
𝑟=1 𝑝𝑟(𝑛 − 𝑟),              𝑟, 𝑛 ≥ 1,                                                        

(17) 

 

where we can employ  𝑟 = 1 to obtain (3) because  𝑝1(𝑛) =

𝑎𝑛; furthermore, letting  𝑟 = −1 in (17) gives the well-known 

expression [13]: 

𝑛 𝑝(𝑛) = ∑ 𝜎(𝑗)𝑛
𝑗=1 𝑝(𝑛 − 𝑗),                                                        (18) 

involving the partition function. 

 

Remark 3:The property (7) implies the following determinant 

[4, 25]: 

 

𝜎(𝑛) =

−

|

|

|

𝑛𝑎𝑛 𝑎1 𝑎2 𝑎3
⋯ 𝑎𝑛−1

(𝑛 − 1)𝑎𝑛−1 1 𝑎1 𝑎2
⋯ 𝑎𝑛−2

(𝑛 − 2)𝑎𝑛−2

⋮
⋮
⋮

2𝑎2

𝑎1

0
0
⋮
⋮
0
0

1 𝑎1
⋯ 𝑎𝑛−3

0 1 ⋱          ⋮
⋮ 0 ⋱      ⋮
⋮ ⋮ ⋱        ⋮
0 0 ⋱ 𝑎1

0 0 ⋯     1

|

|

|

,         𝑛 ≥ 1.        

(19) 
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